Duke CS, Spring 2022

CompSci 516
Database Systems

Lecture 14
Transactions
— Concurrency Control

Instructor: Sudeepa Roy

CompSci 516: Database Systems

Announcements (Tues 2/22)

 Midterm grades and exams on gradescope
— Sample solution on sakai
— Contact us if you have questions

e HW2-part 1 due next week 3/1

— One group submission per pair is needed

— Part 2 (on cloud) will be released later if we have time due
to change in AWS setups

Duke CS, Spring 2022 CompSci 516: Database Systems

Reading Material

* [RG]
— Chapter 17.5.1,17.5.3,17.6
e [GUW]

— Chapter 18.8, 18.9

— Today’s examples are from GUW (lecture slides will be sufficient for this class
and exams)

Acknowledgement:
The following slides have been created adapting the

instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

Duke CS, Spring 2022 CompSci 516: Database Systems 3

Today’s topics

e Optimistic concurrency control (17.6.1)
Timestamp-based concurrency control
(17.6.2)

* Multi-version concurrency control (17.6.3)

* Dynamic databases and Phantom problem
(17.5.1)

 Multiple—granularity locking (17.5.3)

Duke CS, Spring 2022 CompSci 516: Database Systems

Approaches to CC
other than locking

Duke CS, Spring 2022 CompSci 516: Database Systems

Approaches to
Concurrency Control (CC)

* Lock-based CC
— (so far)
* Optimistic CC _—
— Today
— overview only
* Time-stamp-based CC
— today
* Multi-version CC
— today

= yses “timestamps” in some way

—

Duke CS, Spring 2022 CompSci 516: Database Systems

Timestamp

* Each transaction gets a unique timestamp

* e.g.
— system’s clock value when it is issued by the scheduler (assume
one transactions issued on one tick of the clock)

— or a unique number given by a counter (incremented after each
transaction)

e Basicidea:

— Timestamps should enforce the unique equivalent serial
schedule

— If TS(T1) > TS(T2), in the equivalent serial schedule T1 should
appear after T2

— Whenever violated, ABORT

Duke CS, Spring 2022 CompSci 516: Database Systems

Locking is a “pessimistic or
conservative” approach to CC

* Locking is a conservative approach in which conflicts are
prevented

e Either uses “blocking” (delay) or abort
— note the several usages of a “block”!

* Disadvantages of locking:
— Lock management overhead
— Deadlock detection/resolution
— Lock contention for heavily used objects

If only light contention for data objects, still the overhead
of following a locking protocol is paid

Duke CS, Spring 2022 CompSci 516: Database Systems

(1) Optimistic CC

Duke CS, Spring 2022 CompSci 516: Database Systems

Optimistic CC (or Kung-Robinson approach)

* |f conflicts are rare, we might be able to gain
concurrency by not locking, and instead
checking for conflicts before transactions
commit

Duke CS, Spring 2022 CompSci 516: Database Systems 10

OptImIStIC CC Overview only

Transactions have three phases:

1. READ (R): Read from the database, but make changes to ”private copies”
of objects (assume private workspace)

2. VALIDATE (V): When decide to commit, also check for conflicts with
concurrently executing transactions

» if a possible conflict, abort, clear private workspace, restart

3. WRITE (W): If no conflict, make local copies of changes public (copy them

into the database)
T- v oo

*

modified ' U '

objects

Duke CS, Spring 2022 CompSci 516: Database Systems 11

What does Validation do?

To validate T, for each committed transactions T, such that
TS(T,) < TS(T,), one of the validation tests must be satisfied

Validation ensures no RW, WR, WW conflicts, e.g.,
— T1 completes all R, V, W before T2 starts
— Or, T1 completes before W of T2 starts, and T2 does not read anything that T1 writes

— Or, T1 completes its R before T2 starts its R, and T2 does not read/write anything that
T1 writes

R =READ V = Validation W = WRITE

Overhead:

— Some parts have to be in “critical section” without other transactions
— Need to maintain objects that are read/written by each transactions
— |If validation fails, need to restart, lost work

Duke CS, Spring 2022 CompSci 516: Database Systems 12

End of Lecture 14

Optimistic CC vs locking

e |f there are few conflicts and validation is
efficient

— optimistic CC is better than locking

* |f many conflicts

— cost of repeatedly restarting transactions hurts
performance significantly

Start of Lecture 15

(2) Timestamp-based CC

Duke CS, Spring 2022 CompSci 516: Database Systems 14

Timestamp CC

Main Idea:

