Whole-Genome Random Sequencing and Assembly of Haemophilus Influenzae Rd Author(s): Robert D. Fleischmann, Mark D. Adams, Owen White, Rebecca A. Clayton, Ewen F. Kirkness, Anthony R. Kerlavage, Carol J. Bult, Jean-Francois Tomb, Brian A. Dougherty, Joseph M. Merrick, Keith McKenney, Granger Sutton, Will FitzHugh, Chris Fields, Jeannie D. Gocyne, John Scott, Robert Shirley, Li-Ing Liu, Anna Glodek, Jenny M. Kelley, Janice F. Weidman, Cheryl A. Phillips, Tracy Spriggs, Eva Hedblom, Matthew D. Cotton, Teresa R. Utterback...
Source: Science, New Series, Vol. 269, No. 5223 (Jul. 28, 1995), pp. 496-498+507-512
Published by: American Association for the Advancement of Science
Stable URL: https://www.jstor.org/stable/2887657
Accessed: 31-08-2019 14:35 UTC

[^0]Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

Whole-Genome Random Sequencing and Assembly of Haemophilus influenzae Rd

Robert D. Fleischmann, Mark D. Adams, Owen White, Rebecca A. Clayton, Ewen F. Kirkness, Anthony R. Kerlavage, Carol J. Bult, Jean-Francois Tomb, Brian A. Dougherty, Joseph M. Merrick, Keith McKenney, Granger Sutton, Will FitzHugh, Chris Fields,* Jeannine D. Gocayne, John Scott, Robert Shirley, Li-Ing Liu, Anna Glodek, Jenny M. Kelley, Janice F. Weidman, Cheryl A. Phillips, Tracy Spriggs, Eva Hedblom, Matthew D. Cotton, Teresa R. Utterback, Michael C. Hanna, David T. Nguyen, Deborah M. Saudek, Rhonda C. Brandon, Leah D. Fine, Janice L. Fritchman, Joyce L. Fuhrmann, N. S. M. Geoghagen, Cheryl L. Gnehm, Lisa A. McDonald, Keith V. Small, Claire M. Fraser, Hamilton O. Smith, J. Craig Venter \dagger

Abstract

An approach for genome analysis based on sequencing and assembly of unselected pieces of DNA from the whole chromosome has been applied to obtain the complete nucleotide sequence ($1,830,137$ base pairs) of the genome from the bacterium Haemophilus influenzae Rd. This approach eliminates the need for initial mapping efforts and is therefore applicable to the vast array of microbial species for which genome maps are uriavailable. The H. influenzae Rd genome sequence (Genome Sequence DataBase accession number L42023) represents the only complete genome sequence from a freeliving organism.

A prerequisite to understanding the complete biology of an organism is the determination of its entire genome sequence. Several viral and organellar genomes have been completely sequenced. Bacteriophage $\$ \mathrm{X} 174$ [5386 base pairs (bp)] was the first to be sequenced, by Fred Sanger and colleagues in 1977 (1). Sanger et al. were also the first to use strategy based on random (unselected) pieces of DNA, completing the genome sequence of bacteriophage $\lambda(48,502 \mathrm{bp})$ with cloned restriction enzyme fragments (1). Subsequently, the $229-\mathrm{kb}$ genome of cytomegalovirus (CMV) (2), the 192 -kb genome of vaccinia (3), and the $187-\mathrm{kb}$ mitochondrial and 121-kb chloroplast genomes of Marchantia polymorpha (4) have been sequenced. The $186-\mathrm{kb}$ genome of variola (smallpox) was the first to be completely sequenced with automated technology (5).

At the present time, there are active genome projects for many organisms, including Drosophila melanogaster (6), Escherichia coli (7), Saccharomyces cerevisiae (8), Bacillus subtilis (9), Caenorhabditis elegans (10), and

[^1]Homo sapiens (11). These projects, as well as viral genome sequencing, have been based primarily on the sequencing of clones usually derived from extensively mapped restriction fragments, or λ or cosmid clones. Despite advances in DNA sequencing technology (12) the sequencing of genomes has not progressed beyond clones on the order of the size of $\lambda(\sim 40 \mathrm{~kb})$. This has been primarily because of the lack of sufficient computational approaches that would enable the efficient assembly of a large number (tens of thousands) of independent, random sequences into a single assembly.

The computational methods developed to create assemblies from hundreds of thousands of $300-$ to $500-$ bp complementary DNA (cDNA) sequences (13) led us to test the hypothesis that segments of DNA several megabases in size, including entire microbial chromosomes, could be sequenced rapidly, accurately, and cost-effectively by applying a shotgun sequencing strategy to whole genomes. With this strategy, a single random DNA fragment library may be prepared, and the ends of a sufficient number of randomly selected fragments may be sequenced and assembled to produce the complete genome. We chose the free-living organism Haemophilus influenzae Rd as a pilot project because its genome size (1.8 Mb) is typical among bacteria, its $G+C$ base composition (38 percent) is close to that of human, and a physical clone map did not exist.

Haemophilus influenzae is a small, nonmotile, Gram-negative bacterium whose only
natural host is human. Six H. influenzae serotype strains (a through f) have been identified on the basis of immunologically distinct capsular polysaccharide antigens. Non-typeable strains also exist and are distinguished by their lack of detectable capsular polysaccharide. They are commensal residents of the upper respiratory mucosa of children and adults and cause otitis media and respiratory tract infections, mostly in children. More serious invasive infection is caused almost exclusively by type b strains, with meningitis producing neurological sequelae in up to 50 percent of affected children. A vaccine based on the type b capsular antigen is now available and has dramatically reduced the incidence of the disease in Europe and North America.

Genome sequencing. The strategy for a shotgun approach to whole genome sequencing is outlined in Table 1. The theory follows from the Lander and Waterman (14) application of the equation for the Poisson distribution. The probability that a base is not sequenced is $P_{\mathrm{o}}=e^{-m}$, where m is the sequence coverage. Thus after 1.83 Mb of sequence has been randomly generated for the H. influenzae genome ($m=1,1$ \times coverage), $P_{o}=e^{-1}=0.37$ and approximately 37 percent of the genome is unsequenced. Fivefold coverage (approximately 9500 clones sequenced from both insert ends and an average sequence read length of 460 bp) yields $P_{\mathrm{o}}=e^{-5}=0.0067$, or 0.67 percent unsequenced. If L is genome length and n is the number of random sequence segments done, the total gap length is $L e^{-m}$, and the average gap size is L / n. Fivefold coverage would leave about 128 gaps averaging about 100 bp in size.

To approximate the random model during actual sequencing, procedures for library construction (15) and cloning (16) were developed. Genomic DNA from H. influenzae Rd strain KW20 (17) was mechanically sheared, digested with BAL 31 nuclease to produce blunt ends, and size-fractionated by agarose gel electrophoresis. Mechanical shearing maximizes the randomness of the DNA fragments. Fragments between 1.6 and 2.0 kb in size were excised and recovered. This narrow range was chosen to minimize variation in growth of clones. In addition, we chose this maximum size to minimize the number of complete genes that might be present in a single fragment, and thus might be lost as a result of expression of deleterious gene products. These fragments were ligated to Sma I-cut, phos-phatase-treated pUC18 vector, and the ligated products were fractionated on an agarose gel. The linear vector plus insert band was excised and recovered. The ends of the linear recombinant molecules were repaired with T4 polymerase, and the molecules were then ligated into circles. This two-
stage procedure resulted in a collection of single-insert plasmid recombinants with minimal contamination from double-insert chimeras (<1 percent) or free vector (<3 percent). Because deviation from randomness is most likely to occur during cloning, E. coli host cells deficient in all recombination and restriction functions (18) were used to prevent rearrangements, deletions, and loss of clones by restriction. Transformed cells were plated directly on antibiotic diffusion plates (16) to avoid the usual broth recovery phase that would have allowed multiplication and selection of the most rapidly growing cells and could lead to deviation from randomness. All colonies were used for template preparation regardless of size. Only clones lost because of expression of deleterious gene products would be deleted from the library, resulting in a slight increase in gap number over that expected.

To evaluate the quality of the H. influenzae library, sequence data were obtained from ~ 4000 templates by means of the M13-21 primer. Sequence fragments were assembled with the AUTOASSEMBLER software [Applied Biosystems division of Perkin-Elmer (AB)] after obtaining 1300, $1800,2500,3200$, and 3800 sequence fragments, and the number of unique assembled base pairs was determined. The data obtained from the assembly of up to 3800 sequence fragments were consistent with a Poisson distribution of fragments with an average "read" length of 460 bp for a genome of $1.9 \times 10^{6} \mathrm{bp}$, indicating that the library was essentially random.

Plasmid DNA templates that were dou-ble-stranded and of high quality $(19,687)$ were prepared by a method developed in collaboration with Advanced Genetic Technology Corporation (19). Plasmids were prepared in a 96 -well format for all stages of DNA preparation from bacterial growth through final DNA purification. Template concentration was determined with Hoechst dye and a Millipore Cytofluor 2350. DNA concentrations were not adjusted, but low-yielding templates ($<30 \mathrm{ng} / \mu \mathrm{l}$) were identified where possible and not sequenced. Templates were also prepared from two H. influenzae λ genomic libraries (20). An amplified library was constructed in vector λ GEM-12 and an unamplified library was constructed in λ DASH II. Both libraries contained inserts in the size range of 15 to 20 kb . Liquid lysates $(10 \mathrm{ml})$ were prepared from selected plaques and templates were prepared on an anion-exchange resin (Qiagen). Sequencing reactions were carried out on plasmid templates by means of a Catalyst LabStation (AB) and PRISM Ready Reaction Dye Primer Cycle Sequencing Kits (AB) for the M13 forward (M13-21) and the M13 reverse (M13RP1)
primers (21). Dye terminator sequencing reactions were carried out on the λ templates on a Perkin-Elmer 9600 Thermocycler with the Applied Biosystems Prism Ready Reaction Dye Terminator Cycle Sequencing Kits. We used T7 and SP6 primers to sequence the ends of the inserts from the λ GEM-12 library and T7 and T3 primers to sequence the ends of the inserts from the λ DASH II library. Sequencing reactions $(28,643)$ were performed by eight individuals using an average of 14 AB 373 DNA Sequencers per day over a 3 -month period. All sequencing reactions were analyzed with the Stretch modification of the AB 373 sequencer. These sequencers were modified to include a heat plate and the height of the laser was reduced. With standard gel plates the "well-to-read" length was increased to 34 cm when standard sequencing plates were used and to 48 cm when $60-\mathrm{cm}$ plates were used. The sequencing reactions in this project were analyzed primarily with a $34-\mathrm{cm}$ well-to-read distance. The overall sequencing success rate was 84 percent for M13-21 sequences, 83 percent for M13RP1 sequences, and 65 percent for dye-terminator reactions. The average usable read length was 485 bp for M13-21 sequences, 444 bp for M13RP1 sequences, and 375 bp for dye-terminator reactions. The highthroughput sequencing phase of the project is summarized in Table 2.

We balanced the desirability of sequencing templates from both ends, in terms of ordering of contigs and reducing the cost of lower total number of templates, against shorter read lengths for sequencing reactions performed with the M13RP1 primer compared to the M13-21 primer. Approximately one-half of the templates were sequenced from both ends. Altogether, 9297 M13RP1 sequencing reactions were done. Random reverse sequencing reactions were done on the basis of successful forward se-
quencing reactions. Some M13RP1 sequences were obtained in a semidirected fashion; for example, M13-21 sequences pointing outward at the ends of contigs were chosen for M13RP1 sequencing in an effort to specifically order contigs. The semidirected strategy was effective, and clone-based ordering formed an integral part of assembly and gap closure.

