COMPSCI 590.02: Molecular Assembly and Computation

Department of Computer Science

Duke University

John H. Reif
 Spring Semester, 2020

Classes: Tuesday, Thursday 11:45AM – 1:00 PM at LSRC A155

(also when scheduled: Wednesday 4:30PM-5:45pm at LSRC A155)

 

SCHEDULE 

 

Textbooks:

[Douglas]: Kenneth Douglas, DNA Nanoscience: From Prebiotic Origins to Emerging Nanotechnology, CRC Press, Edition 1, (2016) ISBN 9781498750127

 

[Seeman]: Nadrian Seeman, Structural DNA Nanotechnology, CRC Press, Edition 1, (2016), ISBN 9780521764483

 

 

 

Class 

Date 

Topics 

& Primary

Lecture

Notes

Required Reading

 

Secondary Lecture

Notes

LSRC A155 

Thurs

Jan 9

 

Overview of DNA structure

- DNA Overview

- dsDNA secondary and tertiary structure

- DNA Hairpins

- Base Stacking

- DNA Hybridization & Duplex DNA

- dsDNA Mechanical Properties

DNA Thermodynamics

- Dependence on temperature, salinity, magnesium

- Steric hindrance

 

Overview of DNA Structure:

Introduction to DNA Structure [PDF] [PPT]

 

Video of DNA Structure

 

 

 

 

Required Reading:

[Douglas] Chapters 1 & 2

 

 

 

 [DNA Structure: Lavery]

[DNAstucture: pharmacy.umn]

 

 

 

 

 

LSRC A155 

 

Tues

Jan 14

 

Overview of DNA Structure, Cont:

-Nonstandard DNA confirmations &  DNA Structure Transitions:

-B, A, and Z form DNA

- DNA Structure Transitions: DNA B-Z transitions

- DNA Triplex Conformations

- G Quadra-Complexes

Coarse-Grain Modeling of DNA Nanostructures and Reactions: Graph & Cartoon Models

- Cartoon models of DNA

- Dot Bracket Notation For RNA & DNA nanostructures

Overview of DNA Structure:

Introduction to DNA Structure [PDF] [PPT]

 

Dot Bracket Notation For RNA & DNA nanostructures [PDF] [PPT]

 

 

Required Reading:

[Douglas] Chapters 1 & 2

 

 

Extra Reading:

 

 

Programming Biomolecular Selfassembly Pathways [PDF] [PPT]

Programming Biomolecular Selfassembly Pathways

 Modeling DNA Nanodevices Using Graph Rewrite Systems [PDF] [PPTX]

 

LSRC A155

 

 

 

 

 

 

Wed Jan 15

DNA Enzyme reactions:

- Ligation,

- Restriction enzymes

- Helicase enzymes

- Polymerization & Strand-displacing polymerases

 

- Kinetic Models of DNA Enzymic Reactions

 

Adleman’s first demonstration of DNA Computation: [PDF]

Enzyme Reactions on DNA [PDF] [PPTX]

 

Adleman’s first demonstration of DNA Computation: [PDF]

 

 

  Extra Reading:

Restriction enzymes

Helicase enzyme

 

 

DNA Computation (Adleman)

 

LSRC  A155 

 

Thurs Jan 16

DNA Computation using Restriction Enzymes

Enzymic Molecular Finite State Automata (Shapiro)

Molecular Doctor using  Enzymic Molecular Finite State Automata

 

 

DNA Autonomous Computation using Restriction Enzymes:

- Autonomous DNA Computation via Restriction Enzyme Reactions

 

Enzymic Molecular Finite State Automata (Shapiro) [PPT] [PDF]

 

 

  Extra Reading:

 

DNA Autonomous Computation using Restriction Enzymes:

 

[FSA Computation: Shapiro Nature 2001 PPT]

 

[More FSA Computation: Shapiro PNAS 2003 PPT]

 

 [Stochastic FSA Computation: Shapiro PNAS 2004]

 

[DNA Doctor: Shapiro Nature 2004]

LSRC A155 

 

Tues

Jan 21

 

 

The PCR DNA amplification protocol

Bracketed PCR

Isothermal PCR protocols:

