CompSci 516 Database Systems

Lecture 14 Transactions – Concurrency Control

Instructor: Sudeepa Roy

Announcements (Tues 2/22)

- Midterm grades and exams on gradescope
 - Sample solution on sakai
 - Contact us if you have questions
- HW2-part 1 due next week 3/1
 - One group submission per pair is needed
 - Part 2 (on cloud) will be released later if we have time due to change in AWS setups

Reading Material

• [RG]

- Chapter 17.5.1, 17.5.3, 17.6
- [GUW]
 - Chapter 18.8, 18.9
 - Today's examples are from GUW (lecture slides will be sufficient for this class and exams)

Acknowledgement:

The following slides have been created adapting the instructor material of the [RG] book provided by the authors Dr. Ramakrishnan and Dr. Gehrke.

Today's topics

- Optimistic concurrency control (17.6.1) Timestamp-based concurrency control (17.6.2)
- Multi-version concurrency control (17.6.3)
- Dynamic databases and Phantom problem (17.5.1)
- Multiple—granularity locking (17.5.3)

Approaches to CC other than locking

Approaches to Concurrency Control (CC)

- Lock-based CC
 - (so far)
- Optimistic CC
 - Today
 - overview only
- Time-stamp-based CC
 - today
- Multi-version CC
 - today

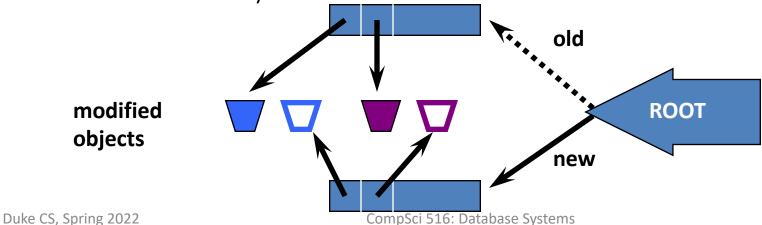
uses "timestamps" in some way

Timestamp

- Each transaction gets a unique timestamp
- e.g.
 - system's clock value when it is issued by the scheduler (assume one transactions issued on one tick of the clock)
 - or a unique number given by a counter (incremented after each transaction)
- Basic idea:
 - Timestamps should enforce the <u>unique</u> equivalent serial schedule
 - If TS(T1) > TS(T2), in the equivalent serial schedule T1 should appear after T2
 - Whenever violated, ABORT

Locking is a "pessimistic or conservative" approach to CC

- Locking is a conservative approach in which conflicts are prevented
- Either uses "blocking" (delay) or abort
 - note the several usages of a "block"!
- Disadvantages of locking:
 - Lock management overhead
 - Deadlock detection/resolution
 - Lock contention for heavily used objects
- If only light contention for data objects, still the overhead of following a locking protocol is paid


(1) Optimistic CC

Optimistic CC (or Kung-Robinson approach)

 If conflicts are rare, we might be able to gain concurrency by not locking, and instead checking for conflicts before transactions commit

Optimistic CC

- Transactions have three phases:
 - 1. **READ (R):** Read from the database, but make changes to "private copies" of objects (assume private workspace)
 - 2. VALIDATE (V): When decide to commit, also check for conflicts with concurrently executing transactions
 - if a possible conflict, abort, clear private workspace, restart
 - **3.** WRITE (W): If no conflict, make local copies of changes public (copy them into the database)

What does Validation do?

- To validate T₂, for each committed transactions T₁ such that TS(T₁) < TS(T₂), one of the validation tests must be satisfied
- Validation ensures no RW, WR, WW conflicts, e.g.,
 - T1 completes all R, V, W before T2 starts
 - Or, T1 completes before W of T2 starts, and T2 does not read anything that T1 writes
 - Or, T1 completes its R before T2 starts its R, and T2 does not read/write anything that T1 writes
 R = READ V = Validation W = WRITE
- Overhead:
 - Some parts have to be in "critical section" without other transactions
 - Need to maintain objects that are read/written by each transactions
 - If validation fails, need to restart, lost work

Optimistic CC vs locking

- If there are few conflicts and validation is efficient
 - optimistic CC is better than locking

- If many conflicts
 - cost of repeatedly restarting transactions hurts performance significantly

Start of Lecture 15

(2) Timestamp-based CC

Timestamp CC

Main Idea:

- Give each transaction T
 - a unique timestamp TS(T) when it begins
 - Later transactions get higher timestamps