In the course of our research on expressed sequence tags (ESTs), we developed a laboratory information management system for a large-scale sequencing laboratory (22). The system was designed to automate data flow wherever possible and to reduce user error. It has at its core a series of databases developed with the Sybase relational data management system. The databases store and correlate all information collected during the entire operation from template preparation to final analysis. Although the system was originally designed for EST projects, many of its features were applicable or easily modified for a genomic sequencing project. Because the raw output of the $A B$ 373 sequencers is collected on a Macintosh system and our data management system is based on a Unix system, it was necessary to design and implement multiuser, client-server applications that allow the raw data as well as analysis results to flow seamlessly into the database with a minimum of user effort. To process data collected by the $A B 3735$, sequence files were first analyzed with FACTURA, an $A B$ program that runs on the Macintosh and is designed for automatic vector sequence removal and end-trimming of sequence files. The Macintosh program ESP, written at The Institute for Genomic Research (TIGR), loaded the feature data extracted from sequence files by FACTURA to the Unix-based H. influenzae relational database. Assembly was accom-

Table 1. Whole-genome sequencing strategy.

Stage	Description
Random small insert and large insert library construction	Shear genomic DNA randomly to $\sim 2 \mathrm{~kb}$ and 15 to 20 kb , respectively
Library plating	Verify random nature of library and maximize random selection of small insert and large insert clones for template production
High-throughput DNA sequencing	Sequence sufficient number of sequence fragments from both ends for $6 \times$ coverage
Assembly	Assemble random sequence fragments and identify repeat regions
Gap closure	
Physical gaps	Order all contigs (fingerprints, peptide links, λ clones, $P C R$) and provide templates for closure
Sequence gaps	Complete the genome sequence by primer walking
Editing	Inspect the sequence visually and resolve sequence ambiguities, including frameshifts
Annotation	Identify and describe all predicted coding regions (putative identifications, starts and stops, role assignments, operons, regulatory regions)

plished by first retrieving a specified set of sequence files and their associated features by means of STP, another TIGR program, which is an X -windows graphical interface that retrieves sequences from the database with user-defined queries.

TIGR ASSEMBLER is the software component that enabled us to assemble the H. influenzae genome. It simultaneously clusters and assembles fragments of the genome. In order to obtain the speed necessary to assemble more than 10^{4} fragments, the algorithm builds a table of all $10-\mathrm{bp}$ oligonucleotide subsequences to generate a list of potential sequence fragment overlaps. When TIGR ASSEMBLER is used, a single fragment begins the initial contig; to extend the contig, a candidate fragment is chosen with the best overlap based on oligonucleotide content. The current contig and candidate fragment are aligned by a modified version of the Smith-Waterman (23) algo-
rithm, which provides for optimal gapped alignments. The contig is extended by the fragment only if strict criteria for the quality of the match are met. The match criteria include the minimum length of overlap, the maximum length of an unmatched end, and the minimum percentage match. The algorithm automatically lowers these criteria in regions of minimal coverage and raises them in regions with a possible repetitive element. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Fragments representing the boundaries of repetitive elements and potentially chimeric fragments are often rejected on the basis of partial mismatches at the needs of alignments and excluded from the contig.

TIGR ASSEMBLER was designed to take advantage of clone size information coupled with sequence information from both ends of each template. It enforces the

Table 2. Summary of features of whole-genome sequencing of H. influenzae Rd.

Description	Number
Double-stranded templates	19,687
Forvard-sequencing reactions (M13-21 primer)	19,346
Successful (\%)	$16,240(84)$
Average edited read length (bp)	485
Reverse sequencing reactions (M13RP1 primer)	9,297
Successful (\%)	$7,744(83)$
Average edited read length (bp)	444
Sequence fragments in random assembly	24,304
Total base pairs	$11,631,485$
Contigs	140
Physical gap closure	42
PCR	37
Southern analysis	15
ג clones	23
Peptide links	22
Terminator sequencing reactions*	3,530
Successful (\%)	$2,404(68)$
Average edited read length (bp)	375
Genome size (bp)	$1,830,137$
G+C content (\%)	38
rRNA operons	6
rrnA, rrnC, rrnD (spacer region) (bp)	623
rrnB, rrnE, rrnF (spacer region) (bp)	723
tRNA genes identified	54
Number of predicted coding regions	54
Unassigned role (\%)	1,743
No database match	$736(42)$
Match hypothetical proteins	389
Assigned role (\%)	347
Amino acid metabolism	$1,007(58)$
Biosynthesis of cofactors, prosthetic groups, and carriers	$68(6.8)$
Cell envelope	$54(5.4)$
Cellular processes	$84(8.3)$
Central intermediary metabolism	$53(5.3)$
Energy metabolism	$30(3.0)$
Fatty acid and phospholipid metabolism	$105(10.4)$
Purines, pyrimidines, nucleosides and nucleotides	$25(2.5)$
Regulatory functions	$53(5.3)$
Replication	$64(6.3)$
Transcription	$87(8.6)$
Translation	$27(2.7)$
Transport and binding proteins	$141(14.0)$
Other	$123(12.2)$

*Includes gap closure, walks on rRNA repeats, random end-sequencing of λ clones for assembly confirmation, and alternative reactions for ambiguity resolution.
constraint that sequence fragments from two ends of the same template point toward one another in the contig and are located within a certain range of base pairs (definable for each clone on the basis of the insert length or the clone size range for a given library). In order for the assembly process to be successful it was essential that the sequence data be of the highest quality and that sequence fragment lengths be sufficient to span most small repeats. Less than 13 percent of our random sequence fragments were smaller than 400 bp after vector removal and end trimming. Assembly of 24,304 sequence fragments of H . influenzae required 30 hours of central processing unit time with the use of one processor on a SPARCenter 2000 containing 512 Mb of RAM. This process resulted in approximately 210 contigs. Because of the high stringency of the TIGR ASSEMBLER, all contigs were searched against each other with GRASTA, which is a modified version of the program FASTA (24). In this way, additional overlaps that enabled compression of the data set into 140 contigs were detected. The location of each fragment in the contigs and extensive information about the consensus sequence itself were loaded into the H. influenzae relational database.

After assembly, the relative positions of the 140 contigs were unknown. The program ASM_ALIGN, developed at TIGR, identified clones whose forward and reverse sequencing reactions indicated that they were in different contigs and ordered and displayed these relationships. With this program, the 140 contigs were placed into 42 groups totaling 42 physical gaps (no template DNA for the region) and 98 sequence gaps (template available for gap closure).

Four integrated strategies were developed to order contigs separated by physical gaps. Oligonucleotide primers were designed and synthesized from the end of each contig group. These primers were then available for use in one or more of the strategies outlined below:

1) DNA hybridization (Southern) analysis was done to develop a "fingerprint" for a subset of 72 of the above oligonucleotides. This procedure was based on the supposition that labeled oligonucleotides homologous to the ends of adjacent contigs should hybridize to common DNA restriction fragments, and thus share a similar or identical hybridization pattern or fingerprint (25). Adjacent contigs identified in this manner were targeted for specific PCR reactions.
2) Peptide links were made by searching each contig end with BLASTX (26) against a peptide database. If the ends of two contigs matched the same database sequence appropriately, then the two contigs were tentatively considered to be adjacent.

Hi\#\#	Identification \%
0157 β-ketoacyl-acyl carrier prt Sase III (fabH) 80	
0971 biotin carboxyl carrier prt (accB)	
0972 biotin carboxylase (accC)	
$\begin{aligned} & 0919 \\ & 1325 \end{aligned}$	CDP-diglyceride Sase (cdsA)
	D-3-hydroxydecanoyl-(acyl carrier-prt) dehydratase (fabA)
0335 diacylglycerol kinase (dgkA)	
0426 fatty acid metabolism prt (fad	
0748 glycerol-3-P acyltransterase (pls	
0002 long chain fatty acid CoA ligase	
0156 malonyl CoA acyl carrier prt tran (fabD)	
©211 phosphatidylglycerophos phosphatase B (pgpB)	
0123 phosphatidyiglycerophosphate Sase (pgsA)	
0160 phosphatidylserine DCase proenzyme (psd)	
0425 phosphatidylserine Sase (pssA)	
$0689 \mathrm{prt} \mathrm{D} \mathrm{(hpd)}$	
1734	short chain alcohol DHase homolog (envM)
1433	USG-1 prt (usg)

\%Sim Hil
Identification
4 ATP:

(pimb

scription regulation repressor
folylpolyglutamate-dihydrofolate Sase expression regulator (accD)
fumarate (and nitrate) reduction regulatory prt (fnr)
0821 galactose operon repressor (galS) 194 Gly

Gly cleavage system transcriptional activator (gcvA)
1009 glycerol-3-P regulon repressor (glpR) 0013 GTP-BP
0877 GTP-BP (obg)
Purines, pyrimidines, nucleosides, 1224 orotidine-5'-monophosphate DCase (pyrF) 79

1 hydroge (oxyR)

0615 LucOse operon activator (fucR)
0399 lacZ expression regulator (icc)
0224 Leu responsive regulatory prt ((Irp)
0749 Lex responsive regulatory prt (lip)
1461 lipooligosaccharide prt
1611 maltose regulatory prt sfs 1 (sfsA)
0294 metF aporepressor (metJ) (sfs
1473 molybdenum transport system (modD)
0199 msbB
0763 nadAB transcriptional regulator (nadR)
0710 negative regulator of translation (relB)
0629 negative rpo regulator (mclA)
0267 nitrate sensor prt (narQ)
0726 nitrate, nitrite response regulator prt (narP)
0337 nitrogen regulatory prt P-II (ginB)
1741 penta-P guanosine-3'-
pyrophosphohydrolase (spoT)
1378 phosphate regulon sensor prt (phoR)
phosphate regulon transcriptional regulatory prt (phoB)
1635 purine nucleotide synthesis repressor prt 74 (purR)
0163 putative murein gene regulator (boIA)
0506 rbs repressor (rbsR)
0893 repressor for cytochrome P450 (Bm3R1) 0269 RNA polymerase sigma-32 factor (rpoH) 0628 RNA polymerase sigma-E. factor (rpoE)
1707 sensor prt for basR (basS)
1440 stringent starvation prt (sspB)
1441 stringent starvation prt A (sspA) 1739 trans-activator of metE and meth (metR)
0358 transcription activator (tenA)
0681 transcriptional activator prt (ilvY)
1708 transcriptional regulatory prt (basR)
0410 transcriptional regulatory prt (tyrR)
0830 Trp repressor (trpR)
0054 uxu operon regulator (uxuR)
1106 xylose operon regluatory prt (xyIR)

Replication

Degradation of DNA

1689 endonuclease III (nth)
0249 excinuclease ABC sub A (uvrA)
1247 excinuclease ABC sub B (uvrB)
0057 excinuclease ABC sub C (uvrC)
1377 exodeoxyribonuclease I (sbcB)
1321 exodeoxyribonuclease V (recB)
0942 exodeoxyribonuclease V (recC)
0041 exonuclease III (xthA)
0397 exonuclease VII, large sub (xseA) 74
1214 single-stranded DNA-specific exonuclease 77 (recJ)

DNA replication, restriction, modification, recombination, and repair
1226 AG-specific adenine glycosylase (mutY)
0993 chromosomal replication initiator (dnaA)
0314 crossover junction endodeoxyribonuclease
(ruvC)
0209 DNA adenine methylase (dam)
1264 DNA gyrase, sub A (gyrA)
0728 DNA helicase (recQ)
1188 DNA helicase il (uvrD)
1100 DNA ligase (lig)
0654 DNA 3-methyladenine glycosidase I (tagl)
0403 DNA mismatch repair prt (mutH)
0067 DNA mismatch repair prt (mutL)
0707 DNA mismatch repair prt (mutS)
0856 DNA polymerase I (polA)
0923 DNA polymerase III δ sub (dnaN)
0923 DNA polymerase III δ sub (holA)
0455 DNA polymerase III δ^{\prime} sub (holB)
0137 DNA polymerase III ε sub (dnaQ)
0739 DNA polymerase III α chain (dnaE)
1397 DNA polymerase III χ sub (holC)
0011 DNA polymerase III psi sub (holD)
0532 DNA primase (dnaG)