 Give each transaction T
— aunique timestamp TS(T) when it begins
— Later transactions get higher timestamps

* Give each object O
— aread-timestamp RT(O) -- largest timestamp of the transactions that read O
— a write-timestamp WT(O) -- largest timestamp of the transactions that wrote to O

— a Commit bit C(O): whether the last transaction writing O has committed
* RG uses RTS/WTS, GUW uses RT/WT, either of these is fine

e |f
— action ai of Ti conflicts with action aj of Tj,
— and TS(Ti) < TS(T))
* then
— ai must occur before aj
e Otherwise, abort and restart violating transaction

Duke CS, Spring 2022 CompSci 516: Database Systems 15

See example first

Request for a read: Ry(X) andreadyourser

1. IfTS(T) >= WT(X)
— last written by a previous transaction — OK (i.e., “physically
realizable”)

— If C(X) is true — check if previous transaction has committed
. Grant the read request by T
e if TS(T) > RT(X)
— set RT(X) = TS(T)
— If C(X) is false
. Delay T until C(X) becomes true, or the transaction that wrote X aborts

2. 1fFTS(T) < WT(X)

— write is not realizable -- already written by a later trans.
— Abort (or, Rollback) T --i.e., abort and restart with a larger
timestamp

Duke CS, Spring 2022 CompSci 516: Database Systems 16

See example first

Request for a write: W (X) e

1. If TS(T) >= RT(X) and TS(T) >= WT(X)
— last written/read by a previous transaction — OK
— Grant the write request by T

. write the new value of X
— Set WT(X) =TS(T)
— Set C(X) = false -- T not committed yet, set to true when T commits
2. If TS(T) >= RT(X) but TS(T)< WT(X)
— write is still realizable —but already a later value in X
— If C(X) is true
. previous writer of X has committed
. simply ignore the write request by T
. but allow T to proceed without making changes to the database
— If C(X) is false
. Delay T until C(X) becomes true, or the transaction that wrote X aborts
e IfTS(T) < RT(X)
— write is not realizable -- already read by a later transaction

— Abort (or, Rollback) T

Duke CS, Spring 2022 CompSci 516: Database Systems 17

Exa m p I e Example from GUW book

Three transactions T1 (TS = 200), T2 (TS = 150), T3 (TS = 175)

Three objects A, B, D
— initially all have RT=WT =0, C=1 (i.e., true)

Sequence of actions
_ Rl(B)I RZ(A); R3(D)I Wl(B)I Wl(A)I WZ(D); W3(A)

Q. What is the state of the database at the end if the
timestamp-based CC protocol is followed

— i.e. report the RT, WT, C

Duke CS, Spring 2022 CompSci 516: Database Systems 18

Initial condition and Steps

Step
200 150 175 RT =0, RT =0, RT =0,
WT=0, | WT=0, | WT=0,
C=1 C=1 C=1
1 R1(B)
2 Ra(A)
3 R5(D)
4 W,(B)
5 Wi(A)
6 W,(D)
7 W;3(A)

Duke CS, Spring 2022

CompSci 516: Database Systems

After Step 1

WT of B is <= TS(T,)

C=1
Read OK.
Step B
200 150 175 RT=0, |RT=200,| RT=0,
WT=0, | WT=0, | WT=0,
C=1 C=1 C=1
1 R1(B) RT=200
2 Ra(A)
3 R5(D)
4 W,(B)
5 Wi(A)
6 W,(D)
7 W;3(A)

Duke CS, Spring 2022

CompSci 516: Database Systems

20

After Step 2

WT of A is <= TS(T,)

C=1
Read OK.
Step B
200 150 175 RT =150, | RT=200,| RT=0,
WT=0, | WT=0, | WT=0,
C=1 C=1 C=1
1 R1(B) RT=200
2 R,(A) RT=150
3 R5(D)
4 W,(B)
5 Wi(A)
6 W,(D)
7 W;3(A)

Duke CS, Spring 2022

CompSci 516: Database Systems

21

After Step 3

WT of D is <= TS(T5)