• Give each object O

- a read-timestamp RT(O) -- largest timestamp of the transactions that read O
- a write-timestamp WT(O) -- largest timestamp of the transactions that wrote to O
- a Commit bit C(O): whether the last transaction writing O has committed
 - RG uses RTS/WTS, GUW uses RT/WT, either of these is fine

• If

- action ai of Ti conflicts with action aj of Tj,
- and TS(Ti) < TS(Tj)</p>
- then
 - ai must occur before aj
- Otherwise, abort and restart violating transaction

Request for a read: R_T(X)

- 1. If $TS(T) \ge WT(X)$
 - last written by a previous transaction OK (i.e., "physically realizable")
 - If C(X) is true check if previous transaction has committed
 - Grant the read request by T
 - if TS(T) > RT(X)
 - set RT(X) = TS(T)
 - If C(X) is false
 - Delay T until C(X) becomes true, or the transaction that wrote X aborts
- 2. If TS(T) < WT(X)
 - write is not realizable
 - Abort (or, Rollback) T

-- already written by a later trans.

--*i.e.,* abort and restart with a larger timestamp

Request for a write: W_T(X)

- 1. If $TS(T) \ge RT(X)$ and $TS(T) \ge WT(X)$
 - last written/read by a previous transaction OK
 - Grant the write request by T
 - write the new value of X
 - Set WT(X) = TS(T)
 - Set C(X) = false -- T not committed yet, set to true when T commits
- 2. If $TS(T) \ge RT(X)$ but $TS(T) \le WT(X)$
 - write is still realizable
 --but already a later value in X
 - If C(X) is true
 - previous writer of X has committed
 - simply ignore the write request by T
 - but allow T to proceed without making changes to the database
 - If C(X) is false
 - Delay T until C(X) becomes true, or the transaction that wrote X aborts
- If TS(T) < RT(X)
 - write is not realizable
- -- already read by a later transaction
- Abort (or, Rollback) T

Example

- Three transactions T1 (TS = 200), T2 (TS = 150), T3 (TS = 175)
- Three objects A, B, D

— initially all have RT = WT = 0, C = 1 (i.e., true)

• Sequence of actions

 $- R_1(B), R_2(A), R_3(D), W_1(B), W_1(A), W_2(D), W_3(A)$

- Q. What is the state of the database at the end if the timestamp-based CC protocol is followed
 - i.e. report the RT, WT, C

Initial condition and Steps

Step	T1	T2	Т3	А	В	D
	200	150	175	RT = 0, WT = 0, C = 1	RT = 0, WT = 0, C = 1	RT = 0, WT = 0, C = 1
1	R ₁ (B)					
2		R ₂ (A)				
3			R ₃ (D)			
4	W ₁ (B)					
5	W ₁ (A)					
6		W ₂ (D)				
7			W ₃ (A)			

WT of B is <= TS(T₁) C = 1 Read OK.

Step	T1	T2	Т3	А	В	D
	200	150	175	RT = 0, WT = 0, C = 1	RT = 200, WT = 0, C = 1	RT = 0, WT = 0, C = 1
1	R ₁ (B)				RT=200	
2		R ₂ (A)				
3			R ₃ (D)			
4	W ₁ (B)					
5	W ₁ (A)					
6		W ₂ (D)				
7			W ₃ (A)			

WT of A is <= TS(T₂) C = 1 Read OK.

Step	T1	T2	Т3	А	В	D
	200	150	175	RT = 150 , WT = 0, C = 1	RT = 200, WT = 0, C = 1	RT = 0, WT = 0, C = 1
1	R ₁ (B)				RT=200	
2		R ₂ (A)		RT=150		
3			R ₃ (D)			
4	W ₁ (B)					
5	W ₁ (A)					
6		W ₂ (D)				
7			W ₃ (A)			

WT of D is <= TS(T₃) C = 1 Read OK.

Step	T1	T2	Т3	А	В	D
	200	150	175	RT = 150, WT = 0, C = 1	RT = 200, WT = 0, C = 1	RT = 175 , WT = 0, C = 1
1	R ₁ (B)				RT=200	
2		R ₂ (A)		RT=150		
3			R ₃ (D)			RT=175
4	W ₁ (B)					
5	W ₁ (A)					
6		W ₂ (D)				
7			W ₃ (A)			

Note the change in C bit as T2 has not committed yet

WT & RT of B is $\leq TS(T_1)$ Write OK.