\% Sim

HI\#
Identification
\%Sim
1740 DNA recombinase (recG
0070 DNA repair pit
0657 DNA topoisomerase I (topA)
0566 dod
062 dosage-dependent dnaK suppressor prt
(dksA)
(fpg)
glucose-inhibited division prt (gidA)
0486 glucose-inhibited division prt (gidB)
0512 Hincll endonuclease (Hincll)
1392 HindllI modification MTase (hindllIM)
1393 Hindlll restriction endonuclease (hindIIIP
0313 Holliday junction DNA helicase (ruvA)
0676 integrase-recombinase prt (xerC)
1313 integration host factor α sub (himA)
1221 integration host factor β sub (IHF- β) $\quad 77$ (himD)
0402 methylated-DNA--prt-Cys MTase (dat1)
1041 modification methylase HgiDI (MHgiDI)
0513 modification methylase Hincll (hinclIM)
0910 mutator mutT
0192 negative modulator of initiation of replication (seqA)
0546 primosomal prt n precursor (priB)
0339 primosomal prt replication factor (priA) 0387 probable ATP-dependent helicase (dinG)
0991 DNA, ATP-BP (recF)
0332 DNA repair pr (recO)
0600 recombinase (recA)
0061 recombination prt (rec2)
0443 recR prt (recR)
0599 regulatory prt (recX)
1229 replication prt (dnaX)
1574 replicative DNA helicase (dnaB)
1040 restriction enzyme (hgiDIR)
1424 shuffion-specific DNA recombinase (rci)
0250 single-stranded DNA BP (ssb)
1572 site-specific recombinase (rcb)
1365 topoisomerase I (topA)
0444 topoisomerase III (topB)
1529 topoisomerase IV sub A (parC)
1258 transcription-repair coupling factor (mfd)
0216 type I restriction enzyme ECOK1 specificity prt (hsdS)
1287 type I restriction enzyme ECOR124/3। 54 M (hsdM)
$0215 \begin{aligned} & \text { type I restriction enzyme ECOR124/3 I } \\ & \mathrm{M} \text { (hsdM) }\end{aligned}$
1285 type I restriction enzyme ECOR124/3 R 53
1056 type III restriction-modification ECOP15 56
0018 uracil DNA glycosylase (ung)

Transcription

Degradation of RNA
0218 anticodon nuclease masking-agent (prrD) 86
1733 exoribonuclease II
0390 ribonuclease D (md)
0138 ribonuclease E (rne)
1059 ribonuclease H HII
0014 ribonuclease III (rnc)
0273 ribonuclease PH (rph)
0999 RNase P (mpA)
0324 RNase T (rnt)
RNA synthesis, modification, and DNA
transcription
0616 ATP-dependent helicase (hepA)
0231 ATP-dependent RNA helicase (deaD)
0892 ATP-dependent RNA helicase (hIB)
0422 ATP-dependent RNA helicase (smB)
0802 DNA-directed RNA polymerase α chain $\begin{array}{ll}61 \\ 97\end{array}$
0515 (rpoA) DNA-directed RNA polymerase β chain $\quad 9 \Omega$ 0514 (rpoB)
14 DNA-directed RNA polymerase β^{\prime} chain (rpoC)
1304 N utilization substance prt B (nusB)
0063 plasmid copy number control prt (penB) 0229 polynucleotide phosphorylase (pnp)
1742 RNA polymerase omega sub (rpoZ)
1459 sigma factor (algU)
0717 transcription antitermination prt (nusG)
1331 transcription elongation factor (greA)
0569 transcription elongation factor (greB
1283 transcription factor (nusA)
$\begin{array}{lll}0295 & \text { transcription termination factor tho (mo) } & 94 \\ 96\end{array}$

Translation

Amino acyl tRNA synthetases and tRNA
0814 Ala-tRNA Sase (alaS),
1583 Arg-tRNA Sase (argS)
1302 Asn-tRNA Sase (asnS)
0708 Cys-tRNA selenium Tase (selA)
0708 Cys-tRNA selenium Tase (sela
1354 Gln-tRNA Sase (glnS)
1354 Gin-tRNA Sase (gins)
0927 Gly-tRNA Sase α chain (glyQ)
0924 Gly-tRNA Sase β chain (glyS)
80

The Genome of Haemophilus influenzae Rd

Figure 2. Gene map of the H. influenzae Rd genome. Predicted coding regions are shown on each strand. The rRNA and tRNA genes are shown as lines and triangles, respectively. Genes are color-coded by role category as described in the Figure key. Gene identification numbers correspond to those in Table 3. Where possible, three-letter designations are also provided. In the region containing ribosomal proteins

HIO782-HIO796 some identification numbers have been omitted because of space limitations. Predicted coding regions with similarity to database sequences designated as hypothetical coding regions are represented as white, cross-hatched rectangles. Predicted coding regions that have no database match are represented as white, unfilled rectangles.

Table 3. Identification of \dot{H}. influenzae genes. Gene identification numbers are listed with the prefix HI in Fig. 3. Each identified gene is listed in its role category [adapted from Riley (36)]. The percentage of similarity (Sim) of the best match to the NRBP (as described in the text) is also shown. The amino acid substitution matrix used in the BLAZE analysis is BLOSUM60. An expanded version of this table with additional match information, including species, is available via World Wide Web (URL: http://www.tigr.org/). Abbreviations used: Ac, acetyl; ATase, aminotransferase; BP, binding protein; biosyn, biosynthesis; CoA, coenzyme A; DCase, decarboxylase; DHase, dehydrogenase; DMSO, dimethyl sulfoxide; f-Met, formylmethionine; G3PD, glyceraldehyde-3-phosphate dehydrogenase; GABA, γ-aminobutyric acid; GlcNAc, N acetyIglucosamine; LOS, Lipooligosaccharide; Ipp, lipoprotein; MTase, methyltransferase; MurNAc, N-acetylmuramyl; P, phosphate; prt, protein; PRTase, phosphoribosyltransferase; RDase, reductase; SAM, Sadenosylmethionine; Sase, synthase-synthetase; sub, subunit; Tase, transferase. The following hypothetical proteins were matched from the other species as indicated (percent similarity in parentheses after gene identification number): Alcaligenes eutrophus: 1053(52); Anabaena variabilis: 1349(54); Bacillus subtilis: 0115(53), 0259(54), 0355(61), 0404(47), 0415(69), 0416(63), 0417(66), 0454(64), 0456(56), 0522(54), 0687(49), 0775(54), 0959(50), 1083(53), 1203(63), 1627(59), $1647(81)$, 1648(65), 1654(64); Bacteriophage P22: 1412(54); Buchnera aphidicola: 1199(65); Campylobacter jejuni: 0560(71); Chromatium vinosum: 0105(75); Clostridium acetobutylicum: 0773(72); Clostridium kluyveri: 0976(48); Clostridium perfringens: 0143(58); Coxiella burnetii: 1590(74), 1591(50); Erwinia carotovora: 1436(72); Escherichia coli: 0003(52), 0012(67), 0017(91), 0028(68), 0033(90), 0034(84), 0035(79), 0044(80), 0045(67), 0050(70), 0051(50), 0052(56), 0053(56), 0059(72), 0065(75), $0072(65), 0081(71), 0091(72), 0092(49), 0093(59), 0103(71)$, 0107(54), 0108(65), 0125(88), 0126(87), 0135(68), 0145(69), 0146(58), 0147(61), 0148(62), 0162(47), 0172(67), 0174(84), 0175(70), 0176(87), $0182(60), 0183(66), 0184(73), 0187(58), 0188(81), 0198(75), 0203(86)$, 0227(51), 0230(71), 0232(69), 0235(80), 0241(82), 0242(50), 0258(95), $0257(76), 0265(77), 0266(83), 0270(80), 0271(73), 0276(70), 0281(76)$, 0282(59), 0293(61), 0303(81), 0306(70), 0308(58), 0315(87), 0316(68), $0329(79), 0336(91), 0338(68), 0340(72), 0341(84), 0342(60), 0343(67)$, 0344(85), 0345(82), 0346(77), 0347(67), 0364(55), 0365(86), 0367(48), 0371(84), 0374(64), 0375(62), 0376(75), 0379(57), 0380(58), 0386(76);

0393(93), 0396(54), 0398(72), 0400(65), 0409(69), 0412(85), 0418(68), 0423(67), 0424(66), 0431(76), 0432(68), 0442(93), 0452(73), 0464(78), 0467(80), 0493(64), 0494(69), 0500(63), 0508(82), 0509(69), 0510(74), 0519(71), 0520(59), 0521(58), 0562(83), 0565(63), 0568(71), 0570(80), 0572(70), 0574(63), 0575(80), 0576(65), 0597(57), 0617(54), 0624(72), 0626(81), 0634(78), 0638(68), 0647(64), 0656(74), 0658(56), 0668(76), 0670(83), 0671(87), 0696(54), 0697(64), 0700(77), 0702(71), 0719(86), $0721(78), 0723(73), 0724(64), 0730(65), 0733(55), 0744(70), 0755(61)$, 0756(60), 0766(87), 0767(72), 0810(74), 0817(68), 0826(70), 0827(86), 0831(77), 0837(74), 0839(69), 0840(72), 0841(66), 0849(75), 0851(71), 0852(66), 0855(75), 0858(68), 0860(86), 0862(81), 0864(92), 0878(71), 0881(81), 0890(69), $0891(79), 0906(71), 0918(81), 0929(58), 0933(71)$, 0934(52), 0935(63), 0936(64), 0943(83), 0948(67), 0955(72), 0956(73), 0963(67), 0965(81), 0979(79), 0984(79), 0986(81), 0988(85), 1000(80), 1001(75), 1005(61), 1007(86), 1010(53), 1019(65), 1020(65), $1021(71)$, 1024(67), 1026(85), 1027(72), 1028(77), 1029(83), 1030(62), 1031(87), 1032(79), 1064(57), 1072(57), 1073(62), 1082(67), 1084(61), 1085(76), 1086(89), 1089(70), 1090(82), 1091(76), 1092(73), 1093(72), 1094(81), 1095(79), 1096(64), 1104(53), 1118(84), 1125(87), 1129(77), 1130(80), 1146(80), $1147(68), 1148(88), 1149(73), 1150(59), 1151(81), 1153(84)$, 1155(79), 1165(87), $1181(68), 1195(76), 1198(85), 1216(73), 1234(80)$, 1240(77), 1243(74), 1252(93), 1262(61), 1280(71), 1282(74), 1288(84), 1289(74), 1297(67), 1298(69), 1300(58), 1301 (82), 1309(67), 1314(70), 1315(66), 1333(79), $1337(84), 1342(57), 1364(56), 1368(53), 1369(44)$, 1437(72), 1463(84), 1542(61), 1545(80), 1558(62), 1598(58), 1608(76), 1612(72), 1628(61), 1643(70), 1652(68), 1653(88), 1655(56), 1656(69), 1657(65), 1664(50), $1677(72), 1679(69), 1703(74), 1704(73), 1714(78)$, 1715(86), 1721(71), 1723(92); Klebsiella pneumoniae: 0021(63); Lactobacillus johnsonii: $0112(54), 1720(55)$; Lactococcus lactis: 0555(69); Mycobacterium leprae: 0004(62), 0019(62), 0136(58), 0260(56), 0694(54), 0740(56), 0920(57), 1663(55); Mycoplasma hyopneumoniae: 1281(71); Pasteurella haemolytica: 0219(92); Pseudomonas aeruginosa: 0090(68), 0177(56); Rhodobacter capsulatus: 0170(62), 0672(59), 1439(65), 1683(75), 1684(60), 1688(58); Salmonella typhimurium: 0405(51), 0964(67), 1434(76), 1607(51); Shigella flexneri: 0277(52); Streptococcus parasanguis: 0359(65); Synechococcus sp.: 0961(70); Vibrio parahaemolyticus: 0323(87), 0325(75); Vibrio sp.: 0333(70); Yersinia enterocolitica: 0753(69).
$\mathrm{H} /$ \# Identification Amino acid biosynthesis
Aromatic amino acid family
070 3-dehydroquinase (arow)
008 3-dehydroquinate Sase (a
387 anthranilate Sase comp
1388 anthranilate Sase component I (trpE)
1389 anthranilate isomerase (troC)
1171 anthranilate Sase GIn amidotransferase (trpG)
ATP PR
290 ATP PRTase (hisG)
150 chorismate mutase (tyrA)
145 cherydratase (pheA)
196 chorismate Sase (aroC)
1547 DAHP Sase (aroG)
0607 dehydroquinase shikimate DHase
1599 enolpyruyllshikimatephosphateSyn (aroA)
1166 Gin amidotransferase (hisH)
0469 histididinol dehydrogenase (hisD)
0474 hisF cyclase (hisF)
0470 histidinol-P ATase (hisC)
0471 imidazoleglycerol-P dehydratase (hisB) (hislE)
0473 phosphoribosylformimino-5-
aminoimidazole caarboximde ribotide isomerase (hisA)
0655 shikimate 5 -DHase (aroE)
430 Trp Sase α chain (rpA)
1431 Trp Sase β chain (trpB)
Aspartate family
5564 Asn Sase A (asnA)
0286 Asp ATase (aspC
0646 Asp-semialdehyde DHase (asd)
1632 aspartokinase III (lysC)
16089 aspartokinase-homoserine DHase (thrA)
1042 B12-dependent homocysteine-N5meth
0122β-cystathionase (metC
0086 cystathionine γ-Sase (metB)
1308 dehydrodipicolinate RDase (dapB)
13087 diaminopimelate DCase (lysA)
0750 diaminopimelate epimerase (dapF)
0255 dihydrodipicolinate Sase (dapA)
1263 homoserine acetyltransferase (met2)
0088 homoserine kinase (thrB)
0102 succinyl-diaminopimelate desuccinylase (dape)
1944 teranydrodipicolinate N. succinytransferase (dapD) tetrahydropteroyltriglutamate MTase 0087 (metE)

