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Chapter 1

Graph Theory

1.1 Basic Definitions for Graphs

A graph G = (V, E) is an ordered pair of sets, where V denotes the set of vertices, and E the set
of edges. For our purposes, V is a finite non-empty set, and E ⊆ V(2), where V(2) is the set of
2-element subsets of V. It is common notation to let |V| = n and |E| = m.

Example 1: See Figure 1.1.
V = {1, 2, 3}
V(2) = {{1, 2}, {1, 3}, {2, 3}}
E = {{1, 2}, {1, 3}}

1

2 3

Figure 1.1: Graph in Example 1
We say that the two vertices an edge connect are the “endpoints” of the edge. The edge is said

to be incident on its two endpoints. Graphs defined as above are said to be undirected, and can be
used to represent symmetric relationships. For example an undirected graph could represent the
relations ‘is a friend of’ or ‘was born in the same month as’.

Definition 1. The degree of a vertex v ∈ V, denoted d(v), is the number of edges incident on v.

We have the following simple lemma characterizing the relationship between the total sum of
degrees in a graph and the number of edges.

Lemma 1. The sum of degrees of vertices in a graph is twice the number of edges, i.e.,

∑
v∈V

d(v) = 2m.

Proof. We will prove Lemma 1 by induction. We will induct on the number of edges in the graph.
For non-negative m, we will prove the lemma holds for any graph with m edges.
Base Case: If a graph G = (V, E) has no edges (E = ∅), then every vertex has degree 0. Thus,
∑v∈V d(v) = 0 = 2(0).
Inductive Case: For our inductive hypothesis, we assume the claim holds for any graph with less
than m edges. Then, we want to prove the claim for an arbitrary graph G = (V, E) where |E| = m.
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Fix an arbitrary edge of G and remove it. Let this edge be e = {a, b}. Let G′ = (V, E′) where
E′ = E \ {e}. Then, G′ is a graph with m− 1 edges. Let d′(v) be the degree of v ∈ V in G′. By our
inductive hypothesis,

∑
v∈V

d′(v) = 2(m− 1).

For all v ∈ V \ {a, b}, d′(v) = d(v). Additionally, d(a) = 1 + d′(a) and d(b) = 1 + d′(b) since a, b
are endpoints of edge e, and so are incident on one more edge in G than in G′. Thus,

∑
v∈V

d(v) = 2 + ∑
v∈V

d′(v) = 2 + 2(m− 1) = 2m.

Therefore, for any graph G = (V, E) the theorem holds.

We now introduce the concept of subgraphs. This is similar to the idea of subsets, but for graphs
instead of sets.

Definition 2. A subgraph G′ = (V ′, E′) of graph G = (V, E) satisfies the property that V ′ ⊆ V and
E′ ⊆ E.

See Figure 1.2 and Figure 1.3 for an example of a subgraph.

Figure 1.2: A graph Figure 1.3: A subgraph of the
graph in Figure 1.2.

1.2 Special Types of Graphs

Many categories of graphs arise frequently in both practice and theory, and have special names.

• Empty Graph: The empty graph is a graph with no edges, i.e. E = ∅. See Figure 1.4 for an
example.

• Complete Graph: The complete graph is a graph with all possible edges, i.e. E = V(2). See
Figure 1.5 for an example.

• Cycle Graph: A cycle graph must have at least three vertices. Suppose graph G had vertices
V = {1, 2, . . . , n}. Then G is a cycle graph if E = {{1, 2}, {2, 3}, . . . {n− 1, n}, {n, 1}}. Notice
that |E| = n. See Figure 1.6 for an example.
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Figure 1.4: An empty graph
with 4 vertices.
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Figure 1.5: A complete graph
with 5 vertices
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Figure 1.6: An cycle graph
with 5 vertices.

Another graph that arises frequently in practice are bipartite graphs. For example, suppose we
have a group of mentors and mentees. We can model this situation using a bipartite graph. Edges
represent the willingness of a pair to have a mentor/mentee relationship. There will be no edges
within the set of mentors or within the set of mentees, since a mentor does not need to be mentored
and a mentee cannot be a mentor. We have the following property of bipartite graphs.

Definition 3. A bipartite graph is a graph G = (V, E) in which V can be partitioned into two sets A, B
such that E ⊆ {{x, y} : x ∈ A, y ∈ B}.

Lemma 2. For a bipartite graph G = (V, E) where V = A ∪ B and |E| = m,

∑
v∈A

d(v) = ∑
v∈B

d(v) = m

Proof. Let G = (V, E) be an arbitrary bipartite graph where V = A ∪ B. Each vertex is either in A
or B, but not both since A and B are disjoint. Thus,

∑
v∈V

d(v) = ∑
v∈A

d(v) + ∑
v∈B

d(v) = 2m,

where the second equality holds by Lemma 1. Every edge has one endpoint in A and one endpoint
in B, so ∑v∈A d(v) = ∑v∈B d(v). Thus, 2m = 2 ∑v∈A d(v). This implies

∑
v∈A

d(v) = ∑
v∈B

d(v) = m.

Lemma 3. A graph is bipartite if and only if it does not have any odd cycle.

Proof. We first prove the forward direction. Let X, Y denote the bipartition of the vertices, and let
C be any cycle in the graph (if one exists). Let x be a vertex in X on C, and suppose we follow C
starting at x. In each step, we alternate between a vertex in X and a vertex in Y. Therefore, to return
to x, we must traverse an even number of steps, so C is an even cycle.

Now we prove the other direction by proving the contrapositive: if a graph is not bipartite,
then there exists an odd cycle. Let us partition the graph in the following way: starting with any
vertex v, put v into a set X. Put all neighbors of v into set Y. Then put all neighbors of the vertices
in Y, which haven’t been put into set X, into X. Keep adding new vertices into set X and Y until all
vertices have been added. At some point, there must exist a vertex with one neighbor in X and
another in Y, for otherwise the graph is bipartite. This vertex, along with the starting vertex v and
the paths leaving v to the two neighbors, is part of an odd cycle.
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1.3 Matchings

1.3.1 Definition

Definition 4. A matching is a subset of edges such that no two edges share a vertex.

Example : In Figure 1.7, {a, i} is a matching, but {b, e} is not a matching.

1

2 3

54

6

Figure 1.7: Matching Example

Lemma 4. In a graph with n vertices, a matching cannot have size larger than bn/2c.

Proof. Adding one edge into the matching would remove two vertices along with all edges incident
to them from entering the matching. Such process can only repeat bn/2c times because we only
have n vertices.

Note that not every graph has a matching of size bn/2c. Consider a star graph where there is
a vertex with degree n− 1 and all other vertices with degree 1. The maximum matching of this
graph is of size 1.

1.3.2 Matchings in Bipartite Graphs

Mathchings are particularly interesting in bipartite graphs. Each semester the department needs
to consider which instructor is going to teach which class in the next semester. Each node in X
represents a class and each node in Y represents an instructor. Several instructors are qualified
to teach each class, and each instructor is qualified to teach several classes. Now suppose a class
is only taught by one instructor, and one instructor only taught one class. The graph is clearly a
bipartite graph, and the department is looking for a matching that pairs up class and its instructor.

Definition 5. A perfect matching is a bipartite graph G = (V, E) such that for every vertex v ∈ V,
d(v) = 1.

