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Announcements (Tues 2/22)

 Midterm grades and exams on gradescope
— Sample solution on sakai
— Contact us if you have questions

e HW2-part 1 due next week 3/1

— One group submission per pair is needed

— Part 2 (on cloud) will be released later if we have time due
to change in AWS setups
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Reading Material

* [RG]
— Chapter 17.5.1,17.5.3,17.6
e [GUW]

— Chapter 18.8, 18.9

— Today’s examples are from GUW (lecture slides will be sufficient for this class
and exams)

Acknowledgement:
The following slides have been created adapting the

instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.
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Today’s topics

e Optimistic concurrency control (17.6.1)
Timestamp-based concurrency control
(17.6.2)

* Multi-version concurrency control (17.6.3)

* Dynamic databases and Phantom problem
(17.5.1)

 Multiple—granularity locking (17.5.3)
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Approaches to CC
other than locking
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Approaches to
Concurrency Control (CC)

* Lock-based CC
— (so far)
* Optimistic CC _—
— Today
— overview only
* Time-stamp-based CC
— today
* Multi-version CC
— today

= yses “timestamps” in some way

—
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Timestamp

* Each transaction gets a unique timestamp

* e.g.
— system’s clock value when it is issued by the scheduler (assume
one transactions issued on one tick of the clock)

— or a unique number given by a counter (incremented after each
transaction)

e Basicidea:

— Timestamps should enforce the unique equivalent serial
schedule

— If TS(T1) > TS(T2), in the equivalent serial schedule T1 should
appear after T2

— Whenever violated, ABORT
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Locking is a “pessimistic or
conservative” approach to CC

* Locking is a conservative approach in which conflicts are
prevented

e Either uses “blocking” (delay) or abort
— note the several usages of a “block”!

* Disadvantages of locking:
— Lock management overhead
— Deadlock detection/resolution
— Lock contention for heavily used objects

If only light contention for data objects, still the overhead
of following a locking protocol is paid

Duke CS, Spring 2022 CompSci 516: Database Systems



(1) Optimistic CC
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Optimistic CC (or Kung-Robinson approach)

* |f conflicts are rare, we might be able to gain
concurrency by not locking, and instead
checking for conflicts before transactions
commit
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OptImIStIC CC Overview only

Transactions have three phases:

1. READ (R): Read from the database, but make changes to ”private copies”
of objects (assume private workspace)

2. VALIDATE (V): When decide to commit, also check for conflicts with
concurrently executing transactions

» if a possible conflict, abort, clear private workspace, restart

3. WRITE (W): If no conflict, make local copies of changes public (copy them

into the database)
T- v oo

*

modified ' U '

objects
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What does Validation do?

To validate T, for each committed transactions T, such that
TS(T,) < TS(T,), one of the validation tests must be satisfied

Validation ensures no RW, WR, WW conflicts, e.g.,
— T1 completes all R, V, W before T2 starts
— Or, T1 completes before W of T2 starts, and T2 does not read anything that T1 writes

— Or, T1 completes its R before T2 starts its R, and T2 does not read/write anything that
T1 writes

R =READ V = Validation W = WRITE

Overhead:

— Some parts have to be in “critical section” without other transactions
— Need to maintain objects that are read/written by each transactions
— |If validation fails, need to restart, lost work
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End of Lecture 14

Optimistic CC vs locking

e |f there are few conflicts and validation is
efficient

— optimistic CC is better than locking

* |f many conflicts

— cost of repeatedly restarting transactions hurts
performance significantly



Start of Lecture 15

(2) Timestamp-based CC
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Timestamp CC

Main Idea:

 Give each transaction T
— aunique timestamp TS(T) when it begins
— Later transactions get higher timestamps

* Give each object O
— aread-timestamp RT(O) -- largest timestamp of the transactions that read O
— a write-timestamp WT(O) -- largest timestamp of the transactions that wrote to O

— a Commit bit C(O): whether the last transaction writing O has committed
* RG uses RTS/WTS, GUW uses RT/WT, either of these is fine

e |f
— action ai of Ti conflicts with action aj of Tj,
— and TS(Ti) < TS(T))
* then
— ai must occur before aj
e Otherwise, abort and restart violating transaction
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See example first

Request for a read: Ry(X) andreadyourser

1. IfTS(T) >= WT(X)
— last written by a previous transaction — OK (i.e., “physically
realizable”)

— If C(X) is true — check if previous transaction has committed
. Grant the read request by T
e if TS(T) > RT(X)
— set RT(X) = TS(T)
— If C(X) is false
. Delay T until C(X) becomes true, or the transaction that wrote X aborts

2. 1fFTS(T) < WT(X)