- Rolling Circle PCR

- Strand-Displacement PCR

DNA Computation by Whiplash PCR

Autonomous  Whiplash PCR

The PCR DNA amplification protocol [PDF] [PPTX]

 

DNA Computation by Whiplash PCR [PPT] [PDF]

Isothermal Whiplash PCR: Reif [PPT] [PDF]

Peng Yin’s Autonomous Proximity Protocol

 

 

DNA Computation s using Polymerase:

- Autonomous DNA Computation via Polymerase Reactions: Whiplash PCR

 

[Whiplash PCR: Winfree]

 

[Simulating Whiplash PCR: Hagiya]

 

[Isothermal Whiplash PCR: Reif] [PPT] [PDF]

 

 

LSRC A155

 

Wed Jan 22

 

 

Intro to Molecular Robotics:

 

Natural & Re-Engineered Protein Molecular Motors

- Molecular Robotics Principals

- Brownian Ratchets & Quantum Ratchets

- Natural Protein Molecular Motors: Polymerase, Myosin, Kinesin, Polymerase

 

Molecular  DNA Robotics & Walkers via External State Changes:

- DNA Nanostructure Actuation using DNA B-Z transitions

- PX Nanomechanical Devices

- DNA Robotics

using Duplex to Triplex Transitions

 

Overview of Natural Protein Motors

[PDF][PPTX]

 

 

Molecular Ratchets for Protein Molecular Motors

Overview: [PDF] [PPTX]

 

 

 

 

 

 

 

 

Non-Autonomous DNA Robotics via External State Changes:

[PDF][PPTX]

 

 

 

Required Reading:

 

 

[Douglas] Chapter 9

 

[Seeman] Chapter 8

 



 

 

   DNA Structure Transitions:

[DuplexTriplexTransition: Mao]

[B-Z.Transition: Mao]

 

 

 

DNA Mechanics:

[MechanicsofDNA:Bustamante]

 

Papers on DNA Walkers using external state changes:

 

[DNA Biped Walking Device: Sherman&Seeman]

 

[DNA Walker: Pierce]

 

[DNA Walkers Survey: Kelly]

 

Optional Reading:

More on Natural Protein Motors [PPT] [PPT]

 

Molecular Ratchets:

Molecular Ratchets for Protein Molecular Motors (Mokhtar)

Details: [PDF]

 

[Brownian Ratchet Motors: Elmer]

[Feynman Notes V1 Ch46: Ratchet & Pawl]

[Overviews of Brownian Ratchets]

[Biophysics of Brownian Ratchets: PPT]

 

More on Molecular Ratchets:

[More Slides on Brownian Ratchets]

Examples: Myosin & Kinesin

[Examples of Molecular Ratchets]

[Mechanics Kinesin: Cross]

-Quantum Ratchets

[Quantum Ratchets]

 

Surveys:

[Synthetic Molecular Motors Survey: Zerbetto]

 

DNA Nanostructure Actuation using DNA B-Z transitions

[PX Nanomechanical Device: Seeman & Yan]

Duplex to Triplex Transitions:[DuplexTriplexTransition: Mao]

 

 

 

 

 

LSRC A155

 

 

 

 

 

Thurs

Jan 23

 

 

 

Autonomous DNA  Robotics & Computation using Enzymes:

 

Autonomous DNA Computation via Restriction Enzyme Reactions

 

- Autonomous Molecular Robotics using Restriction Enzyme Reactions 

 

DNA Computation & Robotics using Polymerase

 

 

 

Autonomous DNA Robotics and Walkers [PDF][PPTX]

 

 

Autonomous Restriction Enzyme DNA Walker  by Yin Reif:

[Restriction Enzyme DNA Walker Design: Yin]

 

Autonomous Robot using Polymerase Sahu & Reif:

[Polymerase DNA Transport: Sahu]

 

Autonomous Molecular Robotics using Restriction Enzyme Reactions 

Yin Reif Restriction Enzyme DNA Walker:

[Restriction Enzyme DNA Walker Experiments: Yin]

[Restriction Enzyme DNA Walker Paper: Yin]

[Restriction Enzyme DNA Walker Turing Computation: Yin]