Step	T1	T2	Т3	А	В	D
	200	150	175	RT = 150, WT = 0, C = 1	RT = 200, WT = 200 C = 0	RT = 175, WT = 0, C = 1
1	R ₁ (B)				RT=200	
2		R ₂ (A)		RT=150		
3			R ₃ (D)			RT=175
4	W ₁ (B)				WT=200 C=0	
5	W ₁ (A)					
6		W ₂ (D)				
7			W ₃ (A)			

Note the change in C bit as T1 has not committed yet

RT & WT of A <= TS(T₁) Write ok.

Step	T1	T2	Т3	А	В	D
	200	150	175	RT = 150 WT = 200 C = 0	RT = 200 WT = 200 C = 0	RT = 175 WT = 0 C = 1
1	R ₁ (B)				RT=200	
2		R ₂ (A)		RT=150		
3			R ₃ (D)			RT=175
4	W ₁ (B)				WT=200 C=0	
5	W ₁ (A)			WT=200 C=0		
6		W ₂ (D)				
7			W ₃ (A)			

Object D has been read by a later transaction - abort

RT(D) = 175 < 150 = TS(T₂) Abort T₂

Step	T1	T2	Т3	А	В	D
	200	150	175	RT = 150 WT = 200 C = 0	RT = 200 WT = 200 C = 0	RT = 175 WT = 0 C = 1
1	R ₁ (B)				RT=200	
2		R ₂ (A)		RT=150		
3			R ₃ (D)			RT=175
4	W ₁ (B)				WT=200 C=0	
5	W ₁ (A)			WT=200 C=0		
6		W ₂ (D) Abort				
7			W ₃ (A)			

Delay until T1 commits or aborts

After Step 7

 $RT(A) \le TS(T_3) - write ok$ $WT(A) > TS(T_3) and C(A) = 0$ **Delay T₃**

Step	T1	T2	Т3	А	В	D
	200	150	175	RT = 150 WT = 200 C = 0	RT = 200 WT = 200 C = 0	RT = 175 WT = 0 C = 1
1	R ₁ (B)				RT=200	
2		R ₂ (A)		RT=150		
3			R ₃ (D)			RT=175
4	W ₁ (B)				WT=200 C=0	
5	W ₁ (A)			WT=200 C=0		
6		W ₂ (D) Abort				
7			W ₃ (A) Delay			

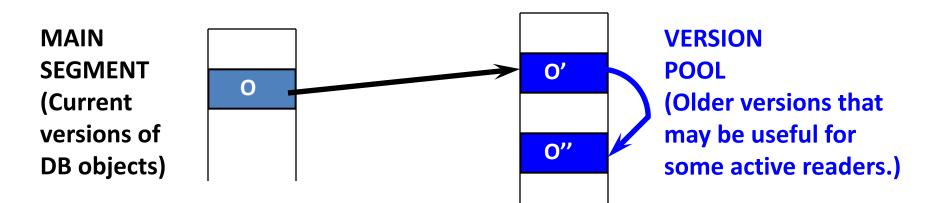
Thomas Write Rule

- If a write request comes from T on O, TS(T) < WT(O), and TS(T) >= RT(O)
 - violates timestamp order of T w.r.t. writer of O
 - i.e., O has been written by a later transaction T2

Thomas Write Rule:

- If C(O) = true, we can safely ignore such outdated writes by T
 - Otherwise "delay/block" to check whether T2 commits eventually
- no need to restart T
 - T's write is effectively followed by another write with no intervening reads
- Allows some serializable, but not conflict serializable schedules (see example in Lec 13 slides)

(3) Multiversion CC


Another approach to CC

• Multiversion CC

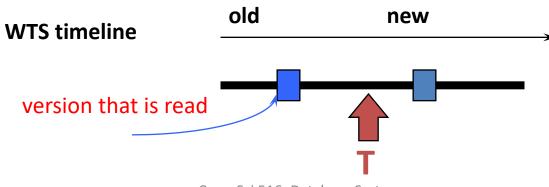
- another way of using timestamps
- ensures that a transaction never has to be restarted (aborted) to read an object
 - unlike timestamp-based CC
- The idea is to make several copies of each DB object
 - each copy of each object has a write timestamp
- Ti reads the most recent version whose timestamp precedes TS(Ti)

Multiversion CC

 Idea: Let "writers" make a "new" copy while "readers" use an appropriate "old" copy:

Readers are always allowed to proceed

- But may be "blocked" until writer commits.


Multiversion CC (Contd.)