Branched chain family
0993 -isopropylmalate dehydratase (leuD)
0837 3-sopropylmalate DHase (leuB)
1585 acetohy 0 any acid Sase llivg)
1584 acetolactate Sase III small chain (ivl)
193 acrencdachan (in acid trans
1193 branched-chain amino acid ran
$993{ }^{2}$ isopropylmalate
0682 ketol acid reductoisomerase (ilvC)
Glutamate family
0811 argininosuccinate lyase (argH)
90 arginnull
239 -guamylP RDas (proA)
239γ-glutamyl-P RDase (proA)
0865 Gln Sase (glnA)
0189 Glu DHase (gdhA)
0596 omithine carbamoyltr
1719 uridylyl Tase (glnD)
Pyruvate family
1575 Ala racemase, biosynthetic (alr)
Serine family
1102 Cys Sase (cysz)
465 phosphoglycerate DHase (serA)
167 phosphoserine ATase (serC)
1033 phosphoserine phosphatase (serB)
0606 Ser acetyltransferase (cysE)
0899 Ser hydroxymethyltransferase (glyA)

Biosynthesis of cofactors,

 prosthetic groups, and carriersBiotin
554 7,8-diamino-pelargonic acid ATase (bioA) 74 553 7-keto-8-aminopelargonic acid Sase (biof)
1551 biotin synthesis prt (bioC
643 biotin sulfoxide RDase (bisC
1022 biotin Sase (bioB)
1550 dethiobiotin Sase (bioD)
1445 dethiobiotin Sase (bioD)
Folic acid
1444 5,10-methylenetetrahydrofolate RDase (metF)
0609 5,10-methylenetetrahydrofolate DHase
064 78-dih
pyrophosphokinase (folk)
\%Sim Hll\# Identification 0457 aminodeoxychorismate lyase (pabC) 1629 dedA
0899 dehydrofolate RDase, type I (folA)
1336 dihydropteroate Sase (folP)
1261 dinydropteroate Sase (folyg
1447 GTP cyclohydrolase I (folE)
1170 p-aminobenzoate Sase (pabB)
Heme and porphyrin
1160 ferrochelatase (visA
0113 heme utilization prt (hxuC)
Q263 heme-hemopexin utilization (hxuB)
0463 oxygen-independent coproporphyrinogen
III oxidase (hemN)
0602 protoporphyrinogen oxidase homolog
1201 protoporphyrinogen oxidase (hemG
1559 protoporphyrinogen oxidase (hemG)
Lipoate
0026 lipoate biosyn prt A (lipA)
0027 lipoate biosyn prt B (lipB)
Menaquinone and ubiquinone
0283 2-succinyl-6-hydroxy-2,4-cyclohexadiene- 64 1-carboxylate Sase (menD)
4-(2-carboxyphenyl)-4-oxybutyric acid Sase (menC)
1189 coenzyme PQQ synthesis prt III (pqqiII) 49
0968 dihydroxynaphthoic acid Sase (menB)
1438 famesyldiphosphate Sase (ispA)

Molybdopterin

675 molybdenum biosyn prt A (moaA) 1675 molybdenum biosyn prt C (moaC
1370 molybdenum-pterin-BP (mopl)
1448 molybdopterin biosyn prt (chiE)
0118 molybdopterin biosyn prt (chiN
1449 molybdopterin biosyn prt (chlN
1674 molybdopterin converting factor, sub 1
(moaD)
416
0844 molybdopterin-dinucleotide biosyn prt (mob)

Pantothenate
cons
pantothenate metabolism flavoprotein
(dfp)
enate metabolism flavoprotein
031 pantothenate kinase (coaA)
Pyridoxine
0863 pyridoxamine phosphate oxidase (pdxH)
Riboflavin
0764 3,4-dihydroxy-2-butanone 4-P Sase (ribB) 83
0212 GTP cyclohydrolase II (ribA)
0944 riboflavin biosyn prt (ribG)
1613 riboflavin Sase α chain (ribC)
1303 riboflavin Sase β chain (ribE)
Thioredoxin, glutaredoxin, and glutathione
0161 glutathione RDase '(gor)
1115 thioredoxin (trxA)
1159
thioredoxin (trxA
0084 thioredoxin m (trxM)
Cell envelope
Membranes, lipoproteins, and porins
157915 kD' peptidoglycan-assoc lpp (lpp)
062028 kD membrane prt (hlpA)
0302 apolipoprotein N-acyltransterase (cute)
0407 hydrophobic membrane prt
0360 hydrophobic membrane prt
$\begin{array}{lll}567 \\ \text { iron-regulated outer membrane prt A } & 67 \\ \text { (ira }\end{array}$
(iroA)
$0693 \mathrm{lpp}(\mathrm{hel})$
$0706 \mathrm{lpp}(\mathrm{nlpD})$
0994 membrane
094 membrane fusion prt (mtrC)
0401 outer membrane prt P1 (ompP1)
1164 outer membrane prt P5 (ompA)
0904 prolipoprotein diacylglyceryl Tase (lgt)
0030 rare lpp A (rlpA)
0922 rare lpp B (rlpB)
Murein sacculus and peptidoglycan
1140 D-Ala-D-Ala ligase (ddiB)
1330 D-alanyl-D-Ala carboxypeptidase (dacB) 1338 GICNAC transferase (murG)
1494 MurNAc-L-Ala amidase
0066 N -acetylmuramoyl-L-Ala amidase (amiB)
0440 penicillin-BP (ponA)
1725 penicillin-BP 1 B (ponB)
0032 penicillin-BP 2 (bbp2)
1668 penicilin-BP 3 (prc)
0029 penicillin-BP 5 (dacA)
0197 penicillin-insensitive murein endopeptidase 68
mepA)
0381 peptidoglycan-assoc outer membrane lpp 100
1135 phospho-N-acety
0031 rod shape-determining prt (mreB)
0038 rod shape-determining prt (mreB)
0038 rod shape-determining prt (mreC
0829 soluble lytic murein transglycosylase (sit)
\%Sim
65
55
H1\# 139 UDP-MurNA Alim 1136 UDP-MurNAc-Ala-D-Glu ligase (murD) 1133 UDP-MurNAc-pentapeptide Sase (murF) 1133 UDP-MurNAC-tripeptide Sase (murE) RDase (murB)

Surface polysaccharides, lipopolysaccharides and antigens
1557 2-dehydro-3-deoxyphosphooctonate 0652 aldolase (kdsA)
0652 3-deoxy- D-manno-octulosonic-acid Tase
1105 ADP-heptose-lps heptosyltransferase II (rfaF)
1114 ADP-L-glycero-D-mannoheptose-6-
0058 CTP:CMP-3-den
0058 CTP:CMP-3-deoxy-D-manno-
0868 glycosyl Tase (lgtD)
1578 glycosyl Tase (lgtD
1537 lic-1 operon prt (licA)
1537 lic-1 operon prt (licA)
1539 lic-1 operon prt (licC)
1060 lipid A disaccharide Sase (IpxB)
0765 LOS biosyn prt
0651 lipopolysaccharide core biosyn prt (kdtB)
1700 lsg locus prt 1
0867 Isg locus prt 1
1699 Isg locus prt 2
1698 Isg locus prt 3
1697 lsg locus prt 4
1696 Isg locus prt 5
1695 isg locus prt 6
1693 Isg locus prt 8
0261 lipopolysaccharide biosyn prt (opsX)
1716 rfe prt
(envA)

77
78

81
76
82
90

0119 adhesin B precursor (fimA)
0362 adhesin B precursor (fimA)
0330 cell envelope prt (oapA)
0331 opacity assoc prt (oapB)
1174 opacity prt (opa66)
1457 opacity prt (opaD)
1460 outer membrane adhesin (yopA)
0299 pilin biogenesis prt (pilA)
0297 pilin biogenesis prt (pilC)
0917 protective surface antigen D15

Cellular processes

Cell division

0769 cell division ATP-BP (ftsE)
1208 cell division inhibitor (sulA)
1142 cell division prt (ftsA)
1335 cell division prt (ttsH)
1465 cell division prt (tssH)
1334 cell division prt (ttsJ)
131 cell division prt (tssL)
1141 cell division prt (ftsO)
1137 cell division prt (ttsQ)
1137 cell division prt (ftsW)
0768 cell division prt (tsYY)
1143 cell division prt (ttsZ)
1143 cell division prt (ftsZ)
1353 cytoplasmic axial filament prt (cafA)
0770 cell division membrane prt (ftsX)
1065 mukB suppressor prt (smbA)
1132 penicillin-BP 3 (ttsl)
Cell killing
0301 hemolysin (tlyC)
1658 hemolysin 21 kD (hly)
1373 killing prt (kicA)
1372 killing prt suppressor (kicB)
. leukotoxin secretion ATP-BP (iktB)

Chaperones

0373 heat shock cognate prt 66 (hsc66)
1238 heat shock prt (dnaJ)
1237 heat shock prt 70 (dnaK)
0104 heat shock prt C62.5 (htpG)
0542 heat shock prt groES (mopB)

Detoxification

0928 catalase (hktE)
1088 superoxide dismutase (sodA)
Protein and peptide secretion
1467 colicin V secretion ATP-BP (cvaB)
0016 GTP-binding membrane prt (lepA)
1006 lpp signal peptidase (IspA)
1642 peptide transport system ATP-BP (sapF)
0716 preprotein translocase (secE)
0240 protein-export membrane prt (secD)
0239 protein-export membrane
sim

91
72
71
WオMR

Hl\# Identification
0445 protein-export membrane prt (secG) \%Sim
0743 protein-export prt (secB)
0015 preprotein translocase sub (secA)
0106 signal recognition particle prt 54 (ffh)
0713 trigger factor (tig)
O296 type 4 prepilin-like prt specific leader peptidase (hopD)

Transformation
1008 competence locus E (comE1)
0601 tfoX
0439 transformation prt (comA)
0438 transformation prt (comB
0437 transformation prt (comC
0436 transformation prt (comD)
0434 transformation prt (comE