 

Papers on Autonomous Robot Restriction Enzyme DNA Walkers

[Restriction Enzyme DNA Walker: Turberfield]

[Restriction Enzyme DNA Walker: Yamamura]

 

 

 

LSRC  A155 

 

Tues Jan 28

 

Homework %1 Assigned

 

DNA Nanostructures

DNA Tiles

- DNA crossovers junctions: Holliday junctions

- T-junctions

- DNA DX, TX tiles

- Crossover (4 x 4 and Mao's) and Double Decker Tiles

- Hexagonal Tiles

- other novel tile types: Hao's Grid-tiles

DNA Tiles:

 in

DNA Tiles & Lattices [PDF][PPTX]

 

 

Required Reading:

 

[Douglas] Chapter 6 & 7

 

[Seeman] Chapters 1-7

 

 

 

 

 

 

 

 

 

 

LSRC A155

 

 

 

 

 

 

 

 

Wed Jan 29

 

 

DNA Nanostructures, Continued

2D DNA Lattices & Tubes

- 2D DNA lattices

- corrugation methods to flatten assembly

- DNA Tubes

2D DNA  Lattices

in

DNA Tiles & Lattices [PDF][PPTX]

 

 

 

 

 

Required Reading:

 

[Douglas] Chapter 6 & 7

 

[Seeman] Chapters 1-7

 

 

 

 

LSRC  A155 

 

Thurs

Jan 30

 

 

Project Abstract Due

 

DNA Nanostructures, Continued

 

3D DNA Lattices

Seeman's tensegrity tiles & lattices

 

3D DNA Bricks

 

3D DNA  Lattices

 

 

In DNA Tiles & Lattices [PDF][PPTX]

 

 

DNA Bricks [PDF] [PPTX]

 

Required Reading:

 

[Douglas] Chapter 6 & 7

 

[Seeman] Chapters 1-7

 

 

 

 

 

 

 

LSRC A155

 

 

 

 

 

*Tues

Feb 4

 

 

 

2D DNA Origami

- 2D DNA Origami

- Origami design software

-CADnano

- other software

Overview of DNA Origami [PDF] [PPTX]

 

Required Reading:

 

DNA Origami Primer [PDF]

 

[Douglas] Chapter 8

 

[Seeman] Chapter 9

 

Review of  DNA Origami:

Fan Hong, Fei Zhang, Yan Liu, and Hao Yan, DNA Origami: Scaffolds for Creating Higher Order Structures, Chem. Rev., 2017, 117 (20), pp 12584–12640 DOI: 10.1021/acs.chemrev.6b00825

DNA Origami Rothemund Supplemental

 

 

caDNAno Design Software for DNA Origami - Shi

 

Cadnano Tool Design DNA Origami [PDF]

 

 

 

 

 

LSRC A155

 

 

 

 

 

*Thurs

Feb 6

 

 

 

3D DNA Origami

Shi’s Curved and 3D DNA Origami

Han’s Curved and Circular DNA shapes

Overview of DNA Origami, Cont [PDF] [PPTX]

 

3D DNA Origami

[PDF] [PPTX]

 

3D DNA Origami Gridion - Han

DNA Nanotube induced alignment of membrane proteins for NMR structure determination(Shi)

 

 

 

 

 

 

LSRC  A155 

 

Tues

Feb 11

 

Aptimers & DNAzmes

 

In vivo Evolution of Aptimers & DNAzmes

In-vivo Evolution & SELECT Protocols

For

-DNA&RNA Aptamers

-DNA enzymes (DNAzymes)

-RNA enzymes (Ribozymes)

 [PPTX] [PDF]

 

 

Required reading:

 

DNAzymes:

 

A general purpose RNA-cleaving DNA enzyme (Joyce)

 

Mechanism and utility of an RNA-cleaving DNA enzyme(Joyce)

 

Further Reading on In vitro Selection of Aptamers &DNAzymes:

In vitro selection of RNA molecules that bind specific ligands

 

Systematic evolution of ligands by exponential enrichment

 

Directed Evolution of an RNA Enzyme

 

Nucleic Acid Enzymes (Ribozymes and Deoxyribozymes): In Vitro Selection and Application