Figure 1.9, 1.10 show two perfect matchings of the bipartite graph in Figure 1.20. In the case of
matching mentors to mentees, we are asking whether there exists a perfect matching which is a
subgraph of the original bipartite graph. A perfect matching may not always exist, see Figure 1.11.
For a perfect matching to exist in graph G = (V = A ∪ B, E), it must be that |A| = |B|. This is a
necessary condition, but not sufficient. A famous result known as Hall’s Marriage Theorem gives
necessary and sufficient conditions for the existence of a perfect matching in a bipartite graph. To
state this theorem precisely, we need to introduce the notion of an A-perfect matching.
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Definition 6. An A-perfect matching is a bipartite graph G = (V, E) with V = A∪ B and E ⊆ {(u, v) :
u ∈ A, v ∈ B} such that for every u ∈ A, d(u) = 1, and for every v ∈ B, d(v) ≤ 1.

We also need the definition of the neighborhood of A set. This is simply the set of vertices that
are connected to the vertices of the set by edges in the graph.

Definition 7. In a bipartite graph G = (V, E) with V = A ∪ B and E ⊆ {(u, v) : u ∈ A, v ∈ B}, the
neighborhood of a set of vertices S ⊆ A is defined as N(S) = {v ∈ B : ∃u ∈ S. {u, v} ∈ E}.

Figure 1.8: A bipartite
graph.

Figure 1.9: One perfect
matching.

Figure 1.10: Another perfect
matching.

Figure 1.11: Bipartite graph with no perfect matching.

Theorem 5 (Hall’s Marriage Theorem (1935)). A bipartite graph G = (A ∪ B, E) has an A-perfect
matching if and only if for any subset S of A (S ⊆ A), the total number of vertices in the neighborhood of S
is at least the number of vertices in S, i.e.,

∀S ⊆ A. |N(S)| ≥ |S|.

Figure 1.12: A bipartite graph. Figure 1.13: A perfect matching of the graph
in Figure 1.16 highlighted in red.
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1.4 Hall’s Theorem

In this section, we re-state and prove Hall’s theorem. Recall that in a bipartite graph G = (A∪ B, E),
an A-perfect matching is a subset of E that matches every vertex of A to exactly one vertex of B,
and doesn’t match any vertex of B more than once.

Theorem 6 (Hall 1935). A bipartite graph G = (A ∪ B, E) has an A-perfect matching if and only if the
following condition holds:

∀S ⊆ A. |N(S)| ≥ |S|,
where N(S) = {v ∈ B : ∃u ∈ S. {u, v} ∈ E.}.

Remark 1: If |A| = |B|, then a matching is A-perfect if and only if it is perfect. So, in this case,
Hall’s theorem tells us when a perfect matching exists. On the other hand, if |A| 6= |B|, then G
cannot contain a perfect matching because every edge of a matching pairs one vertex of A with
exactly one vertex of B. However, if |A| < |B|, then G may still contain an A-perfect matching.

Remark 2: Theorem 6 is of the form P ↔ Q, where P is the proposition “G has an A-perfect
matching” and Q is known as Hall’s condition. In general, P → Q states that Q is a necessary
condition for P. (To see why, consider the contrapositive ¬Q→ ¬P.) Furthermore, Q→ P states
that Q is a sufficient condition for P. Thus, Hall’s theorem states that Hall’s condition is a necessary
and sufficient condition for a bipartite graph to have an A-perfect matching.

Proof. We now begin the proof of Theorem 6.

Hall’s condition is necessary: Assume that G has an A-perfect matching, which we denote by M.
Let S be an arbitrary subset of A. Since M is an A-perfect matching, M matches every vertex of S
to exactly one vertex of B, and no vertex of B is matched more than once. So if we restrict G to the
edges in M, the vertices of S each have a distinct neighbor in N(S). Since N(S) is defined using all
the edges of G and M is only a subset of E, this implies |N(S)| ≥ |S|.
Hall’s condition is sufficient: We will construct an A-perfect matching M by proceeding with
induction on |A|, assuming G satisfies Hall’s condition.

Base case: |A| = 1. Let a denote the sole vertex of A. Hall’s condition tells us |N({a})| ≥ 1,
which means a has at least one neighbor. We can set M = {{a, b}} where b is any neighbor of a.
Then, M is an A-perfect matching: every vertex of A is matched, and no vertex of B is matched
more than once.
Inductive hypothesis (IH): Assume that for all k such that 1 ≤ k ≤ |A| − 1, any bipartite graph
H = (C∪D, F) satisfying |C| = k has a C-perfect matching if and only if H satisfies Hall’s condition
on C, i.e., ∀S ⊆ C. |N(S)| ≥ |S|.
Inductive step: We will now construct an A-perfect matching M in G, starting with M = ∅. Note
that when G satisfies Hall’s condition, there are two possible cases: the inequality is strict for every
S that is a strict subset of A (i.e., ∀S ⊂ A. |N(S)| > |S|), or there exists at least one S ⊂ A such that
|N(S)| = |S|.

(i) In the first case, since |N(S)| and |S| are integers, we can assume

∀S ⊂ A. |N(S)| ≥ |S|+ 1. (1.1)

We claim that the following procedure returns a perfect matching:
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1. Let u be an arbitrary vertex of A, and add any edge e = {u, v} of E to M.

2. Remove u, v, and all edges incident to u or v from G to construct graph G′.

3. By the IH, G′ has a matching M′ that is (A \ {u})-perfect.

4. Add the edges of M′ to M, and return M.

u v

G′

e

Figure 1.14: The original graph G with an
arbitrary edge {u, v} added to M (bold). The
graph G′ comprises the remaining vertices.

u v

G′

e

Figure 1.15: Applying the IH on G′ yields a
matching M′ that is (A \ {u})-perfect. The
edges of the final matching M are in bold.

For this procedure to be correct, we have to show several properties. First, to show that Step 1
is valid, we need to establish that the degree of any vertex u ∈ A is at least 1. If this does not
hold, then N({u}) = 0, while |{u}| = 1, thereby violating Hall’s condition for S = {u}.
Next, we show that G′ satisfies Hall’s condition so that Step 3 is valid. Let S′ be any subset
of A \ {u}, and let N′(S′) denote its neighbors in G′ (so N′(S′) ⊆ B \ {v}). Notice that
|N(S′)| − 1 ≥ |S′| because of (1.1). Since we only removed one vertex of B to construct G′,
|N′(S′)| ≥ |N(S′)| − 1. Taken together, these inequalities imply |N′(S′)| ≥ |S′|, as desired.

Now we must show that M = M′ ∪{{u, v}} is an A-perfect matching. Since M′ matches every
vertex of A \ {u} and e matches u, every vertex of A is indeed matched by M. Furthermore,
vertex v is matched once because G′ excludes v, and the vertices of B \ {v} are matched at
most once because M′ is a matching. Thus, M is an A-perfect matching.

(ii) In the second case, we assume there exists S ⊂ A such that |N(S)| = |S|. We claim that the
following procedure returns a perfect matching:

1. Partition A into S and S = A \ S and B into N(S) and N(S) = B \ N(S).

2. Let G1 = (S ∪ N(S), E1) where E1 denotes the edges of G among S ∪ N(S). By the IH, G1
has a matching M1 that is S-perfect.

3. Let G2 = (S ∪ N(S), E2), where E2 denotes the edges of G among S ∪ N(S). By the IH, G2
has a matching M2 that is S-perfect.