— write is not realizable -- already written by a later trans.
— Abort (or, Rollback) T --i.e., abort and restart with a larger
timestamp
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See example first

Request for a write: W (X) e

1. If TS(T) >= RT(X) and TS(T) >= WT(X)
— last written/read by a previous transaction — OK
— Grant the write request by T

. write the new value of X
—  Set WT(X) =TS(T)
— Set C(X) = false -- T not committed yet, set to true when T commits
2. If TS(T) >= RT(X) but TS(T)< WT(X)
— write is still realizable —but already a later value in X
— If C(X) is true
. previous writer of X has committed
. simply ignore the write request by T
. but allow T to proceed without making changes to the database
— If C(X) is false
. Delay T until C(X) becomes true, or the transaction that wrote X aborts
e IfTS(T) < RT(X)
— write is not realizable -- already read by a later transaction

—  Abort (or, Rollback) T
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Exa m p I e Example from GUW book

Three transactions T1 (TS = 200), T2 (TS = 150), T3 (TS = 175)

Three objects A, B, D
— initially all have RT=WT =0, C=1 (i.e., true)

Sequence of actions
_ Rl(B)I RZ(A); R3(D)I Wl(B)I Wl(A)I WZ(D); W3(A)

Q. What is the state of the database at the end if the
timestamp-based CC protocol is followed

— i.e. report the RT, WT, C
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Initial condition and Steps

Step
200 150 175 RT =0, RT =0, RT =0,
WT=0, | WT=0, | WT=0,
C=1 C=1 C=1
1 R1(B)
2 Ra(A)
3 R5(D)
4 W,(B)
5 Wi(A)
6 W,(D)
7 W;3(A)
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After Step 1

WT of B is <= TS(T,)

C=1
Read OK.
Step B
200 150 175 RT=0, |RT=200,| RT=0,
WT=0, | WT=0, | WT=0,
C=1 C=1 C=1
1 R1(B) RT=200
2 Ra(A)
3 R5(D)
4 W,(B)
5 Wi(A)
6 W,(D)
7 W;3(A)
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After Step 2

WT of A is <= TS(T,)

C=1
Read OK.
Step B
200 150 175 RT =150, | RT=200,| RT=0,
WT=0, | WT=0, | WT=0,
C=1 C=1 C=1
1 R1(B) RT=200
2 R,(A) RT=150
3 R5(D)
4 W,(B)
5 Wi(A)
6 W,(D)
7 W;3(A)
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After Step 3

WT of D is <= TS(T5)

C=1
Read OK.
Step B D
200 150 175 RT =150, | RT =200, | RT =175,
WT=0, | WT=0, | WT=0,
C=1 C=1 C=1
1 R1(B) RT=200
2 R,(A) RT=150
3 R5(D) RT=175
4 W,(B)
5 Wi(A)
6 W,(D)
7 W;3(A)
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After Step 4

Note the change in C bit

as T2 has not committed yet

WT & RT of B is <= TS(T,)

Write OK.
Step B
200 150 175 RT = 150, | RT =200, | RT =175,
WT=0, | WT=200| WT=0,
C=1 C=0 C=1
1 R1(B) RT=200
2 R,(A) RT=150
3 R5(D) RT=175
4 W,(B) WT=200
C=0

5 W, (A)
6 W,(D)
7 W3(A)
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After Step 5

Note the change in C bit

as T1 has not committed yet

RT & WT of A <= TS(T,)

Write ok.
Step ]
200 150 175 RT =150 RT=200 | RT=175
WT =200 | WT =200 WT=0
C=0 C=0 C=1
1 R1(B) RT=200
2 R,(A) RT=150
3 Rs3(D) RT=175
4 W,(B) WT=200
C=0
5 W, (A) WT=200
C=0
6 W,(D)
7 W;(A)

Duke CS, Spring 2022
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Object D has been read by

Afte r Ste p 6 a later transaction - abort

RT(D) = 175 < 150 = TS(T,)

Abort T,
Step ]
200 150 175 RT=150 | RT=200 | RT=175
WT=200 | WT=200| WT=0
C=0 C=0 C=1
1 R1(B) RT=200
2 R,(A) RT=150
3 R;(D) RT=175
4 W,(B) WT=200
C=0
5 W, (A) WT=200
C=0
6 W,(D)
Abort
7 W5(A)
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Delay until T1 commits or aborts

Afte I Ste p 7 RT(A) <= TS(T3) — write ok

WT(A) > TS(Ts) and C(A) = 0

Delay T;
Step T1 T2 T3 A ] D
200 150 175 RT=150 | RT=200 | RT=175
WT=200 | WT=200| WT=0
C=0 C=0 C=1
1 R1(B) RT=200
2 R,(A) RT=150
3 R;(D) RT=175
4 W,(B) WT=200
C=0
5 W,(A) WT=200
C=0
6 W,(D)
Abort
7 W;(A)
Delay
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Thomas Write Rule