Central intermediary metabolism

Amino sugars

0140 GlcNAc-6-P deacetylase (nagA) 72
$\begin{array}{ll}0429 \text { Gln amidotransferase (glmS) } & 84 \\ 0141 \text { glucosamine-6-P deaminase (nagB) } & 88\end{array}$
Degradation of polysaccharides
1356 amylomaltase (malQ)
Other
0048 7- α-hydroxysteroid DHase (hdhA)
1204 acetate kinase (ackA)
0111 glutathione Tase (bphH)
0691 glycerol kinase (glpK)
0584 hippuricase (hipO)
0541 urease (ureA)
urease α sub (urea amidohydrolase)
(ureC)
0537 urease accessory prt (UreF)
0538 urease prt (ureE)
0536 urease prt (ureG)
0535 urease prt (ureH)
0540 urease sub B (ureB)
Phosphorus compounds
0695 exopolyphosphatase (ppx)
0124 inorganic PPase (ppa)
0645 lysophospholipase 22 (pldB)
$\begin{array}{ll}\text { Polyamine biosynthesis } & \\ 0099 \text { nucleotide-BP (potG) } & 67 \\ 0591 \text { omithine DCase (speF) } & 80\end{array}$
Polysaccharides - (cytoplasmic)
1357 1,4- α-glucan branching enzyme (glgB)
1361α-glucan phosphorylase (glgP)
1359 ADP-glucose Sase (glgC)
1358 glycogen operon prt (glgX)
1358 glycogen operon prt (glgX)
Sulfur metabolism
0805 arylsulfatase regulatory prt (asIB)
1371 desulfoviridin γ sub (dsvC)
0559 sulfite synthesis
0559 sulfite synthesis pathway prt (cysQ) $\quad 56$
Energy metabolism

Aerobic

$1163 D$-lactate DHase (did)
$1649 D$-lactate DHase (dld)
1649 D-lactate DHase (did)
0605 glycerol-3-P DHase (gpsA)
0747 NADH DHase (ndh)
Amino acids and amines
0534 aspartase (aspA)
0745 L-asparaginase II (ansB)
0288 L-Ser deaminase (sdaA)
Anaerobic
1047 anaerobic DMSO RDase A (dmsA
1046 anaerobic DMSO RDase B (dmsB)
1045 anaerobic DMSO RDase C (dmsC)
0644 cytochrome C-type prt (torC)
0348 denitrification system component (nirT)
0009 formate DHase pathway prt (fdhE)
0006 formate DHase (fdnG)
0005 formate DHase-N affector (fdhD)
0008 formate DHase-O γ sub (fdol)
0007 formate DHase-O, β sub (fdoH)
1069 formate-dependent nitrite RDase (nffA)
67 formate-dependent nitrite RDase prt FeS centers (nrfC)
1066 formate-dependent nitrite RDase $\quad 6$
0833 transmembrane prt (nrid)
0832 fumarate RDase 13 kD hydrophobic prt (frdD)
0835 fumarate RDase, flavoprotein sub (frdA)
0834 fumarate RDase, iron-sulfur pt (frdB)
0834 fumarate RDase, iron-sulfur prt (frdB)
0685 G3PD, sub A (glpA)
0684 G3PD, sub B (glpB)
$\begin{array}{ll}56 & 0684 \mathrm{G3PD}, \text { sub B (glpB) } \\ 91 & 0679 \mathrm{glpE}\end{array}$
1390 hydrogenase iscenzymes formation prt (hypC)

ATP-proton motive force interconversion
0484 ATP Sase C chain (atpE)
048 Sase F0 α sub (atpB)
${ }_{78}^{89}$

${ }^{\text {nyoo63 pens }}$
 ax0067 matL

 Brocse texp

```
m20061 recz
MIT0059 HT0060 maba
```


c \quad 日 147

Unknown

This content downloaded from 107.15.43.220 on Sat, 31 Aug 2019 14:35:22 UTC
All use subject to https://about.jstor.org/terms
3) The two λ libraries constructed from H. influenzae genomic DNA were probed with oligonucleotides designed from the ends of contig groups (27). The positive plaques were then used to prepare templates, and the sequence was determined from each end of the λ clone insert. These sequence fragments were searched with GRASTA against a database of all contigs. Two contigs that matched the sequence from the opposite ends of the same λ clone were ordered. The λ clone then provided the template for closure of the sequence gap between the adjacent contigs.
4) To confirm the order of contigs found by the other approaches and establish the order of the remaining contigs, we performed amplifications by polymerase chain reaction (PCR), both standard and long range (XL) (28). Although a PCR reaction was done for essentially every combination of physical gap ends, techniques such as DNA fingerprinting, database matching, and the probing of large insert clones were particularly valuable in ordering contigs adjacent to each other and reducing the number of combinatorial PCRs necessary to achieve complete gap closure. Use of these strategies to an even greater extent in future genome projects will increase the overall efficiency of complete genome closure. In the program ASM_ALIGN Southern analysis data, identification of peptide links, forward and reverse sequence data from λ clones, and PCR data are used to establish the relative order of the contigs separated by physical gaps. The number of physical gaps ordered and closed by each of these techniques is summarized in Table 2.

Lambda clones were a central feature for completion of the genome sequence and assembly. It was probable that some fragments of the H. influenzae genome would be nonclonable in a high copy plasmid because they would produce deleterious proteins in the E. coli host cells. Lytic λ clones would provide DNA for these segments because such genes would not inhibit plaque production. Furthermore, sequence information from the ends of 15 - to $20-\mathrm{kb}$ clones is particularly suitable for gap closure and providing general confirmation of genome assembly. Because of their size, they would be likely to span any physical gap. Approximately 100 random plaques were picked from the amplified λ library, templates were prepared, and sequence information was obtained from each end. These sequences were searched (GRASTA) against the contigs and linked in the database to their appropriate contig, thus providing a scaffolding of λ clones that contributed additional support to the accuracy of the genome assembly (Fig. 1). In addition to confirmation of the contig structure, the λ clones provided closure for 23 physical gaps.

Approximately 78 percent of the genome was covered by λ clones.

The λ clones were particularly useful for solving repeat structures. All repeat structures identified in the genome were small enough to be spanned by a single clone from the random insert library, except for the six ribosomal RNA (rRNA) operons and one repeat (two copies) that was 5340 bp in length. The ability to distinguish and assemble the six rRNA operons of H. influenzae (each containing in order 16S, 23S, and 5 S subunit genes) was a test of our overall strategy to sequence and assemble a complex genome that might contain a significant number of repeat regions. The high degree of sequence similarity and the length of the six operons caused the assembly process to cluster all the underlying sequences into a few indistinguishable contigs. To de-
termine the correct placement of the operons in the sequence, unique sequences were identified at the 5 S ends. Oligonucleotide primers were designed from these six flanking regions and used to probe the two λ libraries. For five of the six rRNA operons at least one positive plaque was identified that completely spanned the rRNA operon and contained uniquely identifying flanking sequence at the 16 S and 5 S ends. These plaques provided the templates for obtaining the sequence for these rRNA operons. For $r r n A$ a plaque was identified that contained the particular $5 S$ end and terminated in the 16 S end. The 16 S end of $r r n A$ was obtained by PCR from H. influenzae Rd genomic DNA.

An additional confirmation of the global structure of the assembled circular genome was obtained by comparing a computer-

Fig. 1. A circular representation of the H. influenzae Rd chromosome illustrating the location of each predicted coding region containing a database match as well as selected global features of the genome. Outer perimeter: The location of the unique Not I restriction site (designated as nucleotide 1), the Rsr II sites, and the Sma I sites. Outer concentric circle: Coding regions for which a gene identification was made. Each coding region location is classified as to role according to the color code in Fig. 2. Second concentric circle: Regions of high G+C content (>42 percent, red; >40 percent, blue) and high A+T content (>66 percent, black; >64 percent, green). Third concentric circle: Coverage by λ clones (blue). More than 300λ clones were sequenced from each end to confirm the overall structure of the genome and identify the six ribosomal operons. Fourth concentric circle: The locations of the six ribosomal operons (green), the tRNAs (black) and the cryptic mu-like prophage (blue). Fifth concentric circle: Simple tandem repeats. The locations of the following repeats are shown: CTGGCT, GTCT, ATT, AATGGC, TTGA, TTGG, TTTA, TTATC ,TGAC, TCGTC, AACC, TTGC, CAAT, CCAA. The putative origin of replication is illustrated by the outward pointing arrows (green) originating near base 603,000. Two potential termination sequences are shown near the opposite midpoint of the circle (red).
generated restriction map based on the assembled sequence for the endonucleases Apa I, Sma I, and Rsr II with the predicted physical map of Lee et al. (29). The restriction fragments from the sequence-derived map matched those from the physical map in size and relative order (Fig. 1).

At the same time that the final gap filling process occurred, each contig was edited visually by reassembling overlapping $10-\mathrm{kb}$ sections of contigs by means of the AB AUTOASSEMBLER and the Fast Data Finder hardware. AUTOASSEMBLER provides a graphical interface to electropherogram data for editing. The electropherogram data was used to assign the most likely base at each position. Where a discrepancy could not be resolved or a clear assignment made, the automatic base calls were initially left unchanged. Individual sequence changes were written to the electropherogram files and a program was designed (CRASH) to maintain the synchrony of sequence data between the H. influenzae database and the electropherogram files. After the editing, contigs were reassembled with TIGR ASSEMBLER prior to annotation.

Potential frameshifts identified in the course of annotating the genome were saved as reports in the database. These frameshifts were used to indicate areas of the sequence that might require further editing or sequencing. Frameshifts were not corrected for cases in which clear electropherogram data disagreed with a frameshift. Frameshift editing was done with TIGR EDITOR. This program was developed as a collaborative effort between TIGR and AB and is a modification of the AB AUTOASSEMBLER. TIGR EDITOR can download contigs from the database and thus provides a graphical interface to the electropherogram for the purpose of editing data associated with the aligned sequence file output of TIGR ASSEMBLER. The program maintains synchrony between the electropherogram files on the Macintosh system and the sequence data in the H. influenzae database on the Unix system. TIGR EDITOR is now our primary tool for sequence viewing and editing for the purpose of genome assembly.

The final assembly of the H. influenzae genome with the TIGR ASSEMBLER was precluded by the rRNA and other repeat regions, and was accomplished by means of COMB_ASM (a program written at TIGR) that splices together contigs on the basis of short sequence overlaps.

Throughout the project, we paid particular attention to the accuracy of the sequence generated and included various quality control measures. In particular, we constructed random small and large insert libraries (as described above), used strict criteria for excluding any single sequence in which more than 3 percent of the nucleo-
tides could not be identified with certainty, determined that there was no vector contamination in each sequence, and rejected chimeric sequences from the assembly process. The most important measure of the sequence accuracy is the correct assembly of the $1.8-\mathrm{Mb}$ genome. Any deviation from inclusion of only high-quality sequences would have resulted in an inability to assemble the final genome. In addition, the use of the large insert λ clones confirmed the accuracy of the final assembly. Our finding that the restriction map of the H. influenzae Rd genome based on our sequence data is in complete agreement with that previously published (29) further confirms the accuracy of the assembly.

As a consequence of our shotgun approach, we reached an average of more than sixfold redundancy across the genome, although there are some regions in which the coverage is lower. The criteria that we used to define overall sequence quality and completion were as follows: (i) The sequence should have less than 1 percent single sequence coverage. Because H. influenzae is a genome rich in AT pairs, it is possible to obtain a highly accurate sequence with sin-gle-pass coverage. However, any regions with single sequence coverage that contained ambiguities were again sequenced with an alternative sequencing chemistry. (ii) Areas with more than single sequence coverage that contained ambiguities or GC compressions were also sequenced again with an alternative sequencing chemistry. The combination of sequence redundancy together with the application of an alternative sequencing chemistry in areas with ambiguities is, we believe at least as accurate, if not more so, than double-stranded coverage. By these criteria we have reduced the number of nucleotide ambiguities [International Union of Biochemistry (IUB) codes] in the sequence to less than 1 in 19,000 . The same approaches used to resolve ambiguities were also applied to areas where apparent frameshifts were indicated. Sixty potential frameshifts were identified by comparison to entries in peptide databases. Although some of these potential frameshifts are undoubtedly real, others may reflect the hundreds of frameshifts present in GenBank sequences from public databases (30). They may also represent biologically significant phenomena such as insertions or deletions in insertion elements, or in tandem repeats often associated with virulence genes (31).