4. Let M = M1 ∪M2, and return M.

8



S N(S)

S N(S)

Figure 1.16: Partitioning A and B according
to S and N(S); notice that |N(S)| = |S|.

G1

G2

Figure 1.17: Applying the IH on G1 and G2
and returning the union of the two match-
ings.

As in the previous case, we must prove that G1 and G2 satisfy Hall’s condition so that Step 2
and Step 3 are valid. The graph G1 is easier to handle: observe that there are no edges from S to
N(S). Thus, for any subset T of S, its neighborhood in G1 is exactly the same as its neighborhood
in G. Since G satisfies Hall’s condition, this implies G1 also satisfies Hall’s condition.

Showing that G2 also satisfies Hall’s condition is slightly trickier. For contradiction, suppose G2
violates Hall’s condition. This means there exists X ⊆ S such that |Y| < |X|, where Y denotes the
neighborhood of X in G2, i.e., Y = N(X) ∩ N(S). Now consider the set S ∪ X. This is a subset of A,
so since G satisfies Hall’s condition, we know that

|N(S ∪ X)| ≥ |S ∪ X|.

Furthermore, since S and X are disjoint, |S ∪ X| = |S|+ |X|. Also, notice that the only neighbors of
S ∪ X contained in N(S) are the neighbors of X, i.e., N(S ∪ X) = N(S) ∪Y. Finally, since N(S) and
Y are disjoint, we know that |N(S) ∪Y| = |N(S)|+ |Y|. Putting this all together, we get

|N(S ∪ X)| = |N(S) ∪Y| (definitions of S, X, Y)
= |N(S)|+ |Y| (N(S) and Y are disjoint)
= |S|+ |Y| (defining property of S)
< |S|+ |X| (defining property of X)
= |S ∪ X|. (S and X are disjoint)

Thus, the set S ∪ X violates Hall’s condition in the original graph G because |N(S ∪ X)| < |S ∪ X|.
This concludes the proof that G2 satisfies Hall’s condition.

Now that we know G1 and G2 satisfy Hall’s condition, we must show that M = M1 ∪M2 is
an A-perfect matching. Since M1 is S-perfect and M2 is S-perfect, we know that M matches every
vertex of S ∪ S = A. Furthermore, no edges of M1 and M2 share an endpoint because M1 and M2
were obtained from two disjoint graphs G1 and G2. Thus, no vertex of B is matched twice by M, so
M is an A-perfect matching.
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1.5 Graph Coloring

1.5.1 Scheduling Final Exams

Every semester, the registrar must schedule final exams in a way so that no student must take two
exams at the same time. We can begin modeling this situation by constructing a graph G = (V, E).
In this case, the vertex set V corresponds to the set of all classes (one vertex per class). The set E
is defined as follows: there is an edge between u and v if there exists at least one student taking
both class u and class v. The goal is to assign each vertex to a time slot so that the two endpoints of
every edge are assigned to different slots.

The simplest solution is to assign each final exam to a unique time slot. If there are n classes,
this results in n time slots, but this may lead to an extremely long final exam period. So we want a
solution that is not only feasible, but also minimizes the number of total time slots.

One way to visualize the notion of “assigning a time slot” is to consider each time slot as a color.
In other words, given G, we must color every vertex of G so that the two endpoints of every edge
receive different colors. Fig. 1.18 gives an example of coloring a graph with 5 vertices using 3 colors,
and Fig. 1.19 colors the same graph using only two colors.

201 230 250

330310

Figure 1.18: A graph G with 5 vertices cor-
responding to 5 classes. Each of the three
colors represents a distinct time slot.

201 230 250

330310

Figure 1.19: The same graph from Fig. 1.18,
colored using only two colors.

Definition 8. A valid coloring is a function f : V → C, where C is the set of colors, such that ∀(u, v) ∈
V, f (u) 6= f (v).

Definition 9. Let k be a positive integer. A graph is k-colorable if it is possible to assign each vertex to one
of k colors such that the two endpoints of every edge are assigned different colors.

The graph shown in Fig. 1.19 is 2-colorable, since every edge has a red endpoint and a blue
endpoint. Notice that Fig. 1.18 shows that the same graph is 3-colorable—in general, if a graph
is k-colorable, then it is also `-colorable for any ` ≥ k. We will now prove a simple observation
regarding graphs that are 2-colorable.

Lemma 7. Let G be a graph. Then G is 2-colorable if and only if G is bipartite.

Proof. Let G be a 2-colorable graph, which means we can color every vertex either red or blue,
and no edge will have both endpoints colored the same color. Let A denote the subset of vertices
colored red, and let B denote the subset of vertices colored blue. Since all vertices of A are red,
there are no edges within A, and similarly for B. This implies that every edge has one endpoint in
A and the other in B, which means G is bipartite.
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Conversely, suppose G is bipartite, that is, we can partition the vertices into two subsets V1, V2
every edge has one endpoint in V1 and the other in V2. Then coloring every vertex of V1 red and
every vertex of V2 blue yields a valid coloring, so G is 2-colorable.

Thus, Observation 7 tells us that the graph in Fig. 1.19 is bipartite. Indeed, by observing Fig. 1.20,
it becomes even clearer that this graph is bipartite.

201

250

310

230

330

Figure 1.20: The same graph and coloring from Fig. 1.19, with the vertices both colored and
rearranged to further illustrate that it’s bipartite.

Coloring Planar Graphs: Finally, we restrict our attention to coloring planar graphs (defined later).
Consider a map of the countries of Europe, and suppose we want to color the countries such
that any two countries that share a border are colored different colors. For example, France and
Germany should be assigned different colors, but France and Sweden can be colored the same
color.

We can represent this problem as a graph coloring problem: the graph contains a vertex for
every country, and an edge exists between two vertices if their corresponding countries share a
border. Thus, coloring the regions in the map corresponds to coloring the vertices of the graph, and
no two adjacent regions (vertices) should be colored the same color.

A graph is planar if it can be drawn on a plane (e.g., on a sheet of paper) such that no two
edges cross each other. For example, the graph in Fig. 1.20 is planar, and the drawing in Fig. 1.19
illustrates this. It’s intuitively clear that every map can be represented as a planar graph. The
theorem below states that when coloring a map, or any planar graph, we only need 4 colors.

Theorem 8 (Four Color Theorem). If G is a planar graph, then G is 4-colorable.

The proof of Theorem 8 is beyond the scope of this course, so we omit it. We will note, however,
that the theorem was originally conjectured in 1852. Multiple proofs were proposed, but all were
shown to be flawed until 1976, when Appel and Haken announced a computer-assisted proof.
Their proof involved a large number of cases that are too tedious to check by hand. Since their
proof was published, the last 40 years has seen several more “verifiable” proofs of this theorem,
where the number of graphs that need to be checked manually has significantly reduced over time.
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1.6 Connectivity and Cycles

Now we will study a different property of graphs known as connectivity, and we will begin with
some basic definitions. Throughout this section, we let G = (V, E) be a graph.

1.6.1 Walks, paths, and connected components

We now formalize the notion of traversing edges in a graph. Intuitively, we can think of the
following definitions as capturing a time-dependent process of moving along the edges of a graph.

Definition 10. A walk in G is a sequence of vertices such that there exists an edge between every two
consecutive vertices in the sequence.

Definition 11. A path in G is a walk that does not repeat any vertices.