* If a write request comes from T on O, TS(T) < WT(O), and
TS(T) >= RT(O)
— violates timestamp order of T w.r.t. writer of O
— i.e., O has been written by a later transaction T2

Thomas Write Rule:
e |If C(O) =true, we can safely ignore such outdated writes by T
— Otherwise “"delay/block” to check whether T2 commits eventually

* noneedtorestartT

— T’s write is effectively followed by another write with no intervening
reads

* Allows some serializable, but not conflict serializable
schedules (see example in Lec 13 slides)
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Another approach to CC

* Multiversion CC
— another way of using timestamps

— ensures that a transaction never has to be restarted (aborted) to read
an object
e unlike timestamp-based CC

 The idea is to make several copies of each DB object
— each copy of each object has a write timestamp

* Tireads the most recent version whose timestamp precedes
TS(Ti)

Duke CS, Spring 2022 CompSci 516: Database Systems
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Multiversion CC

* |dea: Let “writers” make a “new” copy while
“readers” use an appropriate “old” copy:

MAIN VERSION

SEGMENT POOL

(Current (Older versions that
versions of may be useful for

DB objects) some active readers.)

Readers are always allowed to proceed

- But may be “blocked” until writer commits.
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Multiversion CC (Contd.)  sceeemelefis

And read yourself

e Each version of an object has

— its writer’s TS as its WT, and

— the timestamp of the transaction that most recently read this
version as its RT

 Versions are chained backward
— we can discard versions that are “too old to be of interest”

e Each transaction is classified as Reader or Writer.
— Writer may write some object; Reader never will
— Transaction declares whether it is a Reader when it begins
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Reader Transactlon See example first

And read yourself

* For each object to be read:
— Finds newest version with WT < TS(T)

— Starts with current version in the main segment and chains
backward through earlier versions

— Update RT if necessary (i.e., if TS(T) > RT, then RT = TS(T))

* Assuming that some version of every object exists from the
beginning of time, Reader transactions are never restarted

— However, might block until writer of the appropriate version

commits
WTS timeline old new >
version thaw
T
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See example first

erte r Tra NSa Ctio N  Andread yourself

To read an object, follows reader protocol
To write an object:

— must make sure that the object has not been read by a "later” transaction
— Finds newest version V s.t. WT(V) <= TS(T).
If RT(V) <= TS(T)
— T makes a copy CV of V, with a pointerto V,
with WT(CV) = TS(T), RT(CV) = TS(T)

— Write is buffered until T commits; other transactions can see TS values but
can’t read version CV

Else
— reject write
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Example

* Four transactions T1 (TS = 150), T2 (TS = 200), T3 (TS =
175), T4(TS = 225)

* One object A
— Initial version is A,

e Sequence of actions
_ Rl(A)/ Wl(A)/ RZ(A)/ WZ(A)I RB(A)r R4(A)

e Q. What s the state of the database at the end if the
multiversion CC protocol is followed
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Initial condition and Steps

A, existed before the transactions started

Step T1 T2 T3 T4 Ao
150 200 175 225 RT=0,
WT=0

1 R1(A)

2 W3 (A)

3 R,(A)

4 W, (A)

5 R3(A)

6 R4(A)
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After Step 1

A, is the newest version with WT <= TS(T,)

Read A,
Step T1 T2 LE’ T4 Ay
150 200 175 225 RT=0,
WT=0
1 Ri(A) Read
RT = 150
2 Wi(A)
3 Ra(A)
4 W,(A)
5 R3(A)
6 Ra(A)

Duke CS, Spring 2022
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After Step 2

* Apisthe newest version with WT <= TS(T,)

* RT(Ap) <=TS(T,)

* Create a new version Az

e Setits WT, RT to TS(T) = 150 (A5, named accordingly)

Step T1 T2 LE’ T4 A, A;so
150 200 175 225 RT=150 RT=150
WT=0 WT=150
1 R1(A) Read
RT =150
2 W, (A) Create
RT=150
WT=150
3 Ra2(A)
4 W,(A)
5 R3(A)
6 Ra(A)
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After Step 3

A1so is the newest version with WT <= TS(T,)

* Read A150
 Update RT
Step T2 T3
150 200 175 225 RT=150 | RT=200
WT=0 | WT=150
1 Ri(A) Read
2 W (A) Create
RT=150
WT=150
3 R,(A) Read
RT=200
4 W, (A)
5 R3(A)
6 Ra(A)

Duke CS, Spring 2022
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After Step 4

A1sg is the newest version with WT <= TS(T,)
* RT(As50) <=TS(Ty)
* Create a new version A,
e Setits WT, RT to TS(T,) = 200 (A,9o named accordingly)