- Each version of an object has
 - its writer's TS as its WT, and
 - the timestamp of the transaction that most recently read this version as its RT
- Versions are chained backward
 - we can discard versions that are "too old to be of interest"
- Each transaction is classified as Reader or Writer.
 - Writer may write some object; Reader never will
 - Transaction declares whether it is a Reader when it begins

Reader Transaction

See example first And read yourself

- For each object to be read:
 - Finds newest version with WT < TS(T)</p>
 - Starts with current version in the main segment and chains backward through earlier versions
 - Update RT if necessary (i.e., if TS(T) > RT, then RT = TS(T))
- Assuming that some version of every object exists from the beginning of time, Reader transactions are never restarted
 - However, might block until writer of the appropriate version commits

CompSci 516: Database Systems

Writer Transaction

- To read an object, follows reader protocol
- To write an object:
 - must make sure that the object has not been read by a "later" transaction
 - Finds newest version V s.t. $WT(V) \le TS(T)$.
- If RT(V) <= TS(T)
 - T makes a copy CV of V, with a pointer to V, with WT(CV) = TS(T), RT(CV) = TS(T)
 - Write is buffered until T commits; other transactions can see TS values but can't read version CV
- Else
 - reject write

Example

- Four transactions T1 (TS = 150), T2 (TS = 200), T3 (TS = 175), T4(TS = 225)
- One object A

 Initial version is A₀
- Sequence of actions

 R₁(A), W₁(A), R₂(A), W₂(A), R₃(A), R₄(A)
- Q. What is the state of the database at the end if the multiversion CC protocol is followed

Initial condition and Steps

A₀ existed before the transactions started

Step	T1	T2	Т3	T4	A ₀	
	150	200	175	225	RT=0, WT=0	
1	R ₁ (A)					
2	W ₁ (A)					
3		R ₂ (A)				
4		W ₂ (A)				
5			R ₃ (A)			
6				R ₄ (A)		

A₀ is the newest version with WT <= TS(T₁) Read A₀

Step	T1	T2	Т3	T4	A ₀	
	150	200	175	225	RT=0, WT=0	
1	R ₁ (A)				Read RT = 150	
2	W ₁ (A)					
3		R ₂ (A)				
4		W ₂ (A)				
5			R ₃ (A)			
6				R ₄ (A)		

- A₀ is the newest version with WT <= TS(T₁)
- RT(A₀) <= TS(T₁)
- Create a new version A₁₅₀
- Set its WT, RT to TS(T₁) = 150 (A₁₅₀ named accordingly)

Step	T1	T2	Т3	Т4	A ₀	A ₁₅₀	
	150	200	175	225	RT=150 WT=0	RT=150 WT=150	
1	R ₁ (A)				Read RT = 150		
2	W ₁ (A)					Create RT=150 WT=150	
3		R ₂ (A)					
4		W ₂ (A)					
5			R ₃ (A)				
6				R ₄ (A)			

- A₁₅₀ is the newest version with WT <= TS(T₂)
- Read A₁₅₀
- Update RT

Step	T1	T2	Т3	T4	A ₀	A ₁₅₀	
	150	200	175	225	RT=150 WT=0	RT=200 WT=150	
1	R ₁ (A)				Read		
2	W ₁ (A)					Create RT=150 WT=150	
3		R ₂ (A)				Read RT=200	
4		W ₂ (A)					
5			R ₃ (A)				
6				R ₄ (A)			

- A₁₅₀ is the newest version with WT <= TS(T₂)
- RT(A₁₅₀) <= TS(T₂)
- Create a new version A₂₀₀
- Set its WT, RT to TS(T₂) = 200 (A₂₀₀ named accordingly)

Step	T1	T2	Т3	T4	A ₀	A ₁₅₀	A ₂₀₀
	150	200	175	225	RT=150 WT=0	RT=200 WT=150	RT=200 WT=200
1	R ₁ (A)				Read		
2	W ₁ (A)					Create RT=150 WT=150	
3		R ₂ (A)				Read RT=200	
4		W ₂ (A)					Create RT=200 WT=200
5			R ₃ (A)				
6				R ₄ (A)			

- A₁₅₀ is the newest version with WT <= TS(T₃)
- Read A₁₅₀
- DO NOT Update RT

Step	T1	T2	Т3	T 4	A ₀	A ₁₅₀	A ₂₀₀
	150	200	175	225	RT=150 WT=0	RT=200 WT=150	RT=200 WT=200
1	R ₁ (A)				Read		
2	W ₁ (A)					Create RT=150 WT=150	
3		R ₂ (A)				Read RT=200	
4		W ₂ (A)					Create RT=200 WT=200
5			R ₃ (A)			Read	
6				R ₄ (A)			