Remark: If a walk does not repeat vertices, then it also does not repeat edges. To see this, suppose
the edge {u, v} is traversed more than once in a walk. Then u and v each appear at least twice, so
the walk also repeats vertices.

Furthermore, we can show the following: if there is a walk from s to t, then there is a path from
s to t. Let w be a walk from s to t; we will eliminate repeated vertices in w to create a path. If u is a
vertex that appears multiple times in w, then consider removing all vertices between the first and
last appearance of u. The resulting sequence is still a walk, and this process can be repeated until
there are no repeated vertices.

With these definitions, we can formalize the definition of connectivity in graphs. Intuitively, a
graph is connected if it contains one “piece,” but as we shall see, this can be captured through the
use of an appropriately defined equivalence relation on V.

Definition 12. Two vertices u and v are connected if there exists a path that starts at u and ends at v.

Consider the relation R on V defined as follows: for all u, v ∈ V, the pair (u, v) is in R if and
only if u and v are connected. It is straightforward to verify that R is an equivalence relation:

• Reflexive: every vertex u is connected to itself—simply take walk that starts at u and contains
no edges. Thus, (u, u) ∈ R for every u ∈ V.

• Symmetric: if there’s a path from u to v, then that same sequence of vertices in reverse gives a
path from v to u. Thus, if (u, v) ∈ R, then (v, u) ∈ R.

• Transitive: if there’s a path p1 from u to v and a path p2 from v to w, then we can join these
two paths at v to create a walk from u to w. As we discussed earlier, this walk can be used to
obtain a path from u to w. This implies R is transitive.

Now recall that every equivalence relation induces a partition on the underlying set, and the
blocks of the partition are the equivalence classes of the relation. Let us consider the partition that
R induces on V: let u be any vertex, and let [u] = {v : (u, v) ∈ R} be the equivalence class of u.
Then [u] contains all the vertices reachable from u; this is known as the connected component (or
simply component) of u. In general, each equivalence class is known as a connected component (or
component), and together, they are known as the connected components (or components) of G.

Definition 13. A graph is connected if every pair of vertices is connected.

Thus, an equivalent definition of G being connected is that G contains exactly one connected
component. In this case, the partition induced by R only has one block, which is equal to V.

12



1.7 Directed Graphs

So far, we have worked with simple undirected graphs. Now we will introduce a new type of
graph: directed graphs, also called digraphs. As usual, G = (V, E) and V is a finite, non-empty set
of vertices. Now, our edges will have directions. So, if (u, v) ∈ E, the edge is directed from u to v.
We will assume that our graphs have no self-loops, so edges of the form (u, u) will not be included
in E. Thus, E ⊆ V ×V \ {(v, v) : v ∈ V}. As usual, we let |E| = m and |V| = n. See Figure 1.21 for
an example of a directed graph.

Figure 1.21: A directed graph.

Definition 14. The in-degree of a vertex, denoted din(v), is the number of incoming edges incident on a
vertex:

din(v) = |{(u, v) ∈ E : u ∈ V}|.
Definition 15. The out-degree of a vertex, denoted dout(v), is the number of outgoing edges incident on a
vertex:

dout(v) = |{(v, u) ∈ E : u ∈ V}|.
Lemma 9.

∑
v∈V

din(v) = ∑
v∈V

dout(v) = m

Proof. Intuitively, an edge (u, v) contributes one to the in-degree of vertex v and the out-degree of
vertex u. We will prove this formally by induction on the number of edges.

Base case: If m = 0, then every vertex has in-degree and out-degree 0 and the lemma holds.
Inductive hypothesis: Let m be an arbitrary positive integer. For any graph G′ = (V ′, E′) with

m′ < m edges, assume ∑v∈V′ din(v) = ∑v∈V′ dout(v) = m′.
Inductive step: Remove an arbitrary edge e = (u, v) of G and remove it, let G′ = (V, E′) denote

the remaining graph with m− 1 edges, and let d′(v) be the degree of v ∈ V in G′. By our inductive
hypothesis,

∑
v∈V

d′in(v) = ∑
v∈V

d′out(v) = m− 1.

For all v ∈ V \ {u, v}, d′out(v) = dout(v) and d′in = din(v). Additionally, the in-degree of u did
not change, since we removed an outgoing edge from u. The out-degree of u decreased by 1:
dout(u) = 1 + d′out(u). Likewise, we removed an incoming edge from v, so din(v) = 1 + d′in(v). The
out-degree of v did not change. Thus, we have

∑
v∈V

dout(v) = 1 + ∑
v∈V

d′out(v) = 1 + m− 1 = m,

and similarly, we have

∑
v∈V

din(v) = 1 + ∑
v∈V

d′in(v) = 1 + m− 1 = m.
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Thus, ∑v∈V din(v) = ∑v∈V dout(v) = m, as desired.

Paths and walks are defined identically in undirected and directed graphs. A walk in a digraph
is a sequence of vertices such that there exists a directed edge from each vertex to the next vertex on
the walk. A path is a walk that does not repeat vertices. Figure 1.22 shows an example of a directed
path.

a b c

Figure 1.22: A valid directed path from a to
c.

a b c d e

Figure 1.23: An example where there is no
path from a to e.

Observe that paths may only go in one direction in directed graphs (a path may exist from u to
v, but not from v to u). In Figure 1.23, see that there is no path from a to e.

1.8 Acyclic Graphs

In this section, we discuss general concepts related ot acyclic graphs, i.e., graphs that do not contain
any cycles. We first consider the undirected case, and then the situation when the graph is directed.

1.8.1 Forests and Trees

Definition 16. A graph is acyclic if it does not contain a cycle. Acyclic graphs are also called forests.

Theorem 10. An acyclic graph containing n vertices and c connected components has m = n− c edges.

Proof. We will induct on m.
Base Case: If m = 0, then each vertex is one component and thus n = c which implies 0 = n− c.
Inductive Hypothesis: Let m be an arbitrary positive integer. For any acyclic graph G′ with m′ < m
edges and c′ connected components, the number of edges of G′ is m′ = n− c′.
Inductive Step: Let G be an arbitrary n-vertex graph with m edges. Remove an edge e = (u, v)
from G to create a graph G′ on n vertices, m − 1 edges, and c′ components. Since G is acyclic,
removing e increases the number of connected components by 1, so c = c′ − 1. By the inductive
hypothesis, m′ = m− 1 = n− c′. Thus, m = n− c′ + 1 = n− c.

Definition 17. A tree is a connected acyclic graph.

Lemma 11. Any tree on n vertices has n− 1 edges.

Proof. Since a tree has a single connected component, Theorem 10 implies m = n− 1.

Lemma 12. Any connected graph on n vertices contains m ≥ n− 1 edges.

Proof. For contradiction, suppose G is a connected graph with fewer than n− 1 edges. By Lemma 11,
G is not a tree, so G must contain a cycle (but it is connected). It is possible to remove an edge
from each cycle to create a tree, so the number of edges is at least n− 1, contradicting our initial
assumption.

Lemma 13. Any graph on n vertices containing at least n edges has at least one cycle.
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Proof. Theorem 10 states that an acyclic graph satisfies has m = n− c. Since c ≥ 1, an acyclic graph
satisfies m ≤ n− 1. Therefore, if this property is not satisfied (i.e., m ≥ n), then the graph is not
acyclic.