We also considered comparison of our sequence to existing GenBank H. influenzae Rd sequences as a method for evaluating sequence accuracy as reported for yeast chromosome VIII (32). Unlike yeast, only a limited number of H . influenzae sequences are in GenBank (38 H . influenzae Rd accessions) and these are not necessarily of high
accuracy. The results of such a comparison show that our sequence is 99.67 percent identical overall to those GenBank sequences annotated as H. influenzae Rd. Two problems were apparent with this type of comparison. Sequences could differ because of strain variation, which is poorly annotated in the GenBank entries. It is also difficult to evaluate the significance of differences as the accuracy of the GenBank entries was impossible to assess. We compared GenBank accession M86702 (strA resistance gene) to our sequence and found the identity to be 94.7 percent over 545 bp . There are 24 single base pair mismatches relative to our sequence as well as an insertion and a deletion. Comparison of our sequence to GenBank accession L23824 (adenylate cyclase) shows a 99.7 percent match over 2960 bp . There are nine single base pair mismatches and one insertion. In this case the mismatches all fall in the noncoding flanking regions. While we cannot speak to the accuracy of these GenBank sequences, we are very confident of our sequences in these regions because of the $3 \times$ to $9 \times$ coverage with high-quality sequence data. Thus, a comparison of our sequence to sequences in GenBank annotated as H . influenzae Rd is not a meaningful way to evaluate the accuracy of the sequence.

Although it is extremely difficult to assess sequence accuracy, we wanted to provide an approximation of accuracy based on frequency of shifts in open reading frames, unresolved ambiguities, overall quality of raw data, and fold coverage. We estimate our error rate to be between 1 base in 5000 and 1 base in 10,000 .

We also attempted to estimate the cost of the complete sequencing of the genome. Reagent and labor costs for construction of small insert and λ libraries, template preparation and sequencing, gap closure, sequence confirmation, annotation, and preparation for publication were summed and divided by the genome length. Sequencing projects that require up front mapping should include the cost of construction of the clone maps for sequencing. Not included were costs associated with development of technology and software that will be used for future sequencing projects. The estimated direct cost was 48 cents per finished base pair. Because of the techniques developed during this project any future genomes of this size should cost less.

Data and software availability. The H. influenzae genome sequence has been deposited in the Genome Sequence DataBase (GSDB) with the accession number L42023 and is termed version 1.0. The nucleotide sequence and peptide translation of each predicted coding region with identified start and stop codons have also been accessioned
by GSDB. We consider annotation, accuracy checking, and error resolution to be ongoing tasks. As outlined above, there are predicted coding regions with potential frameshift errors in the sequence. As these are resolved, they will be deposited with GSDB. We also expect the annotation of the sequence to increase over time and be updated in GSDB.

Additional data are available on our World Wide Web site (http://www.tigr.org). An expanded version of Table 3 has links to the database accessions that were used to identify the predicted coding regions, additional sequence similarity data, and coordinates of the predicted coding regions. The alignments between the predicted coding regions and the database sequences are also available. The data can also be queried by gene identification number, putative identification, matching accession, and role. The entire sequence and the sequences of all predicted coding regions and their translations, including those having frameshifts, are also available. This Web site will be maintained as an up-to-date source of H . influenzae genome sequence data, and we encourage the scientific community to forward their results for inclusion (with proper attribution) at this site.

The software developed at TIGR that is described in the article is still under development. However, TIGR will work with other genome centers to make its software available upon request.

Genome analysis. We have attempted to predict all of the coding regions and identify genes, transfer RNAs (tRNAs) and rRNAs, as well as other features of the DNA sequence (such as repeats, regulatory sites, replication origin sites, and nucleotide composition), with the realization that biochemical and biological conformation of many of these will be an ongoing task. We include a description of some of the most obvious sequence features.

The H. influenzae Rd genome is a circular chromosome of $1,830,137 \mathrm{bp}$. The overall $\mathrm{G}+\mathrm{C}$ nucleotide content is approximately 38 percent (A, 31 percent; C, 19 percent; G, 19 percent; T, 31 percent). The $\mathrm{G}+\mathrm{C}$ content of the genome was examined with several window lengths to look for global structural features. With a window of 5000 bp , the $\mathrm{G}+\mathrm{C}$ content is relatively even except for seven large regions rich in $\mathrm{G}+\mathrm{C}$ and several regions rich in $\mathrm{A}+\mathrm{T}$ (Fig. 1). The $\mathrm{G}+\mathrm{C}-$ rich regions correspond to six rRNA operons and a cryptic mu-like prophage. Genes for several proteins similar to proteins encoded by bacteriophage mu are located at approximately position 1.56 to 1.59 Mbp of the genome. This area of the genome has a markedly higher $\mathrm{G}+\mathrm{C}$ content than average for H. influenzae (~ 50 percent $G+C$ compared to ~ 38 percent for
the rest of the genome).
The minimal origin of replication (oriC) in E. coli is a 245-bp region defined by three copies of a 13-bp repeat at one end (sites for initial DNA unwinding) and four copies of a 9-bp repeat (sites for DnaA binding, the first step in replication) at the other (33). An approximately $280-$ bp sequence containing structures similar to the three $13-\mathrm{bp}$ and four $9-b p$ repeats defines the putative origin of replication in H . influenzae Rd . This region lies between sets of ribosomal operons $r m F, r m E, r m D$ and $r m A, r m B$, $r m \mathrm{C}$. These two groups of ribosomal operons are transcribed in opposite directions and the placement of the origin is consistent with their polarity for transcription. Termination of E. coli replication is marked by two 23-bp termination sequences located $\sim 100 \mathrm{~kb}$ on either side of the midway point at which the two replication forks meet. Two potential termination sequences sharing a $10-\mathrm{bp}$ core sequence with the E. coli termination sequence were identified in H. influenzae. These two regions are offset approximately 100 kb from a point approximately 180° opposite of the proposed origin of H. influenzae replication.

Six rRNA operons were identified. Each contains three subunits and a variable spacer region in the order: 16 S subunit-spacer region- 23 S subunit- 5 S subunit. The subunit lengths are 1539, 2653, and 116 bp , respectively. The $\mathrm{G}+\mathrm{C}$ content of the three ribosomal subunits (50 percent) is higher than that of the genome as a whole. The G+C content of the spacer region (38 percent) is consistent with the remainder of the genome. The nucleotide sequence of the three rRNA subunits is completely identical in all six ribosomal operons. The rRNA operons can be grouped into two classes based on the spacer region between the $16 S$ and $23 S$ sequences. The shorter of the two spacer regions is 478 bp (rrnb , $r m E$, and $r m F$) and contains the gene for tRNA ${ }^{\text {Glu }}$. The longer spacer is 723 bp ($r n \mathrm{~A}, r m \mathrm{C}$, and $r m D$) and contains the genes for $t R N A^{\text {lle }}$ and tRNA ${ }^{\text {Ala }}$. The two sets of spacer regions are also completely identical across each group of three operons. Other tRNA genes are present at the 16 S and 5 S ends of two of the rRNA operons. The genes for $t^{2} \mathrm{RA}^{\text {Arg, }}$, $\mathrm{RNA}^{\text {His }}$, and $t R N A^{\text {Pro }}$ are located at the $16 S$ end of $r m E$ while the genes for $t R N^{T r p}$ and $t \mathrm{RNA}^{\text {Asp }}$ are located at the 5 S end of rmA .

The predicted coding regions were initially defined by evaluating their coding potential with the program GENEMARK (34) based on codon frequency matrices derived from 122 H . influenzae coding sequences in GenBank. The predicted coding region sequences (plus 300 bp of flanking sequence) were used in searches against a database of nonredundant bacterial proteins
(NRBP) created specifically for the annotation. Redundancy was removed from NRBP at two stages. All DNA coding sequences were extracted from GenBank (release 85), and sequences from the same species were searched against each other. Sequences having more than 97 percent identity over regions longer than 100 nucleotides were combined. In addition, the sequences were translated and used in protein comparisons with all sequences in SwissProt (release 30). Sequences belonging to the same species and having more than 98 percent similarity over 33 amino acids were combined. NRBP is composed of 21,445 sequences extracted from 23,751 GenBank sequences and 11,183 Swiss-Prot sequences from 1099 different species.

A total of 1743 predicted coding regions was identified. Searches of the predicted coding regions for H. influenzae were performed against NRBP with BLAZE (35) run on a Maspar MP-2 massively parallel computer with 4096 microprocessors. BLAZE translates the query DNA sequence in the three plus-strand reading frames and identifies the protein sequences that match the query. The protein-protein matches were aligned with PRAZE, a modified SmithWaterman (23) algorithm. In cases where insertions or deletions in the DNA sequence produced a potential frameshift, the alignment algorithm started with protein regions of maximum similarity and extended the alignment to the same database match in alternative frames by means of the $300-\mathrm{bp}$ flanking region. Unidentified predicted coding regions and the remaining intergenic sequences were searched against a dataset of all available peptide sequences from Swiss-Prot, the Protein Information Resource (PIR), and GenBank. Identification of operon structures is expected to be facilitated by experimental determination of promoter and termination sites.

Each putatively identified H. influenzae gene was assigned to one of 102 biological role categories adapted from Riley (36). Assignments were made by linking the protein sequence of the predicted coding regions with the Swiss-Prot sequences in the Riley database. Of the 1743 predicted coding regions, 736 have no role assignment. Of these, no database match was found for 389, while 347 matched "hypothetical proteins" in the database. Role assignments were made for 1007 of the predicted coding regions. Each of the 102 role categories was grouped into one of 14 broader role categories (Table 2). A compilation of all the predicted coding regions, their identifiers, a three-letter gene identifier, and percent similarity are presented in Table 3 (foldout). An annotated complete genome map of H. influenzae Rd is presented in Fig. 2 (fold-out). The map places each predicted
coding region on the H. influenzae chromosome, indicates its direction of transcription and color codes its role assignment. Role assignments are also represented in Fig. 1.

A survey of the genes and their chromosomal organization in H. influenzae Rd makes possible a description of the metabolic processes H. influenzae requires for survival as a free-living organism, the nutritional requirements for its growth in the laboratory, and the characteristics that make it different from other organisms specifically as they relate to its pathogenicity and virulence. The genome would be expected to have complete complements of certain classes of genes known to be essential for life. For example, there is a one-to-one correspondence of published E. coli ribosomal protein sequences to potential homologs in the H. influenzae database. Likewise, as shown in Table 3, an aminoacyl tRNA synthetase is present in the genome for each amino acid. Finally, the location of tRNA genes was mapped onto the genome. There are 54 identified tRNA genes, including representatives of all 20 amino acids.

In order to survive as a free-living organism, H. influenzae must produce energy in the form of ATP via fermentation or electron transport. As a facultative anaerobe, H. influenzae Rd is known to ferment glucose, fructose, galactose, ribose, xylose, and fucose (37). As indicated by the genes identified in Table 3, transport systems are available for the uptake of these sugars by the phosphoenolypyruvate-phosphotransferase system (PTS), and by non-PTS mechanisms. Genes that specify the common phosphate-carriers enzyme I and Hpr ($p t s I$ and $p t s H$) of the PTS system were identified as well as the glucose-specific cr gene. We have not, however, identified the gene-encoding, membrane-bound, glucosespecific enzyme II. The latter enzyme is required for transport of glucose by the PTS system. A complete PTS system for fructose was identified.

Genes encoding the complete glycolytic pathway and for the production of fermen-
tative end products were identified. Also identified were genes encoding functional anaerobic electron transport systems that depend on inorganic electron acceptors such as nitrates, nitrites, and dimethyl sulfoxide. Genes encoding three enzymes of the tricarboxylic acid (TCA) cycle appear to be absent from the genome. Citrate synthase, isocitrate dehydrogenase, and aconitase were not found by searching the predicted coding regions or by using the E. coli enzymes as peptide queries against the entire genome in translation. This provides an explanation for the large amount of glutamate ($1 \mathrm{~g} /$ liter) that is required in defined culture media (38). Glutamate can be directed into the TCA cycle by conversion to α-ketoglutarate by glutamate dehydrogenase. In the absence of a complete TCA cycle, glutamate presumably serves as the source of carbon for biosynthesis of amino acids from precursors that branch from the TCA cycle. Functional electron transport systems that depend on oxygen as a terminal electron acceptor are available for the production of adenosine triphosphate.

