
CODING ASSIGNMENT COURSE: COMPSCI 230

Due on Apr. 22, 2020
65 points total

General directions: We will exclusively use Java for our programming assignment, and allow only
the use of modules in the Java standard library, such as java.util or java.math.

For this coding assignment, please download the five skeleton files (“Problem1.java”, “Prob-
lem2.java”, “Problem3.java”, “Problem4.java”, and “Pair.java”) from the course website and fill in
the empty methods. Make sure to keep these files in the default package in your workspace. You
should not rename these files or modify the method headers but you may add helper methods as
you see fit. When you are done and ready to submit, upload “Problem1.java”, “Problem2.java”,
“Problem3.java”, and “Problem4.java” to Gradescope (you do not need to upload “Pair.java”). Do
not upload any other files or put any of the four files in a folder. Submissions to Gradescope will be
autograded so that you can see your score. You may submit to the autograder any number of times,
up until the due date.

Finally, this is an individual assignment. You are not allowed to discuss your work with any-
body. Failure to adhere to these guidelines will be promptly reported to the relevant authority
without exception.

Note that one additional problem may be added at a later date to include material not yet covered
in lecture.

Page 1



CODING ASSIGNMENT COURSE: COMPSCI 230

Problem 1 (15 points)
Recall that any logical formula can be expressed in disjunctive normal form (DNF). For this prob-
lem you will implement the method convertToDNF which generates a DNF expression corre-
sponding to a given truth table. The specifications of this method are described in more depth in
“Problem1.java”, available on the course website.

Problem 2 (15 points)
Recall that if R is a relation on a set A, then there are some properties of R that we often con-
sider: reflexivity, transitivity, symmetry, and asymmetry. Implement methods to test whether given
relations satisfy each of these properties.

The specifications of the methods are described in more depth in “Problem2.java”, available on
the course website.

Problem 3 (15 points)
Recall that we defined a graph as an ordered pair (V,E) where V is a non-empty finite set and E

is a set of two-element subsets of V . Thus, one way to represent a graph is by explicitly listing its
vertices and edges. However, in practice, the two most common representations are the adjacency
list and adjacency matrix representations, which we define below.

Let G = (V,E) be a graph with n vertices. For this problem, we assume V = {0, 1, . . . , n−1}.
Recall that for all u ∈ V , we say vertex v is a neighbor of u if (u, v) ∈ E. The adjacency list
representation of G is a list L of lists of vertices such that L[u] contains the neighbors of vertex u.

The adjacency matrix representation of un undirected graph G is an n × n symmetric matrix
M where M [u, v] is the weight of the u-v edge if v is a neighbor of u, and 0 otherwise. In an
unweighted graph, M [u, v] is 1 if v is a neighbor of u and 0 otherwise. (Recall that M is symmetric
means M [u, v] = M [v, u] for every pair of vertices u and v.)

For this problem, you will implement two methods: getAdjacencyList and
getAdjacencyMatrix, each of which takes a vertex set and edge set and returns an alternate
representation of the graph. The specifications of these methods are described in more depth in
“Problem3.java”, available on the course website.

Problem 4 (20 points)
Recall the “cycle property” regarding minimum spanning trees (MSTs): the heaviest edge of any
cycle in the graph is not in any MST. Thus, one way to find an MST is the following: while there
exists a cycle C in the graph, remove the heaviest edge of C from the graph. Repeat this process
until the graph is acyclic, and return this final graph.

For this problem, you will implement the algorithm above as method findMST, which takes
an adjacency matrix for a weighted graph and returns the cost of the MST. See the example graph
G and its corresponding matrix M below.

To implement findMST, you are to use the given function findCycle which returns null

Page 2



CODING ASSIGNMENT COURSE: COMPSCI 230

if there is no cycle contained in the graph G, and otherwise returns a cycle C represented by a list
of vertices (integers between 0 and n − 1, inclusive) such that every pair of consecutive vertices
are adjacent in G, as well as the first and last vertices in C. For example, for the matrix M below,
findCycle might return [0,3,1], [2,3,4,0], or any other such cycle in G represented by
M .

0

1

2

3

4

12

3

-8

5

11

-5

4

Above, the 5-vertex graph G represented by the matrix M below. The thick edges denote the
(unique) MST in G, which has total cost -6.

M =


None 12 −5 3 4
12 None None −8 None
−5 None None 5 None
3 −8 5 None 11
4 None None 11 None


The specifications and usage of these methods are described in more depth in “Problem4.java”,

available on the course website.

Page 3