The next theorem states that there are (at least) three equivalent definitions of tree: it suffices to
pick any two “defining” properties, because together they imply the third.

Theorem 14. Let G be a graph containing n vertices and m edges, and consider the following three properties.

1. G is connected.

2. G is acyclic.

3. m = n− 1.

Then any two of these properties together imply the third.

Proof. (1)∧ (2) → (3): This is Lemma 11.
(1)∧ (3) → (2): For contradiction, suppose G is connected, satisfies m = n− 1, and contains a

cycle. Removing an edge from this cycle yields a connected graph G′ satisfying m′ = m− 1 = n− 2.
This contradicts Lemma 12.

(2) ∧ (3) → (1): Again, for contradiction, suppose G is acyclic, m = n − 1, and G is not
connected. Consider any two connected components of G denoted by X and Y, and add an edge
between any u ∈ X and v ∈ Y. This yields an acyclic graph G′ containing n vertices, n edges, and
c− 1 ≥ 1 components, contradicting Theorem 10.

1.8.2 Spanning Trees

Definition 18. A spanning tree of a connected graph G = (V, E) is a subgraph of G whose vertex set is V
and edges form a tree.

Figure 1.24: A graph G. Figure 1.25: A spanning tree
of G in Figure 1.24.

Figure 1.26: Another span-
ning tree of G in Figure 1.24.

Figure 1.27: This subgraph
does not connect all vertices
of G in Figure 1.24.

Figure 1.28: This subgraph of
G in Figure 1.24 is not a tree.

Figure 1.29: Not a valid sub-
graph of G in Figure 1.24.
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Suppose we want to find a spanning tree of graph G in Figure 1.24. Both Figure 1.25 and
Figure 1.26 are valid spanning trees of G. The definition specifies that a spanning tree must connect
all vertices of G, the subgraph in Figure 1.27 does not satisfy this condition. The subgraph in
Figure 1.28 is not a tree, as it contains a cycle. The graph in Figure 1.29 uses an edge that was not
originally in E, so it is not a valid subgraph. All three conditions of Definition 18 must be satisfied
to have a valid spanning tree.

Observe that if the graph is a tree, there is one unique spanning tree and it is the graph itself.
Spanning trees are especially important for graphs whose edges are assigned numerical weights.

Definition 19. A weighted graph G = (V, E) is one in which each edge is associated with a real number
w(e), called its weight.

Definition 20. The weight of a graph G = (V, E) is the sum of the weights of all its edges:

w(G) = ∑
e∈E

w(e).

Given a weighted graph, consider the task of finding a spanning tree with the minimum weight,
also known as a minimum spanning tree (MST). To do this, we first consider coloring the graph and
observing the edges.

Definition 21. A black-white coloring of a graph G is a partition of the vertices into two sets. All vertices
in one set are colored white, and all vertices in the other set are colored black. A gray edge of a black-white
coloring is an edge with different colored endpoints.

We have the following properties of an MST:

1. Cycle Property: In any cycle, the maximum weight edge will not appear in the MST.

2. Cut Property: If the MST is unique, for any black-white coloring of G, the MST will contain
the minimum weight gray edge. In the case that the edge weights are not distinct, for any
black-white coloring of G, the minimum weight gray edge will be contained in some MST.

The second property is somewhat surprising. There are 2n different black-white colorings of a
graph G (for each vertex, there are 2 choices for its color), but an MST only has n− 1 edges. The
property implies that for many of the colorings, the minimum-weight gray edge is the same edge
(because there aren’t many edges in the MST, relative to the potential number of gray edges).

Both properties immediately yield methods for finding minimum spanning trees. Consider the
cycle property: find a cycle, and remove the maximum weight edge from the cycle (this edge is not
in the MST.) Repeat this until no cycles are left; the remaining edges form the MST.

For the cut property, there exist multiple well-known algorithms that use this fact. Here is one
such method for incrementally building the MST:

1. Pick an arbitrary vertex, color it black. Color all other vertices white.

2. Find the minimum weight gray edge and add it to the tree we are building.

3. Color the other vertex incident on the chosen edge black. Recolor edges appropriately.

4. Repeat Steps 2 and 3 until all vertices are black.
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See Figure 1.30 and Figure 1.31 for an example of this process. We start with one black vertex
and pick the minimum weight gray edge (subsequently colored in blue), resulting in two black
vertices. We continue this process until all vertices are black, and the blue edges make up the MST.

→
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Figure 1.30: Using a black-white coloring to find a MST.
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Figure 1.31: Resulting MST (blue).

Now let us prove these properties.

Proof of Cycle Property. Let T∗ denote an MST of G and for contradiction, suppose the maximum
weight edge e∗ = (u, v) of some cycle C is in T∗. Consider the forest T∗ − {e∗} containing two trees.
Now consider the path on C from u to v not containing e∗: this path contains an edge f whose
endpoints cross the trees of T, and w( f ) < w(e∗).

Now let T = T∗ − {e∗}+ { f }, that is, replace the edge e∗ in T∗ with this edge f . Notice that T
is connected and has n− 1 edges, so T is a spanning tree of G. Furthermore,

w(T) = w(T∗)− w(e∗) + w( f ) < w(T∗),

contradicting our assumption that T∗ is an MST.

Proof of Cut Property. For simplicity, we assume all edge weights are distinct. Let T∗ be the MST of
a graph G, and let e∗ = {u, v} be the minimum weight gray edge of a black-white coloring of G.
For contradiction, suppose e∗ is not in T∗.

Consider the graph T∗ + {e∗}, which contains one cycle (see Figure 1.32). Since e∗ is gray edge,
u and v have different colors. Thus, the path from u to v in T∗ must contain some gray edge f such
that w(e∗) < w( f ) (see Figure 1.33) .
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Now let T = T∗ + {e∗} − { f }; note that T is a spanning tree whose weight is

w(T) = w(T∗) + w(e∗)− w( f ) < weight(T∗),

contradicting the assumption that T∗ is an MST.

u

v

e∗

Figure 1.32: Tree T and min weight gray edge
e∗ = (u, v) dashed.

u

v

e∗

f

Figure 1.33: Cycle containing e∗.

1.8.3 Directed acyclic graphs (DAGs)

In this section, we consider directed acyclic graphs (i.e., directed graphs that do not contain any
directed cycles), also known as DAGs.

Definition 22. A vertex with in-degree 0 is called source. A vertex with out-degree 0 is called sink.

Theorem 15. Every DAG contains at least one source and at least one sink.

Proof. Consider a longest path in a DAG. The starting vertex is a source because if it were not, then
the path could be extended to an even longer path. Similarly, the ending vertex is a sink.

Topological sorting

Definition 23. A topological sort of a directed graph is a linear ordering of its vertices such that for every
directed edge (u, v) from u to v, u comes before v in the ordering.

A common application for topological sort is to decide the order of tasks. For example, in the
morning, you need to get up before you shower, dress, eat, and leave. Furthermore, you must
shower before you dress, dress before you leave, and eat before you leave. To determine a valid
sequence of events, we can model each task as a vertex, and edges represent the constraints. In
general, a system might contain many tasks with various constraints; a DAG can help us find the
correct order to perform the tasks.

Theorem 16. A topological sort is possible if and only if the graph is acyclic.