 

 

 

 

 

 

LSRC A155

 

 

 

 

 

 

Wed

Feb 12

 

Aptimers & DNAzmes, Continued

DNA Robotics using DNAzymes:

- Spiders: Autonomous Molecular Robotics using DNAzyme 

DNA Robotics and Computation using DNAzymes

 

 

Molecular Robotics and Computation using DNAzyme

DNAzyme Computation & Robotics (Stojanovic): [PPT, PDF]

DNAzyme Computation & Robotics (Reif): [PPT, PDF

Required reading:

 

DNARobotics using DNAzymes:

 [DNAzyme Nanomotor: Mao]

[Improved DNAzyme Motor: Klavins]

[DNAzyme Walker: Mao]

 

- Spiders: Autonomous Molecular Robotics using DNAzymes: 

[DNAzyme Spiders: Stojanovic]

[DNAzyme Spiders: Stojanovic PPT]

 

Further Reading on DNAzyme Devices:

An Autonomous DNA Nanomotor Powered by a DNA Enzyme[Mao]

Molecular devices—a DNAzyme that walks processively and autonomously along a one-dimensional track[Mao]

An improved autonomous DNA nanomotor [Klavins]

 

 

 

 

LSRC  A155 

 

 

 

Thurs

Feb 13

 

 

DNA Reaction Networks Fueled by Strand Displacement, Continued

Catalytic Gates & Cascades:

- Winfree's Seesaw Gates

- Yurke's DNA Catalytic Cascades

- Zhang's DNA Reaction Networks and Allosteric DNA Catalytic Reactions

- Soloveichi's DNA Chemical Kinetics

- Cardelli's DNA Strand Algebra

 

 

 

DNA Hybridization Reactions

Strand Invasion [PPTX][PDF]

Invention of Toehold binding & Strand displacement: Yurke-Turberfield DNA Tweezers

[DNA Tweezer: Yurke & Tuberfield]

[DNA Tweezer: Step 1]

[DNA Tweezer: Step 2]

[DNA Tweezer: Step 3]

 

DNA Reaction Networks Fueled by Strand Displacement [PPTX][PDF]

 

 

 

Required Reading:

 

Example of Toehold binding & Strand displacement: Yurke-Turberfield DNA Tweezers [DNA Tweezer: Yurke & Tuberfield]

 

 

[Douglas] page 166

 

[Seeman] Chapter 8

 

 

DNA Reaction Networks Fueled by Strand Displacement:

(1) [Seesaw Gates: Winfree]

[DNA Catalytic Cascades: Yurke Slides]

 

(1) [Catalyzed Metastable DNA Fuel: Seelig]

 

(2) [DNA Reaction Networks: Zhang]

 

(3) [DNA Catalytic Reactions: Zhang]

 

 

(4) [Allosteric DNA Catalytic Reactions: Zhang]

 

(5) [DNA Chemical Kinetics: Soloveichik]

 

 

Intro:

DNA Computing (Reif)

 

 

Analysis:

Cardelli ‘s DNA Strand Algebra

 [PDF] Paper:[PDF]

 

 

 

 

 

 

 

LSRC  A155 

 

 

*Tues

Feb 18

 

Kinetics Modeling

- Introduction to Kinetics

- Stochastic Chemical Reaction Networks

Primary Chemical Reaction Kinetics Lecture:

Kinetics Overview: [PDF] [PPT]

 

 

 

 

 

 

 

 

 

 

 

Optional Chemical Reaction Kinetics Lectures:

Bookstaver: [PDF] [PPT]

Chieh: [PDF] [PPT]

Reid: [PDF] [PPT]

 

Optional Chemical Reaction Kinetics Lectures Applied to Biochemical Networks:

Schnell: [PDF] [PPT]

El-Samad: [PDF] [PPT]

 

Detailed Reading on Kinetics:

Vallance: [PDF]

 

 

 

 

LSRC  A155 

 

 

 

*Thurs

Feb 20

 

 

- Kinetic Models of DNA Hybridization Reactions

Thermodynamics and Kinetic Simulation of DNA Nanostructures

 