- A₂₀₀ is the newest version with WT <= TS(T₄)
- Read A₂₀₀
- Update RT

Step	T1	T2	Т3	T4	A ₀	A ₁₅₀	A ₂₀₀
	150	200	175	225	RT=150 WT=0	RT=200 WT=150	RT=225 WT=200
1	R ₁ (A)				Read		
2	W ₁ (A)					Create RT=150 WT=150	
3		R ₂ (A)				Read RT=200	
4		W ₂ (A)					Create RT=200 WT=200
5			R ₃ (A)			Read	
6				R ₄ (A)			Read RT=225

Dynamic Database and Phantom Problem

Dynamic Databases

• If we relax the assumption that the DB is a fixed collection of objects

 Then even Strict 2PL will not assure serializability

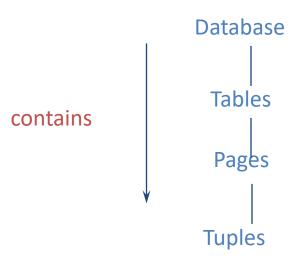
 causes "Phantom Problem" in dynamic databases

Example: Phantom Problem

- T1 wants to find oldest sailors in rating levels 1 and 2
 - Suppose the oldest at rating 1 has age 71
 - Suppose the oldest at rating 2 has age 80
 - Suppose the second oldest at rating 2 has age 63
- Another transaction T2 intervenes:
 - Step 1: T1 locks all pages containing sailor records with rating = 1, and finds oldest sailor (age = 71)
 - Step 2: Next, T2 inserts a new sailor onto a new page (rating = 1, age = 96)
 - Step 3: T2 locks pages with rating = 2, deletes oldest sailor with rating = 2 (age = 80), commits, releases all locks
 - Step 4: T1 now locks all pages with rating = 2, and finds oldest sailor (age = 63)
- No consistent DB state where T1 is "correct"
 - T1 found oldest sailor with rating = 1 before modification by T2
 - T1 found oldest sailor with rating = 2 after modification by T2

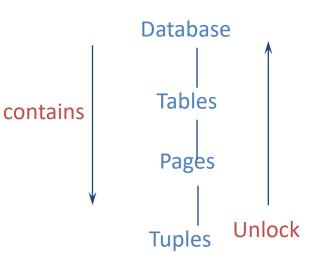
Sailors(<u>sid</u>, name, age, rating) S4, Bob, 71, 1 S7, Mary, 80, 2 S3, Alice, 63, 2

S5, Ken, 96, 1 New by T2


What was the problem?

- Conflict serializability guarantees serializability only if the set of objects is fixed
 - T1 implicitly and incorrectly assumed that it has locked the set of all sailor records with rating = 1
- Solution to Phantom Problem
 - Index locking: Lock the index, no new rating = 1 records can be inserted
 - predicate locking: Lock on "predicate" (any condition) like "rating = 1"
 more flexible but more expensive than index locking

Multiple-granularity Locking


DB "Objects" may contain other objects

- A DB contains several files
- A file is a collection of pages
- A page is a collection of records/tuples

Carefully choose lock granularity

- If a transaction needs most of the pages
 - set a lock on the entire file, reduces locking overhead
- If only a few pages are needed
 - lock only those pages
- Need to efficiently ensure no conflicts
 - e.g., a page should not be locked by T1 if T2 already holds the lock on the file
- Acquire "intention locks" on all the ancestors before locking an item
 - Conflicts with lock requests
 - Unlock bottom-up (tuple-> pages->..)

Transaction in SQL

- SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED [;]
- BEGIN TRANSACTION
- <.... SQL STATEMENTS>
- COMMIT or ROLLBACK
- Four isolation levels : performance and serializability

	Dirty Read	Unrepeatable Read	Phantom
READ UNCOMMITTED	Maybe	Maybe	Maybe
READ COMMITTED	No	Maybe	Maybe
REPEATABLE READS	No	No	Maybe
SERIALIZABLE	No	No	No

Summary

- Note the key ideas for three timestamp-based alternative approaches (to Lock-based approaches) to CC
 - Optimistic: validation tests
 - Timestamp: RT(O) & WT(O) on each object O
 - Multiversion: multiple versions of each object O with different WT and RT
- Note: a new action (block or delay) in addition to commit or abort
- "Phantom Problem" and why serializability/2PL fails
- New requirements and mechanisms for multiple-granularity locks