Proof. We first prove the forward direction by contradiction. Suppose G has a topological sort and
contains some cycle (v0, v1), (v1, v2), ..., (vk, v0). Then in the topological sort, v0 must be before v1, v1
must be before v2, and so on, but then we conclude vk must be before v0, and such an arrangement
cannot be satisfied by the topological sort.

Now we prove if G is acyclic, then it has a topological sort. Let v1 be any source of G: we place
v1 first in the ordering and remove it from G (as well as all edges incident to v1). The resulting
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graph is acyclic, so we can repeat this process until all vertices have been removed. We must show
that this process is indeed a topological sort.

Consider any edge (x, y) ∈ E. When we added y to the order, this edge must have been already
deleted (because y is a source). The only way to delete this edge is by removing x from the graph.
Therefore, x was removed before y was added, so x appears before y in the final order.

Note that when constructing a topological ordering, in each step there can be multiple sources,
so a DAG can have multiple topological orders.

1.9 Connectivity in Directed Graphs

Definition 24. Vertices u and v are weakly connected if they are connected when we replace the directed
edges by undirected edges.

The idea of weakly connected leads to weakly connected components. If we replace all directed
edges to undirected edges, we get an undirected graph. Each component in the original graph
corresponding to a connected component in the undirected graph is a weakly connected component.

Definition 25. Vertices u and v are strongly connected in a directed graph if there is a path from u to v
and a path from v to u.

The relation defined by strong connectivity is an equivalence relation on the vertices of a
directed graph. We verify the three necessary properties.

• Reflexivity: For any vertex v, v is (vacuously) strongly connected to itself.

• Symmetry: This follows from the symmetry of the definition of strong connectivity. If s and
t are strongly connected, then there is a path from s to t and a path from t to s, so t is also
strongly connected to s.

• Transitivity: Suppose vertex a is strongly connected to vertex b and vertex b is strongly
connected to vertex c. This implies there exists a path from a to b and a path from b to c.
We can combine these two paths to obtain a walk from a to c. This implies there is a path
from a to c. Similarly, there exists a path from c to b and a path from b to a. Combining these
paths, we obtain a walk from c to a. This implies there is a path from c to a. Thus, a and c are
strongly connected, and the relation is transitive.

Definition 26. Strongly connected components(Sccs) are the equivalence classes of the equivalence
relation strong connectivity on the vertices of a directed graph.

Consider a directed cycle, such as the one shown in Figure 1.34. The vertices in a cycle are
strongly connected. Thus, a directed cycle has a single strongly connected component.
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a

bd

c

Figure 1.34: A directed cycle.

Now, consider a directed graph that does not have any cycle. Such a digraph is called a directed
acyclic graph (DAG). The strongly connected components in a DAG are the singleton vertices. We
will prove this with the following claim.

Claim 1. In a DAG, no two vertices can be strongly connected.

Before we prove this Claim, we will prove a useful lemma.

a b

Figure 1.35: Base Case of
Proof of Lemma 3.

a

x y

b

u v

Figure 1.36: Disjoint paths
from a to b and b to a.

a

x y

b

Figure 1.37: Non-disjoint
paths from a to b and b to a.

Lemma 17. Suppose G = (V, E) is a directed graph. If there is a path from vertex a to vertex b and a path
from b to a, then there is a cycle containing a in G.

Proof. Suppose we have directed graph G = (V, E) in which there is a path from vertex a to vertex
b and a path from b to a. Let P be the path from a to b and Q be the path from b to a. We will prove
Lemma 17 by induction on the sum of the lengths of the paths: ` = |P|+ |Q|.

Base case: The smallest possible distinct paths from a to b and b to a are two paths consisting of
one edge each. In this case, (a, b), (b, a) ∈ E and these two edges form a cycle.

Inductive hypothesis: Assume the lemma holds for paths P′, Q′ such that |P′|+ |Q′| < `.
Inductive step: Suppose we have a graph containing paths P, Q where ` = |P|+ |Q|. If P and

Q are disjoint, then P + Q is a cycle containing a. Otherwise, paths P and Q share a vertex. Let this
vertex be x. Consider the subset of path P from a to x, let this be P′. Similarly, let Q′ be the subset
of Q starting at x and ending at a. |P′|+ |Q′| < ` since |P′| < |P| and |Q′| < |Q|. By the inductive
hypothesis, there exists a cycle containing a. Thus, in all cases the Lemma holds.

Now the proof of Claim 1 is straightforward.

Proof of Claim 1. We will prove the claim by contradiction. Assume two vertices in a DAG are
strongly connected, let these be vertices u and v. This implies there is a path from u to v and a path
from v to u. By Lemma 17, there is a cycle containing u. This contradicts that the graph is a DAG.
Thus, no two vertices are strongly connected in a DAG.
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1.9.1 Structure Of Directed Graphs

Strongly connected components and DAGs are useful for describing the structure of any directed
graph. Consider ‘contracting’ each strongly connected component of a graph into a single vertex,
and add an edge from one component to another component if there is an edge from some vertex
in the first component to some vertex in the second. The result of this procedure is another directed
graph, and it is acyclic. Intuitively, if there was a cycle containing multiple strongly connected
components then they could be merged into a single strongly connected component. See Figure 1.38
for an example. Thus, any directed graph is a DAG on its strongly connected components. We will
state and prove this theorem formally.

Figure 1.38: A directed graph and its strongly
connected components (each in a dashed
box).

Figure 1.39: The component graph of the
graph in Figure 1.38.

Definition 27. Suppose a directed graph G = (V, E) has strongly connected components C1, C2, . . . , Ck.
The component graph of G is GSCC = (VSCC, ESCC) where VSCC = {1, . . . , k} and ESCC = {(i, j) :
∃(u, v) ∈ E s.t. u ∈ Ci, v ∈ Cj}.

Theorem 18. Every component graph is a DAG.

Proof. We will prove this theorem by contradiction. Suppose there exists a component graph
containing a cycle. Let G = (V, E) be the underlying directed graph, and GSCC be the component
graph of G. Suppose C = c1, . . . , ck are vertices in GSCC forming a cycle. Let C1, . . . Ck be the
corresponding strongly connected components of G.

Since C is a cycle, there must be an edge between components Ci and Ci+1 in the cycle (for
i = 1, . . . , k− 1. Let such an edge be (outi, ini+1) ∈ E for i ∈ 1, . . . , k− 1. Intuitively, outi is the
vertex in Ci with an outgoing edge to Ci+1. Similarly, ini is the incoming edge form the previous
component in the cycle. Also, there is an edge from Ck to C1, so (outk, in1) ∈ E. Within any
component, there is a path from ini to outi, because all vertices in this component are strongly
connected. Thus, for any two components in a cycle, there is a path from the outgoing vertex of the
first component to the incoming vertex of the second component.

Suppose Ci, Cj are two components in this cycle. Let u, v ∈ G be vertices such that u ∈ Ci and
v ∈ Cj. u, v are in different strongly connected components in G, so there cannot be paths both
from u to v and from v to u in G.

Since ci and cj are vertices in a cycle, there exists a path from some the outgoing vertex of Ci
to the incoming vertex of Cj by the previous argument. Ci is a strongly connected component, so
there must exist a path from u to outi. Similarly, Cj is a strongly connected component, so there
must exist a path from inj to v. By concatenating these three paths, we have found a path in G from
u to v.
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We can similarly find a path from v to u. Since ci and cj are in a cycle, there exists a path from
some vertex outj ∈ Cj to some vertex in inj ∈ Ci by the earlier argument. Since Cj is a strongly
connected component, there exists a path from v to cj. Similarly, since Ci is a strongly connected
component, there exists a path from ci to u. By concatenating these three paths, we have found a
path in G from v to u.