- Kinetics simulation methods

- Probabilistic Model Checking & PRISM software

 

 

DNA Hybridization Kinetics [PDF][PPTX]

Kinetic Simulation of DNA Nanostructures:

- coarse-grained models of DNA,

- other model and simulation techniques,

- the biophysical basis of toehold-mediated strand displacement

Multistrand (Caltech) [PPTX] [PDF]

Visual DSD (Cambridge Microsoft) [PPTX] [PDF]

OxDNA (Oxford Univ): Coarse-graining DNA for simulations of DNA nanotechnology [PDF]

In Class Activities:  Design and Simulate a Simple DNA Strand Displacement Reaction Network [PDF]

Solution to in-class exercises [PDF]

Required Reading:

 

Multistrand(Caltech)

Schaeffer Master Thesis: Stochastic Simulation of the Kinetics of Multiple Interacting DNA Strands

 

Visual DSD (Microsoft Cambridge UK)

Visual DSD: a design and analysis tool for DNA strand displacement systems

 

Design and analysis of DNA strand displacement devices using probabilistic model checking

 

OxDNA

Coarse-graining DNA for simulations of DNA nanotechnology

 

 

Extra Reading:

Introducing Improved Structural Properties and Salt Dependence into a Coarse-Grained Model of DNA

 

 DNA hybridization kinetics: zippering, internal displacement and sequence dependence

 

On the biophysics and kinetics of toehold-mediated DNA strand displacement

 

Stochastic Simulation of the Kinetics of Multiple Interacting Nucleic Acid Strands

 

Reference Papers:

Reference Papers on DNA Thermodynamics & Kinetics 

DNA Systems Modeling:

[DNAModeller: Sudheer]

Other Suggested Text Books on Kinetics

P. W. Atkins, Physical Chemistry

 

M. J. Pilling and P. W. Seakins, Reaction Kinetics,

 

K. J. Laidler, Chemical Kinetics

 

B. G. Cox, Modern Liquid Phase Kinetics

 

 

 

 

LSRC  A155 

 

 

 

Tues

Feb 25

 

DNA Hybridization Reactions using DNA Hairpins:

(1) Pierce's Hybridization Chain Reaction

(2) Turberfield's DNA Hairpin Fueling Devices

(3) Winfree's DNA Hairpin Hybridization

 

DNA Hybridization Reactions using DNA Hairpins:

Solution-Based DNA Hairpin Hybridization Reactions: 1st part of [PPTX][PDF]

(1) Hybridization Chain Reaction: Pierce

(2) Turberfield's DNA Hairpin Fueling Devices

(3) Winfree's DNA Hairpin Hybridization

Required Reading:

 

 

[Douglas] page 166

 

 

Papers on DNA Hybridization Reactions using DNA Hairpins:

 

Catalytic Hybridization Reactions

 (1) [Hybridization Chain Reaction: Pierce]

 

 

(2) [Catalyzed Metastable DNA Fuel: Seelig]

 

(2) [DNA Hairpin Fueling Devices: Turberfield]

 

(3) [DNA Hairpin Hybridization Circuits: Winfree]

On the biophysics and kinetics of toehold-mediated strand-displacement (Sudhanshu)

 

Catalytic Hybridization Reactions for Detection:

[Hybridization Chain Reaction: Pierce]

 

Niranjan Srinivas PHD Thesis:

Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement

 

 

 

 

LSRC  A155 

 

 

Wed

Feb 26

 

Localized Hybridization Reactions

 

- on Nanotracks

 

- on DNA origami

- on cell membranes

 

DNA Computing in Serum and in the Cell

 

Localized DNA Hairpin Hybridization Reactions: 2nd part of [PPTX][PDF]

Localized  Localized Hybridization Reactions  using Hairpins  [PPTX] [PDF]

 

- On 1D DNA Nanostructures (Nanotracks)

 

-  On DNA Origami

 

-  On Cancer Cell Membranes

DNA Computations on and Inside Cells and Protection of DNA in Serum and in the Cell:

[PPTX] [PDF]

 

 

Required Reading:

 

 

Probabilistic Analysis of Localized DNA Hybridization Circuits

 