Previously unanswered questions regarding pathogenicity and virulence can be addressed by examining certain classes of genes such as adhesins and the lipo-oligosaccharide biogenesis genes. Moxon and coworkers (31) have obtained evidence that a number of these virulence-related genes contain tandem tetramer repeats that undergo frequent addition and deletion of one or more repeat units during replication such that the reading frame of the gene is changed and its expression thereby altered. It is now possible, by means of the complete genome sequence, to locate all such tandem repeat tracts (Fig. 2) and to begin to determine their roles in phase variation of such potential virulence genes.

Haemophilus influenzae Rd has a highly efficient, DNA transformation system. The DNA uptake sequence site, 5^{\prime} AAGTGCGGT, present in multiple copies in the genome, is necessary for efficient DNA uptake (39). It is now possible to locate all of these

Table 4. Two-component systems in H. influenzae Rd. ID, identity; Sim, similarity.

Identification number	Location	Best match*	$\begin{gathered} \text { ld } \\ (\%) \end{gathered}$	Sim (\%)	Length (bp)
Sensors					
HIO220	239,378	arcB	39.5	63.9	200
HIO267	299,541	narQ	38.1	68.0	562
H11707	1,781,143	basS	27.7	51.5	250
H1378	1,475,017	phoR	38.1	61.6	280
Regulators					
H0726	777,934	narP	59.3	77.0	209
HI0837	887,011	cpxR	51.9	73.0	229
H08884	936,624	arcA	77.2	87.8	236
H11379	1,475,502	phoB	52.9	71.4	228
H11708	1,781,799	basR	43.5	59.3	219

*In all cases, the best match was to a gene of E. coli.

Haemophilus influenzae type b

Fig. 3. A comparison of the region of the H. influenzae chromosome containing the eight genes of the fimbrial gene cluster present in H. influenzae type b and the same region in H. influenzae Rd. The region is flanked by pepN and purE in both organisms. However, in the noninfectious Rd strain the eight genes of the fimbrial gene cluster have been excised. A 172-bp spacer region is located in this region in the Rd strain and continues to be flanked by the pepN and purE genes.
are adjacent to one another in the Rd strain (Fig. 3), suggesting that the entire fimbrial cluster was excised.

On a broader level, we determined which E. coli proteins are not in H. influenzae by taking advantage of a nonredundant set of protein-coding genes from E. coli, namely the University of Wisconsin Genome Project contigs in GenBank: 1216 predicted protein sequences from GenBank accessions D10483, L10328, U00006, U00039, U14003, and U18997 (45). The minimum threshold for matches was set so that even weak matches would be scored as positive, thereby giving a minimal estimate of the E. coli genes not present in H. influenzae. We used TBLASTN to search each of the E. coli proteins against the complete genome. All BLAST scores greater than 100 were considered matches. Altogether 627 E. coli proteins matched at least one region of the H. influenzae genome and 589 proteins did not. The 589 nonmatching proteins were examined and found to contain a disproportionate number of hypothetical proteins from E. coli. Sixty-eight percent of the identified E. coli proteins were matched by an H. influenzae sequence whereas only 38 percent of the hypothetical proteins were matched. Proteins are anno-
tated as hypothetical on the basis of a lack of matches with any other known proteins (45). At least two potential explanations can be offered for the overrepresentation of hypothetical proteins among those without matches: (i) some of the hypothetical proteins are not, in fact, translated (at least in the annotated frame), or (ii) these are E. coli-specific proteins that are unlikely to be found in any species except those most closely related to E. coli, for example, Salmonella typhimurium.

A total of 389 predicted coding regions did not display significant similarity with a six-frame translation of GenBank release 87. These unidentified coding regions were compared to one another with FASTA. Two previously unidentified gene families were identified. Two predicted coding regions without database matches (HIO589 and HIO850) share 75 percent identity over almost their entire lengths (139) and 143 amino acid residues respectively). A second pair of predicted coding regions (HI1555 and HI1548) encode proteins that share 30 percent identity over almost their entire lengths (394 and 417 amino acids respectively). These similarities suggest that there may be previously unidentified gene families present in these regions

Fig. 4. Hydrophobicity analysis of five potential channel proteins. The amino acid sequences of five predicted coding regions that do not display similarity with known peptide sequences (GenBank release 87), each exhibit multiple hydrophobic domains that are characteristic of channel-forming proteins. The predicted coding region sequences were analyzed by the Kyte-Doolittle algorithm (46) (with a range of 11 residues) with the GENEWORKS software package (Intelligenetics).

Another analysis that can be applied to the unidentified coding regions is hydropathy analysis, which indicates the patterns of potential membrane-spanning domains that are often conserved between members of receptor and transporter gene families, even in the absence of significant amino acid identity. The five best examples of unidentified predicted coding regions that display potential transmembrane domains with a periodic pattern that is characteristic of membrane-bound channel proteins are shown in Fig. 4. Such information can be used to focus on specific aspects of cellular function that are affected by targeted deletion or mutation of these genes.

We have learned some important lessons concerning overall strategy from the H. influenzae sequencing project that should reduce the effort required for future bacterial genome sequencing projects. For example, the small insert library and the large insert library should be constructed and end-sequenced concurrently. It is essential that the sequence fragments used for the assembly are of the highest quality. The sequences should be rigorously checked for vector contamination. Although it is important that sequence read lengths be long enough to span most small repeats, they must also be highly accurate. Our raw sequence data contained on average less than 1.5 percent uncertainties. The use of high quality individual sequence fragments and a rigorous assembly algorithm essentially eliminated difficulty with achieving closure. The success of whole genome shotgun sequencing offers the potential to accelerate research in a number of areas. Comparative genomics could be advanced by the availability of an increased number of complete genomes from a variety of prokaryotes and eukaryotes. Knowledge of the complete genomes of pathogenic organisms could lead to new vaccines. Information obtained from the genomes of particular organisms could have industrial applications. Finally, this strategy has potential to facilitate the sequencing of the human genome.

REFERENCES AND NOTES

1. F. Sanger et al., Nature 246, 687 (1977); F. Sanger, A. R. Coulson, G. F. Hong, D. F. Hill, G. B. Petersen, J. Mol. Biol. 162, 729 (1982).
2. A. T. Bankier et al., DNA Seq. 2, 1 (1991)
3. S. J. Goebel et al., Virology 179, 247 (1990)
4. K. Oda et al., J. Mol. Biol. 223, 1 (1992); K. Ohyama et al., Nature 322, 572 (1986).
5. R. F. Massung et al., Nature 366, 748 (1993).
6. D. L. Hartl and M. J. Palazzolo, Genome Research in Molecular Medicine and Virology, K. W. Adolph, Ed. (Academic Press, Orlando, FL, 1993), pp. 115-129.
7. H. J. Sofia et al., Nucleic Acids Res. 22, 2576 (1994).
8. J. Levy, Yeast 10, 1689 (1994).
9. P. Glaser et al., Mol. Microbiol. 10, 371 (1993).
10. J. Sulston et al., Nature 356, 37 (1992),
11. W. F. Bodmer, Rev. Invest. Clin. (suppl., pp. 3-5) (1994).
12. M. D. Adams, C. Fields, J. C. Venter, Eds. Automat-
ed DNA Sequencing and Analysis (Academic Press, San Diego, CA, 1994).
13. M. D. Adams et al., Science 252, 1651 (1991); M. D Adams et al., Nature 355, 632 (1992); M. D. Adams et al., ibid., in press.
14. E. S. Lander and M. S. Waterman, Genomics 2, 231 (1988).
15. Haemophilus influenzae Rd KW20 DNA was prepared by extraction with phenol. A mixture (3.3 ml) containing $600 \mu \mathrm{~g}$ of DNA, 300 mM sodium acetate, 10 mM tris- $\mathrm{HCl}, 1 \mathrm{mM}$ Na-EDTA, and 30 percent glycerol was sonicated (Branson Model 450 Sonicator) at the lowest energy setting for 1 minute at $0^{\circ} \mathrm{C}$ with a $3-\mathrm{mm}$ probe. The DNA was precipitated in ethanol and redissolved in 500μ l of tris-EDTA (TE) buffer to create blunt ends; a $100-\mu$ | portion was digested for 10 minutes at $30^{\circ} \mathrm{C}$ in 200μ l of BAL 31 buffer with 5 units of BAL 31 nuclease (New England BioLabs). The DNA was extracted with phenol, precipitated in ethanol, redissolved in 100μ l of TE buffer, and fractionated on a 1.0 percent low melting agarose gel. A fraction (1.6 to 2.0 kb) was excised, extracted with phenol, and redissolved in $20 \mu \mathrm{l}$ of TE buffer. A two-step ligation procedure was used to produce a plasmid library in which 97 percent of the recombinants contained inserts, of which >99 percent were single inserts. The first ligation mixture (50 μ) contained $2 \mu \mathrm{~g}$ of DNA fragments, $2 \mu \mathrm{~g}$ of Sma + bacterial alkaline phosphatase pUC18 DNA (Pharmacia), and 10 units of T4 ligase (Gibco/BRL), and incubation was at $14^{\circ} \mathrm{C}$ for 4 hours. After extraction with phenol and ethanol precipitation, the DNA was dissolved in 20μ l of TE buffer and separated by electrophoresis on a 1.0 percent low melting agarose gel. A ladder of ethidium bromide-stained linearized DNA bands, identified by size as insert (i), vector (v), $\mathrm{v}+\mathrm{i}, \mathrm{v}+2 \mathrm{i}, \mathrm{v}+3 \mathrm{i}$, and so on, was visualized by $360-\mathrm{nm}$ ultraviolet light, and the $\mathrm{v}+\mathrm{i}$ DNA was excised and recovered in 20μ of TE. The v+i DNA was blunt-ended by T 4 polymerase treatment for 5 minutes at $37^{\circ} \mathrm{C}$ in a reaction mixture ($50 \mu \mathrm{l}$) containing the linearized $v+i$ fragments four deoxynucleotide triphosphates (dNTPs) ($500 \mu \mathrm{M}$ each) and 9 units of T4 polymerase (New England BioLabs) under buffer conditions recommended by the supplier. After phenol extraction and ethanol precipitation, the repaired $v+i$ linear pieces were dissolved in 20μ l of TE. The final ligation to produce circles was carried out in a $50-\mu \mathrm{l}$ reaction containing $5 \mu \mathrm{l}$ of $\mathrm{v}+\mathrm{i}$ DNA and 5 units of T4 ligase at $14^{\circ} \mathrm{C}$ overnight. The reaction mixture was heated for 10 minutes at $70^{\circ} \mathrm{C}$ and stored at $-20^{\circ} \mathrm{C}$.
16. A $100-\mu$ l portion of Epicurian Coli SURE 2 Supercompetent Cells (Stratagene 200152) was thawed on ice and transferred to a chilled Falcon 2059 tube on ice. A $1.7-\mu$ l volume of $1.42 \mathrm{M} \beta$-mercaptoethanol was added to the cells to a final concentration of 25 mM . Cells were incubated on ice for 10 minutes. A $1-\mu /$ sample of the final ligation mix was added to the cells and incubated on ice for 30 minutes. The cells were heat-treated for 30 seconds at $42^{\circ} \mathrm{C}$ and placed back on ice for 2 minutes. The outgrowth period in liquid culture was omitted to minimize the preferential growth of any given transformed cell. Instead, the transformed cells were plated directly on a nutrient rich SOB plate containing a $5-\mathrm{ml}$ bottom layer of SOB agar (1.5 percent SOB agar consisted of 20 g of tryptone, 5 g of yeast extract, 0.5 g of NaCl , and 1.5 percent Difco agar/liter). The $5-\mathrm{ml}$ bottom layer was supplemented with 0.4 ml of ampicillin ($50 \mathrm{mg} / \mathrm{ml}$) per 100 ml of SOB agar. The $15-\mathrm{ml}$ top layer of SOB agar was supplemented with 1 ml of X -gal (2 percent), 1 ml of $\mathrm{MgCl}_{2}(1 \mathrm{M})$, and 1 ml of $\mathrm{MgSO}_{4}(1 \mathrm{M})$ per 100 ml of SOB agar. The $15-\mathrm{ml}$ top layer was poured just before plating. Our titer was approximately 100 colonies per $10-\mu$ aliquot of transformation.
17. K. W. Wilcox and H. O. Smith, J. Bact. 122, 443 (1975).
18. A. Greener, Strategies 3, 5 (1990).
19. T. R. Utterback et al., in preparation.
20. For the unamplified λ library, H. influenzae Rd KW20 DNA ($>100 \mathrm{~kb}$) was partially digested in a reaction mixture $(200 \mu \mathrm{l})$ containing $50 \mu \mathrm{~g}$ of DNA, $1 \times$ Sau3A