We have showed there is a path from u to v and from v to u in G. However, u and v were
assumed to be in different strongly connected components. This is a contradiction.

1.10 Searching in a Graph

The language of graphs allows us to formally model a rich set of real-world problems. For example,
as we saw in Lecture 15, the problem of graph coloring allows us to color regions on a map, assign
time slots to final exams, and solve many other questions that naturally arise.

Another important concept in graphs is the notion of searching. Given a directed graph, there
are many natural search-related questions that one might ask: Is the graph acyclic? Does there exist
a path from vertex s to vertex t? If so, what is the length of the shortest path from s to t? All of these
questions can be addressed by the topics we will discuss in this lecture.

These search questions also arise naturally in the real world. For example, if the vertices of the
graph represent courses and the edges represent prerequisite requirements (edge (u, v) exists iff
course u is a prerequisite for course v), then the graph must be acyclic if every student is expected
to take every course. If the vertices represent locations on a map and the edges represent roads
(edge (u, v) represents a road between location u and location v), then the shortest path from one
vertex to another gives the fastest way to travel from one location to another.

In this lecture, we will learn about Depth-First Search and Breadth-First Search. These two
algorithms solve the problems mentioned above (and many others), and they form the foundations
of many algorithms in computer science. Throughout this lecture, we will assume that G = (V, E) is
a directed graph with n vertices and m edges. Note that these algorithms can be used for undirected
graphs as well: an undirected edge {u, v} is equivalent to two directed edges (u, v) and (v, u).

1.10.1 Depth-First Search

Depth-first search (DFS) is an algorithm that allows us to systematically explore every vertex of a
directed graph. The strategy used by DFS is the following: start at any vertex s and explore one
path leading away from s until nothing new can be discovered. Along this path, the search may
encounter many “forks” in the road; DFS arbitrarily picks a path that leads somewhere new until
it gets stuck. At this point, DFS backtracks until the last choice of path was made, and chooses
another path to completely explore. This procedure is repeated until all vertices have been visited.

Note that it is sometimes necessary to restart the procedure starting at a completely new vertex.
For example, this is necessary if the first vertex chosen has no outgoing edges, or the graph contains
multiple components that are not connected by any edge.

While DFS explores the graph, it also maintains a global time variable τ initialized to τ = 1.
The algorithm uses this τ variable to mark each vertex u with the first time it is seen, as well as the
time at which DFS backtracks away from u. These times are known as the pre- and post-values of u,
which we denote by pre(u) and post(u), respectively. Every time a vertex is marked, the value of τ
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increases by one. Thus, we have pre(u) < post(u) for every u ∈ V, and the pre- and post-values
are exactly between 1 and 2n (inclusive).

Algorithm 2 provides the formal pseudocode for a complete run of DFS, while Algorithm 1 is a
recursive helper function. Note that Algorithm 1 alone is not enough because it is possible that
some vertices cannot be reached from s. In this case, as mentioned above, DFS must restart the
procedure starting at a new vertex.

Algorithm 1 explore(G, s)

Input: A directed graph G = (V, E); a vertex s ∈ V.
Output: Two positive integers pre(u), post(u) for every vertex u reachable from s.
Note: The variable τ is global, initialized to 1. The default value of visited() is False.

1: visited(s) = True
2: pre(s) = τ
3: τ = τ + 1
4: for all (s, v) ∈ E do
5: if visited(v) == False then
6: explore(G, v)
7: post(s) = τ
8: τ = τ + 1

Algorithm 2 Depth-First-Search(G)

Input: A directed graph G = (V, E).
Output: Two positive integers pre(u), post(u) for every vertex u ∈ V.

1: for all v ∈ V do
2: visited(v) = False
3: for all u ∈ V do
4: if visited(u) == False then
5: explore(u)

Note that in explore(G, s), the algorithm can visit the neighbors of s in any arbitrary order.
Furthermore, Depth-First-Search(G) can visit the vertices u ∈ V in arbitrary order. Thus, the pre-
and post-values are not necessarily unique.

We now illustrate the first few steps of DFS on the graph shown in Fig. 1.40, with ties broken by
alphabetical order. We begin at vertex a, so pre(a) = 1 and there are three options: b, e, d. Since b
appears first alphabetically, we explore b which sets pre(b) = 2. From b we explore c, so pre(c) = 3.
The only edge leading away from c is (c, a), but a has already been visited, so our exploration of
c terminates and we set post(c) = 4. We then backtrack to b, and since (b, c) is the only outgoing
edge, we set post(b) = 5. We then backtrack to a, where the exploration continues with the edge
(a, d). The values in Table 1.2 give the full results of DFS.
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Figure 1.40: A directed graph with 7 vertices and 9 edges. In
this lecture, we will be illustrate DFS and BFS on this graph.

a b c d e f g
pre() 1 2 3 6 7 8 13
post() 12 5 4 11 10 9 14

Table 1.1: The full results of running DFS on the graph in
Fig. 1.40, with all ties in the algorithm broken by alphabetical
order.

DFS Tree

Whenever we run DFS on a graph G = (V, E), we create a structure known as a DFS tree. In general,
a “DFS tree” may actually be a set of multiple rooted trees, but we still refer to the entire structure
as a “tree.” The vertex set of a DFS tree is V, and the edges are the ones that pass the condition in
line 5 of explore(G, s). In other words, the edges of a DFS tree are the ones that the DFS used to
continue down an exploration path. Note that if s is the first vertex DFS explores, and s can reach
every vertex in V, then in this case the DFS tree is actually a tree.

Now observe that the edges of a DFS tree indeed form a forest on the vertex set V. This is
for the following reason: (u, v) is a tree edge if explore(G, v) is called while explore(G, u) is being
executed. Furthermore, each vertex is explored exactly once because as soon as u is explored, we
set visited(u) to be True. Thus, a cycle cannot appear in a DFS tree because its existence would
imply that a vertex was explored more than once.

Based off a DFS tree, we can partition the set of edges in the graph. Every edge (u, v) ∈ E can
be categorized as exactly one of the following:

1. Tree edge: DFS explores v while in the process of exploring u.

2. Forward edge: u is a non-parent ancestor of v in the DFS tree.

3. Back edge: v is an ancestor of u in the DFS tree.

4. Cross edge: u and v have no ancestor-descendent relationship in the DFS tree.

Fig. 1.41 gives the partition of the graph in Fig. 1.40. Notice that each back (red) edge forms a
cycle when added to the set of tree (green) edges. Furthermore, the forward (blue) edges point from
ancestor to descendent, and the cross (dashed) edges connect nodes with no ancestor/descendent
relationship.
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Figure 1.41: The DFS tree corresponding to a DFS run on
Fig. 1.40, with ties broken in alphabetical order. Tree edges
are green, forward edges are blue, back edges are red, and cross
edges are dashed.

1.10.2 Breadth-First Search

Although DFS can help us determine whether or not a vertex t is reachable from a vertex s, the
result may not be the shortest path. For example, in the graph in Fig. 1.40, DFS discovered a path
from a to d that uses two edges: (a, e) and (e, d). However, the shortest path from a to d only uses
one edge: (a, d). To find the shortest path between two vertices s and t, we can use an algorithm
known as breath-first search (BFS). Before we describe the algorithm, we first formalize the notion
of distance in graphs.