Step
150 200 175 225 RT=150 | RT=200 RT=200
WT=0 | WT=150 | WT=200
1 R1(A) Read
2 W(A) Create
RT=150
WT=150
3 R,(A) Read
RT=200
4 W,(A) Create
RT=200
WT=200
5 R3(A)
6 R4(A)
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After Step 5

A1sg is the newest version with WT <= TS(T5;)
Read A150
DO NOT Update RT

Step
150 200 175 225 RT=150 | RT=200 RT=200
WT=0 | WT=150 | WT=200
1 R1(A) Read
2 W(A) Create
RT=150
WT=150
3 R,(A) Read
RT=200
4 W,(A) Create
RT=200
WT=200
5 R5(A) Read
6 R4(A)

Duke CS, Spring 2022

CompSci 516: Database Systems

40



After Step 6

A,qo is the newest version with WT <=TS(T,)

* Read Azoo
 Update RT
Step T1 T2 LE] T4 A, A5 Asoo
150 200 175 225 RT=150 | RT=200 RT=225
WT=0 | WT=150 | WT=200
1 R1(A) Read
2 W (A) Create
RT=150
WT=150
3 R,(A) Read
RT=200
4 W,(A) Create
RT=200
WT=200
5 R;(A) Read
6 R4(A) Read
RT=225

Duke CS, Spring 2022
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Dynamic Database
and Phantom Problem
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Dynamic Databases

* |f we relax the assumption that the DB is a fixed
collection of objects

e Then even Strict 2PL will not assure
serializability

e causes "Phantom Problem” in dynamic
databases
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Example: Phantom Problem

Sailors(sid, name, age, rating)

 T1 wants to find oldest sailors in rating levels 1 and 2
— Suppose the oldest at rating 1 has age 71 S4,Bob, 71, 1

— Suppose the oldest at rating 2 has age 80
S7, Mary, 80, 2 Removed by T2

— Suppose the second oldest at rating 2 has age 63 $3, Alice, 63, 2

* Another transaction T2 intervenes: S5, Ken, 96, 1 New by T2

— Step 1: T1 locks all pages containing sailor records with rating = 1, and finds oldest
sailor (age = 71)

— Step 2: Next, T2 inserts a new sailor onto a new page (rating = 1, age = 96)

— Step 3: T2 locks pages with rating = 2, deletes oldest sailor with rating = 2 (age = 80),
commits, releases all locks

— Step 4: T1 now locks all pages with rating = 2, and finds oldest sailor (age = 63)

 No consistent DB state where T1 is “correct”
— T1 found oldest sailor with rating = 1 before modification by T2
— T1 found oldest sailor with rating = 2 after modification by T2
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What was the problem?

Conflict serializability guarantees serializability only if the set
of objects is fixed

— T1 implicitly and incorrectly assumed that it has locked the set of all
sailor records with rating =1

Solution to Phantom Problem

— Index locking: Lock the index, no new rating = 1 records can be
inserted

— predicate locking: Lock on “predicate” (any condition) like “rating = 1”
— more flexible but more expensive than index locking
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Multiple-granularity Locking
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DB “Objects” may contain other obj

* A DB contains several files
* Afile is a collection of pages
* A page is a collection of records/tupl

ects

es

Database

_ Tabl
contains

Pag

es

2S

Tuples
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Carefully choose lock granularity

* If atransaction needs most of the pages
— set a lock on the entire file, reduces locking

overhead Database X
* If only a few pages are needed
— lock only those pages contains fables
* Need to efficiently ensure no conflicts Pages
— e.g., a page should not be locked by T1 if T2 \
already holds the lock on the file Tuples Unlock

* Acquire “intention locks” on all the
ancestors before locking an item

— Conflicts with lock requests
— Unlock bottom-up (tuple-> pages->..)
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Transaction in SQL

e SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED [; ]
*  BEGIN TRANSACTION

* <...SQL STATEMENTS>

e COMMIT or ROLLBACK

* Fourisolation levels : performance and serializability

Dirty Read Unrepeatable
Read

READ UNCOMMITTED Maybe Maybe Maybe
READ COMMITTED No Maybe Maybe
REPEATABLE READS No No Maybe
SERIALIZABLE No No No
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Summary

* Note the key ideas for three timestamp-based alternative
approaches (to Lock-based approaches) to CC

— Optimistic: validation tests
— Timestamp: RT(O) & WT(O) on each object O

— Multiversion: multiple versions of each object O with different WT and
RT

* Note: a new action (block or delay) in addition to commit or
abort

* “Phantom Problem” and why serializability/2PL fails

 New requirements and mechanisms for multiple-granularity
locks
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