I buffer, and 20 units of Sau3A I for 6 minutes at $23^{\circ} \mathrm{C}$. The digested DNA was extracted with phenol and fractionated on a 0.5 percent low melting agarose gel at $2 \mathrm{~V} / \mathrm{cm}$ for 7 hours. Fragments from 15 to 25 kb were excised and recovered in a final volume of 6μ. We used 1μ I of fragments with 1μ of DASH HI vector (Strategene) in the recommended ligation reaction. One microliter of the ligation mixture was used per packaging reaction as recommended in the protocol with the Gigapack II XL Packaging Extract (Stratagene, 227711). Phage were plated directly without amplification from the packaging mixture (after dilution with 500μ I of recommended SM buffer and treatment with chloroform). [SM buffer contains (per liter) 5.8 g of $\mathrm{NaCl}, 2 \mathrm{~g}$ of $\mathrm{MgSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, 50 \mathrm{ml}$ of 1 M tris- $\mathrm{HCl}, \mathrm{pH} 7.5$, and 5 ml of a 2 percent solution of gelatin.] The yield was about 2.5×10^{3} plaqueforming units (PFU) per microliter. The amplified library was prepared essentially as above except the λ GEM-12 vector was used. After packaging, about 3.5×10^{4} PFU were plated on the restrictive NM539 host. The lysate was harvested in 2 ml of SM buffer and stored frozen in 7 percent dimethyl sulfoxide The phage titer was approximately $1 \times 10^{9} \mathrm{PFU} / \mathrm{ml}$ 21. M. D. Adams, et al., Nature 368, 474 (1994).
22. A. R. Kerlavage et al., Proceedings of the TwentySixth Annual Hawaii International Conference on System Science (IEEE Computer Society Press, Washington, DC, 1993), p. 585; A. R. Kerlavage et al., IEEE Computers in Medicine and Biology (IEEE Computer Society Press, Washington, DC, in press)
23. M. S. Waterman, Methods Enzymol. 164, 765 (1988).
24. W. Pearson and D. Lipman, Proc. Natl. Acad. Sci. U.S.A. 85, 2444 (1988).
25. Oligonucleotides were labeled by combining 50 pmol of each $20-\mathrm{mer}$ and 250 mCi of $\left[\gamma^{-32} \mathrm{P}\right]$ adenosine triphosphate and T4 polynucleotide kinase. The labeled oligonucleotides were purified with Sephadex G-25 superfine (Pharmacia). A portion containing 10^{7} counts per minute of each was used in a Southern hybridization analysis of H. influenzae Rd chromosomal DNA digested with one frequently cleaving endonuclease (Ase I) and five less-frequent ones (Bgl II, Eco RI, Pst I, Xba I, and Pvu II). The DNA from each digest was fractionated on a 0.7 percent agarose gel and transferred to nylon (Nytran Plus) membranes (Schleicher \& Schuell). Hybridization was carried out for 16 hours at $40^{\circ} \mathrm{C}$. To remove nonspecific signals, we sequentially washed each blot at room temperature with increasingly stringent conditions up to $0.1 \times$ saline sodium citrate and 0.5 percent SDS. Blots were exposed to a Phosphorlmager cassette (Molecular Dynamics) for several hours; hybridization patterns were compared visually.
26. S. Altschul et al., J. Mol. Biol. 215, 403 (1990)
27. E. F. Kirkness et al., Genomics 10, 985 (1991).
28. Standard amplification by polymerase chain reaction (PCR) was performed in the following manner. Each reaction $(57 \mu \mathrm{l})$ contained a $37-\mu$ l mixture of $16.5 \mu \mathrm{l}$ of $\mathrm{H}_{2} \mathrm{O}, 3 \mu \mathrm{l}$ of $25 \mathrm{mM} \mathrm{MgCl}_{2}, 8 \mu \mathrm{l}$ of a dNTP mix (1.25 mM each dNTP), $4.5 \mu \mathrm{l}$ of $10 \times$ PCR core buffer II (Perkin-Elmer N808-0009), and 25 ng of H . influenzae Rd KW20 genomic DNA. The appropriate two primers $(4 \mu \mathrm{l}, 3.2 \mathrm{pmol} / \mu \mathrm{l})$ were added to each reaction. A preliminary incubation (hotstart) was performed at $95^{\circ} \mathrm{C}$ for 5 minutes followed by a $75^{\circ} \mathrm{C}$ hold. During the holding period, Amplitaq DNA polymerase (Perkin-Elmer N801-0060, 0.3μ in 4.3μ l of $\mathrm{H}_{2} \mathrm{O}, 0.5 \mu$ of $10 \times$ PCR core buffer II) was added to each reaction. The PCR profile was 25 cycles of $94^{\circ} \mathrm{C}$ for 45 seconds, then denature; $55^{\circ} \mathrm{C}$ for 1 minute, then aneal; $72^{\circ} \mathrm{C}$ for 3 minutes, then extension. All reactions were performed in a 96 -well format on a Perkin-Elmer GeneAmp PCR System 9600. Long-range PCR was performed as follows: Each reaction contained a $35.2-\mu \mathrm{l}$ mixture of $12.0 \mu \mathrm{l}$ of $\mathrm{H}_{2} \mathrm{O}, 2.2 \mu \mathrm{l}$ of 25 mM magnesium acetate, $4 \mu \mathrm{l}$ of a dNTP mixture ($200 \mu \mathrm{M}$ final concentration), $12.0 \mu \mathrm{l}$ of $3.3 \times$ PCR buffer, and 25 ng of H . influenzae Rd KW20 genomic DNA. The appropriate two primers ($5 \mu \mathrm{l}, 3.2 \mathrm{pmol} / \mu \mathrm{l}$) were added to each reaction. A preliminary incubation (hot start) was performed at
$94^{\circ} \mathrm{C}$ for 1 minute. Then rTth polymerase (PerkinElmer N808-0180) (4 units per reaction) in 2.8μ l of $3.3 \times$ PCR buffer II was added to each reaction. The PCR profile was 18 cycles of $94^{\circ} \mathrm{C}$ for 15 seconds, denature; $62^{\circ} \mathrm{C}$ for 8 minutes, anneal and extend followed by 12 cycles $94^{\circ} \mathrm{C}$ for 15 seconds, denature; $62^{\circ} \mathrm{C}$ for 8 minutes (increase 15 per cycle), anneal and extend; and $72^{\circ} \mathrm{C}$ for 10 minutes, final extension. All reactions were done in a 96 -well format on a Perkin-Elmer GeneAmp PCR System 9600.
29. J. J. Lee, H. O. Smith, R. R. Redfield, J. Bacteriol. 171, 3016 (1989).
30. J. M. Claverie, J. Mol. Biol. 234, 1140 (1993).
31. J. N. Weiser et al., Cell 59, 657 (1989).
32. M. Johnston et al., Science 265, 2077 (1994).
33. B. Lewin, Ed., Genes V (Oxford Univ. Press, New York, 1994), chaps. 18 and 19.
34. M. Borodovsky and J. Mclninch, Comp. Chem. 17, 123 (1993). In the GeneMark program second-order phased Markov chain models were used; it was trained on 188,572 bp of protein coding sequence and $33,118 \mathrm{bp}$ of noncoding sequence as annotated in GenBank H. influenzae entries. It was shown that the second-order program is the most accurate given the size of the training set. The accuracy level was assessed by a cross-validation procedure with a set of 96 -bp nonoverlapping fragments derived from the same sets of sequences. With the use of a threshold of 0.5 , coding fragments were identified correctly in 91.2 percent of the cases; noncoding fragments were identified correctly in 93.3 percent of the cases.
35. D. Brutlag et al., ibid., p. 203. The BLOSUM 60amino acid substitution matrix was used in all pro-tein-protein comparisons [S. Henikoff and J. G. Henikoff, Proc. Natl. Acad. Sci. U.S.A. 89, 10915 (1992)].
36. M. Riley, Microbiol. Rev. 57, 862 (1993).
37. I. R. Dorocicz et al., J. Bacteriol. 175, 7142 (1993); B. Dougherty, unpublished results.
38. R. D. Klein and G. H. Luginbuhl, J. Gen. Microbiol. 113, 409 (1979)
39. D. B. Danner et al., Gene 11, 311 (1980); D. B. Danner et al., Proc. Natl. Acad. Sci. U.S.A. 79, 2393 (1982); M. E. Kahn and H. O. Smith, J. Membr. Biol. 138, 155 (1984).
40. H. O. Smith et al., Science 269, 538 (1995).
41. R. R. Redfield, J. Bacteriol. 173, 5612 (1991); M. S. Chandler, Proc. Natl. Acad. Sci. U.S.A. 89, 1616 (1992); R. Barouki and H. O. Smith, J. Bacteriol. 163, 629 (1985); J.-F. Tomb, H. El-Haji, H. O. Smith, Gene 104, 1 (1991); J.-F. Tomb, Proc. Natl. Acad. Sci. U.S.A. 89, 10252 (1992).
42. J.-F. Tomb, unpublished results.
43. L. M. Albright, E. Huala, F. M. Ausubel, Annu. Rev. Genet. 23, 311 (1989); J. S. Parkinson and E. C. Kofoid, Am. Rev. Genet. 26, 71 (1992).
44. M. S. vanHam, L. vanAlphen, F. R. Mooi, J. P. VanPattern, Mol. Microbiol. 13, 673 (1994).
45. T. Yura et al., Nucleic Acids Res. 20, 3305 (1992); V. Burland et al., Genomics 16, 551 (1993).
46. J. Kyte and R. F. Doolittle, J. Mol. Biol. 157, 105 (1982).
47. Supported in part by a core grant from Human Genome Sciences and an American Cancer Society grant (NP-838C) (to H.O.S.). Reagents for sequencing reactions and the synthesis of the oligonucleotides were a gift from the Applied Biosystems Division of Perkin-Elmer. We thank T. Burcham of Applied Biosystems for his contribution in the development of the TIGR EDITOR software; M. Riley, Marine Biological Laboratory, Woods Hole, for making her E. coli database available; M. Borodovsky and W. Hayes, School of Biology, Georgia Institute of Technology for providing and tuning the GeneMark software for use with H. influenzae; and J. Kelley, T. Dixon, and V. Sapiro for their excellent computer system support. H.O.S. is an American Cancer Society research professor.

16 May 1995; accepted 28 June 1995

[^0]: JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

[^1]: J.-F. Tomb, B. A. Dougherty, and H. O. Smith are with the Johns Hopkins University School of Medicine, Baltimore, MD 21205 , USA. J. M. Merrick is with the State University of New York, Department of Microbiology, Buffalo, NY, 14214, USA. K. McKenney is with the National Institute for Standards and Technology, Gaithersburg, MD 20878, USA. All other authors are with The Institute for Genomic Research (TIGR), Gaithersburg, MD, 20878, USA. The address for TIGR as of 9 September 1995 is 9712 Medical Center Drive, Rockville, MD 20850, USA.
 *Present address: The National Center for Genome Resources, Santa Fe, NM, 87505, USA.
 \dagger To whom correspondence should be addressed