Local Hybridization Chain-Reactions on the Surface of DNA Origami

 

 

Extra Reading:

Protection of DNA from Degradation in Serum and the Cell:

DNA nanotechnology from the test tube to the cell(Seelig, 2015)

DNA topology influences molecular machine lifetime in human serum

Circularized synthetic oligodeoxynucleotides serve as promoter less RNA polymerase III templates for small RNA generation in human cells

Modified deoxyoligonucleotides stable to exonuclease degradation in serum

 

 

 

LSRC A155

 

Thurs

Feb 27

 

Homework %1 Due

 

Homework %2 Assigned

 

3 Page Project Summary Due

 

DNA Robotics via DNA Hybridization:

- Autonomous

Molecular Walkers using DNA hybridization

 

- Turberfield's Autonomous DNA Walker:

- Seeman's Piped Walker

 

DNA Robotic Devices & Applications:

 

-Molecular Gears

 

- Molecular Assembly Lines and Reaction Factories

 

- Cargo Sorting via Random DNA Walkers

  DNA Robotics [PDF] [PPTX]

 

 

 

 

[Douglas] Chapter 9

 

[Seeman] Chapter 8

 

DNA Robotics via DNA Hybridization:

- Autonomous

Molecular Motors & Walkers using Hybridization Reactions

[DNA motor: Pierce]

[Autonomous DNA Walker: Turberfield]

[Piped Walker: Seeman Slides]

[Piped Walker: Seeman]

 

 

 

Molecular Gears

[Molecular Gears: Mao]

 

 

 

 

 

 

LSRC  A155  

 

 

*Tues

March 3

x

 

DNA Photonics

- Fluorescent labels

- Fluorescence resonance energy transfer (FRET)

- Quantum dots

Plasmonics

-Plasmonics of Metallic Nanoparticles

-Optically-induced cutting of DNA

Fluorescence & Plasmonics Study Guide [PDF]

DNA Photonics [PDF] [PPTX]

Plasmonics [PDF]

 

Imaging in Cells via DNA Nanotechnology  [PDF] [PPTX]

 

 

 

 

 

LSRC  A155 

*Thurs

March 5

 

 

Super Resolution Imaging

-DNA paint

-Temporal DNA paint

DNA paint:

Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT

Fluorescence microscopy and super-resolution imaging [PPTX] [PDF]

More on Super Resolution Imaging [PDF]

 

-

 

 

Tues

March 10

&

Thurs

March 12

 

 

No Class - Spring BREAK

 

 

 

 

 

Zoom Steaming  

Tues

 March 17

 

 

 

 

 

Overview of Theoretical Tile Assembly Models:

Wang tiling

Abstract tile assembly model (TAM)

Reversible tile assembly model

Kinetic tile assembly model (KTAM)

Alternative Models of Tiling Assembly

- Staged tile assembly: Step-wise tile assembly model

- Hierarchical tile assembly model Temperature Programmed Tiling

The q-tile tile assembly model

- Modified Glue Models for Tiling Assembly:

- The flexible glue tile assembly model

- Time-dependent glue tile assembly model

Tiles with State Changes

Intro to Tile Assembly [PDF][PPT]

 

 

 Required Reading:

 

[Seeman] Chapter 7

 

 

 

[Complexity of Tiling Assembly: Winfree]

 

Survey of Tile Assembly Models (Patitz) [PDF]

 

 

 Other Overviews of Tiling Assembly

Intro to Tile Assembly (Goel) [PDF] [PPT]

Intro to Tile Assembly (Chen) [PDF] [PPT]

Self-Assembled Circuit Patterns [PDF] [PPTX]

Overview of Tile Assembly Models (Tianqi Song) [PDF] [PPTX]

Wang tiling

 

Undecidability Tiling Assembly Models

 

Undecidability Wang tiling

  [Undecidability Tiling: Robinson]

 

NP completeness of tiling on N x N square

[Garey, Johnson, Papadimitrou, 1977]

 

Undecidability aTAM

 

 

 [Complexity Assembly: Winfree]

 

 - Kinetic Model of Assembly:

[Simulations of Tiling Assembly: Winfree]

 