Definition 28. Let G = (V, E) be a directed graph, and let s and t be two vertices of G. The distance
between s and t, denoted by dist(s, t), is the length of the shortest path from s to t. If t is not reachable from
s, then we say the distance from s to t is infinite, i.e., dist(s, t) = ∞.

The strategy used by BFS is the following: start at some vertex s and explore the remaining
vertices one “layer” at a time, with each layer being farther from s than the previous. The algorithm
fully explores each “layer” before moving onto the next, and hence it is called breadth-first search.
Algorithm 3 gives the formal pseudocode for BFS.

Algorithm 3 Breadth-First-Search(G, s)

Input: A directed graph G = (V, E); a vertex s ∈ V.
Output: An integer value d(s, u) (possibly ∞) for every vertex u ∈ V.
Note: The default value of d(·, ·) is ∞, and Q is initially an empty queue.

1: d(s, s) = 0
2: Push(Q, s)
3: while Q is not empty do
4: u = Pop(Q)
5: for all (u, v) ∈ E do
6: if d(s, v) = ∞ then
7: Push(Q, v)
8: d(s, v) = d(s, u) + 1

Notice that BFS uses a queue to maintain the “layer-by-layer” approach. The vertices closer to s
are added to Q before vertices farther from s, and the queue allows us to process all of the closer
vertices first before processing the farther ones.
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Figure 1.42: The graph from Fig. 1.40, drawn here for conve-
nience.

a b c d e f g
d(a, ·) 0 1 2 1 1 2 ∞

Table 1.2: The full results of running BFS on the graph in
Fig. 1.42, with all ties in the algorithm broken by alphabeti-
cal order.

We now step through the BFS algorithm on the graph in Fig. 1.42 a few times to better under-
stand the process. We start with s = a, so the only element of Q is a. Thus, the first element popped
is a, and none of the three neighbors b, d, e have been visited, so they are pushed onto Q in that
order and their distances are set to 0 + 1 = 1. The next element popped is b, and (b, c) is the only
outgoing edge, so c is pushed onto Q. Later, after we’ve processed d and e, we’ll pop c and set
d(s, c) = d(s, b) + 1 = 1 + 1 = 2. This process continues until f is popped since f has no outgoing
edges. Note that g is never pushed onto the queue, so d(a, g) remains at ∞. We can verify that g is
not reachable from a by visually inspecting the graph.

BFS Tree

Recall that a run of DFS creates a structure known as a DFS tree, which is technically a forest since
it may contain multiple rooted trees. Similarly, a run of BFS creates a tree structure known as a BFS
tree. If we strictly follow Algorithm 3, then the resulting BFS tree contains exactly one tree, which is
rooted at s and contains the vertices reachable from s. However, we can extend the BFS procedure
to create a forest by restarting the algorithm at an unvisited vertex as long as such a vertex exists.
This idea is captured in Lines 3-5 of Algorithm 2—Algorithm 3 can be modified similarly.

An edge (u, v) is in the BFS tree if, when u was popped from Q, vertex v satisfied d(v) = ∞. In
other words, if vertex v was unvisited after u was popped from the queue, then u is the parent
of v in the BFS tree. Thus, in both a DFS and a BFS “tree,” a tree rooted at r contains the vertices
reachable from r, and the edges of the tree are the ones used by the algorithm to reach those vertices.

Furthermore, BFS categorizes every edge of the original graph as tree, cross, or back. (The
definitions are identical to the ones given for a DFS tree.) Fig. 1.43 gives the partition of edges
from Fig. 1.42 according to the BFS that starts at a and breaks ties alphabetically. This run of BFS
produced 5 tree edges, 4 cross edges, and 2 back edges. Notice that there are no forward edges—in
general, BFS never categorizes any edge as a forward edge, and we will now prove this.
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Figure 1.43: The BFS tree corresponding to a run of BFS on
Fig. 1.42, with ties broken in alphabetical order. Tree edges are
green, back edges are red, and cross edges are dashed.

Theorem 19. A run of BFS will never categorize any edge as a forward edge.

Proof. For contradiction, assume (u, v) is a forward edge. This means u is a non-parent ancestor of
v, so there exists a path from u to v in the BFS tree with at least 2 edges. Let x be the parent of v in
the tree. The existence of the path tells us that u entered Q before v, so when u was popped, v must
have either been in the queue or would be immediately added. However, (x, v) being a tree edge
implies v was added when x was popped, contradicting our conclusion that v was added when u
was popped (or earlier).

Finally, consider a tree with root r of the BFS tree. The edges of this tree form the shortest path
from r to every vertex reachable from r. In other words, the final value of d(s, u) in Algorithm 3
is indeed equal to dist(s, u). For example, in Fig. 1.43, we can see that the green path from a to
each vertex (except g, which a cannot reach) is a shortest path. This property follows from the
“layer-by-layer” approach taken by BFS, though we will not rigorously prove it here. For this reason,
a BFS tree is sometimes known as a shortest-path tree. In general, the shortest paths obtained via BFS
are the ones that begin at the roots of the trees of the BFS tree.

Application: Shortest Paths

We’ve seen that the BFS tree rooted at s gives a shortest path from s to every vertex rooted at s. Now
we will generalize this notion to edges with lengths: suppose each edge e has a positive integer
length value. (We can think of the previous cases as all lengths being 1.) For example, consider the
graph in Fig. 1.44. Running BFS on this graph might lead us to conclude that the shortest path from
a to c is (a, c) (which has length 3), when in reality it is (a, b, c) (length 2).

a

b

c

1 1

3

Figure 1.44: A directed graph with edge lengths. The shortest
path from a to c is (a, b, c), and this path has length 1 + 1 = 2.

However, we can fix this problem by subdividing each edge according to its length, so that the
new edges each have length 1. In Fig. 1.45, we see that by adding two new vertices to the graph
in Fig. 1.44, we can create a new graph whose edge lengths are all 1. Of course, this technique
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easily generalizes to any graph with positive integer edge lengths. An edge with length ` can be
subdivided by placing `− 1 vertices on the edge, and all new edges are assigned length 1. By
running BFS on this new graph starting at vertex s, we can obtain the distances from s to all other
vertices in the original graph.

But, this technique has two major shortcomings: it does not work if the edge lengths are
anything other than positive integers, and even in that case, the process is very expensive in terms
of running time because it introduces a large number of non-existent vertices to model a long edge.
These shortcomings can be overcome by more sophisticated algorithms for finding shortest paths
that are beyond the scope of our current discussion.

a

b

x y c

1 1

1 1 1

Figure 1.45: The graph from Fig. 1.44 with the edge (a, c) sub-
divided, so that all edges of this new graph have length 1.

Optimal substructure: One property we would like to note about shortest paths is known as the
optimal substructure property. This property is quite intuitive and easy to understand, but given its
importance in algorithm design, we shall state the property here. Suppose p = (s, u1, u2, . . . , uk, t)
is a shortest path from vertex s to vertex t. Now consider two vertices x, y on this path, so p is of
the form (s, . . . , x, . . . , y, . . . , t). The optimal substructure property states that the path from x to
y that follows p is the shortest path from x to y. The reasoning is quite intuitive: if there were a
shorter path from x to y, then we could use that path to create a shorter path from s to t.
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