-Modified Glue Models for Tiling Assembly:

 [Models Self Assembly: Aggarwal]

Self-Assembly Model of Time-Dependent Glue Strength Sahi [PPT]

 

-Staged Assembly

[Reif]

[Staged Assembly O(1) glues: Demaine]

 

- Temp Programmed Assembly

[Temp Programmed Assembly: Kao]

Alternative Tile Assembly Models (Tianqi Song) [PDF] [PPTX]

Tiles with State Changes:

[Error Suppression Self-assembly: Fujibayashi]

 

Activatable Tiles for Compact Error-Resilient Directional Assembly [Harish et al]

[PDF]. Talk: [PPT]

 

 

 

 

 

Zoom Steaming  

 

 

Wed

March 18

Tile Complexity of Deterministic Assembled Shapes

- Tile Complexity of Assembled Squares

- Exact Squares

- Approx Square

-Linear Structures

Tile Complexity of General Shapes

 

 

Tile Complexity of Randomized Assembly

- Exact Shapes

- Approx Shape

-Linear Structure

 

 Tile Complexity of Assembly of Squares and Linear Structures [PPT] [PDF]

 

 

 

Required Reading:

 

-Deterministic Tile Complexity Assembled Squares

[Tile Complexity Assembled Squares: Rothemund]

 

-

Deterministic Tile Complexity of Assembling Shapes:

 

[Complexity Assembled Shapes: Winfree]

[Assembling Shapes: Becker]

 

 

 -Deterministic Tile Complexity Assembled Squares

[Tile Complexity Assembled Squares: Rothemund]

 

Exact Det. Tile Complexity of Squares: [Tile Complexity Assembled Squares: Adleman]

 

 - Approximate Squares [Assembly of Approx Square Tilings Chandran]

 

 -Randomized 1D Assembly

[Tile Complexity of Linear Assemblies: Chandran] [PPT] [PDF]

 

 

-Randomized Tile Complexity of Assembling Shapes:

[Randomized Assembly Exact Shapes: Doty]

 

[Randomized Assembly Approx Shapes: Schellerr]

 

Zoom Steaming  

 

 

 

 

 

Thurs

March 19

 

Assembly Error-Correction

- Assembly Error-Correction via Proofreading

- Compact Assembly Error-Correction:

- Error-Correction Lower Bounds

- Self-Healing

- Invadable Self-Assembly

- Reversible Self-repair

Tile Assembly Error-Correction: via Proofreading, Snaking & Redundancy [PDF] [PPTX]

 

 

 

 

Required Reading:

 

 Assembly Error-Correction via Proofreading:

[Proofreading Tile Sets: Winfree]

 

- Compact Assembly Error-Correction:

[Compact Error Resilient Assembliy: Reif]

 

Reducing Facet Nucleation

Via Snaked Proofreading:

[Error Correction Assembly: Goel]

 

- Assembly Error-Correction via Proofreading:

[Proofreading Tile Sets: Winfree]

[Compact Proofreading: Zhang Winfree]

 

- Compact Assembly Error-Correction:

[Compact Error Resilient Assembliy: Reif] Talk: [PDF] [PPT]

 

[Limits to Errorcorrection: Sahu]

 

 Assembly Error-Correction:

Reducing Facet Nucleation

Via Snaked Proofreading:

[Error Correction Assembly: Goel]

PPT: [Error Correction Assembly: Goel PPT]

 [Reducing Facet Nucleation Assembly Errors: Winfree]

Self-Healing:

[Self-HealingTilings: Winfree]

[Invadable Self-Assembly: Chen]

[Reversible Selfrepair: Majumder]

 

 

 

Zoom Steaming  

*Tues

 March 24

 

 

 

Chemical Reaction Networks (CRNs)

 

Tuitorial on CRNs(Anderson):[PDF]

Software for Simulations of CRNs

Introduction to Theory of CRNs [PDF] [PPT]

 

Required Reading:

Papers on Theory of CRNs:

Deterministic Function Computation with Chemical Reaction Networks

Computation with finite stochastic chemical reaction networks

 

 

 Secondary Readings:

Shin Master Thesis: Compiling and Verifying DNA-Based Chemical Reaction Network Implementations

Programmability of Chemical Reaction Networks

DNA as a universal substrate for chemical kinetics

 

Computational Complexity Chemical Reaction Networks:

[Complexity Chemical Reaction Networks: Bruck]

[Complexity Stochastic Chemical Reaction Networks: Bruck]

 

 

Zoom Steaming  

 

 

 

 

*Thurs

March 26

 

 

 

Analog CRN & DNA Computations

- reaction giving exponential signals

- arithmetic operations

- log-transforms

- Analog-to-digital and digital-to-analog transformations

 

Analog CRN & DNA Computations [PDF] [PPTX]

 

CRNs Using Strand-Displacing Polymerase [PDF] [PPTX]

 

 

 

 Required Reading:

 

CRN Computations

 

Computing Algebraic Functions with Biochemical Reaction Networks(ArtificialLife2009) 

 

CRN Computations using DNA strand-displacement Reactions

Programming chemical kinetics-engineering dynamic reaction networks with DNA strand displacement(Srinivas2015thesis)

DNA as a universal substrate for chemical kinetics(WinfreePNAS2010)

 

 

 

 

 

 

 

 

 

Zoom Steaming  

Tues

March 31

 

Homework %2 Due

 

Homework %3 Assigned

 

 

Preliminary Project Draft Due

 

 

 

 

Molecular Reactions Generating Sinusoidal Signals

- DNA enzymatic reactions giving sinusoidal signals

- DNA hybridization reactions giving sinusoidal signals

 

 

 

DNA Oscillator Reactions [PDF] [PPTX]

 

 

Required Reading:

DNA Oscillator Reactions

Programming an in vitro DNA oscillator using a molecular networking strategy(RondelezMolSyBio2010)

Synthetic in vitro transcriptional oscillators (WinfreeMolSysBio2010)

 

Zoom Steaming  

Thurs

April 2

 

DNA Feedback Control Circuits

 

DNA Feedback Control Circuits

 [PDF] [PPTX]

 Required Reading:

Biomolecular implementation of linear I/O systems(Klavins, SynBio2010)

Programmable chemical controllers made from DNA(Seelig, NatureBio2013)

Computational Design of Nucleic Acid Feedback Control Circuits (Phillips, ACS Syn Bio 2015)

 

Zoom Steaming  

Tues

April 7

 

DNA Reaction Diffusion Systems

 

DNA Reaction Diffusion Systems [PPTX] [PDF]

 

 

 

Pattern Formation by Reaction Diffusion [PPT] [PDF]

Required Reading:

Synthesis of Programmable Reaction Diffusion Fronts Using DNA Catalyzers (Estevez-Torres)

Designing modular reaction-diffusion programs for complex pattern formation (Schulman)

Stable DNAbased Reaction Diffusion Patterns (Schulman)

Emulating cellular automata in chemical reaction–diffusion networks(Schulman)

Computational design of reaction-diffusion patterns using DNA-based chemical reaction networks  (Philips)

Modeling scalable pattern generation in DNA reaction networks  (Ellington)

Pattern transformation with DNA circuits  (Chen)

 

 

 

 

 

 

 

Zoom Steaming  

Thurs

April 9

 

Molecular Imaging and Quantification

Gel Electrophoresis

AFM Imaging

SEM Imaging

STM Imaging

Molecular Imaging and Quantification

- Gel Electrophoresis [Agarose gel electrophoresis of DNA (Michael E. Clark)]

[Agarose gel electrophoresis of DNA (Michael E. Clark)]

-AFM Imaging [PPT(Grutter)]

-SEM & TEM Imaging [SEM&TEM]

-STM Imaging [PPT(Grutter)]

 

 

 

[Seeman] Chapter 5

 

 

 

 

 

-AFM Imaging PDF(Kronenberger)]

Basic Intro to AFM Video

-STM Imaging [PPT(Grutter)]

Basic Intro to SEM Video

 

 

 

Zoom Steaming  

Thursday

April 12

 

Biotechnology for Detecting COVID-19

and

Discussion of student’s final projects

 

 

 

 

April 24

 

Homework #3 Due

 

Final Project  Paper Due