C=1
Read OK.
Step B D
200 150 175 RT =150, | RT =200, | RT =175,
WT=0, | WT=0, | WT=0,
C=1 C=1 C=1
1 R1(B) RT=200
2 R,(A) RT=150
3 R5(D) RT=175
4 W,(B)
5 Wi(A)
6 W,(D)
7 W;3(A)

Duke CS, Spring 2022

CompSci 516: Database Systems

22

After Step 4

Note the change in C bit

as T2 has not committed yet

WT & RT of B is <= TS(T,)

Write OK.
Step B
200 150 175 RT = 150, | RT =200, | RT =175,
WT=0, | WT=200| WT=0,
C=1 C=0 C=1
1 R1(B) RT=200
2 R,(A) RT=150
3 R5(D) RT=175
4 W,(B) WT=200
C=0

5 W, (A)
6 W,(D)
7 W3(A)

Duke CS, Spring 2022

CompSci 516: Database Systems

23

After Step 5

Note the change in C bit

as T1 has not committed yet

RT & WT of A <= TS(T,)

Write ok.
Step]
200 150 175 RT =150 RT=200 | RT=175
WT =200 | WT =200 WT=0
C=0 C=0 C=1
1 R1(B) RT=200
2 R,(A) RT=150
3 Rs3(D) RT=175
4 W,(B) WT=200
C=0
5 W, (A) WT=200
C=0
6 W,(D)
7 W;(A)

Duke CS, Spring 2022

CompSci 516: Database Systems

24

Object D has been read by

Afte r Ste p 6 a later transaction - abort

RT(D) = 175 < 150 = TS(T,)

Abort T,
Step]
200 150 175 RT=150 | RT=200 | RT=175
WT=200 | WT=200| WT=0
C=0 C=0 C=1
1 R1(B) RT=200
2 R,(A) RT=150
3 R;(D) RT=175
4 W,(B) WT=200
C=0
5 W, (A) WT=200
C=0
6 W,(D)
Abort
7 W5(A)

Duke CS, Spring 2022 CompSci 516: Database Systems 25

Delay until T1 commits or aborts

Afte I Ste p 7 RT(A) <= TS(T3) — write ok

WT(A) > TS(Ts) and C(A) = 0

Delay T;
Step T1 T2 T3 A] D
200 150 175 RT=150 | RT=200 | RT=175
WT=200 | WT=200| WT=0
C=0 C=0 C=1
1 R1(B) RT=200
2 R,(A) RT=150
3 R;(D) RT=175
4 W,(B) WT=200
C=0
5 W,(A) WT=200
C=0
6 W,(D)
Abort
7 W;(A)
Delay

Duke CS, Spring 2022 CompSci 516: Database Systems 26

Thomas Write Rule

* If a write request comes from T on O, TS(T) < WT(O), and
TS(T) >= RT(O)
— violates timestamp order of T w.r.t. writer of O
— i.e., O has been written by a later transaction T2

Thomas Write Rule:
e |If C(O) =true, we can safely ignore such outdated writes by T
— Otherwise “"delay/block” to check whether T2 commits eventually

* noneedtorestartT

— T’s write is effectively followed by another write with no intervening
reads

* Allows some serializable, but not conflict serializable
schedules (see example in Lec 13 slides)

Duke CS, Spring 2022 CompSci 516: Database Systems 27

Duke CS, Spring 2022

(3) Multiversion CC

CompSci 516: Database Systems

28

Another approach to CC

* Multiversion CC
— another way of using timestamps

— ensures that a transaction never has to be restarted (aborted) to read
an object
e unlike timestamp-based CC

 The idea is to make several copies of each DB object
— each copy of each object has a write timestamp

* Tireads the most recent version whose timestamp precedes
TS(Ti)

Duke CS, Spring 2022 CompSci 516: Database Systems

29

Multiversion CC

* |dea: Let “writers” make a “new” copy while
“readers” use an appropriate “old” copy:

MAIN VERSION

SEGMENT POOL

(Current (Older versions that
versions of may be useful for

DB objects) some active readers.)

Readers are always allowed to proceed

- But may be “blocked” until writer commits.

Duke CS, Spring 2022 CompSci 516: Database Systems 30

Multiversion CC (Contd.) sceeemelefis

And read yourself

e Each version of an object has

— its writer’s TS as its WT, and

— the timestamp of the transaction that most recently read this
version as its RT

 Versions are chained backward
— we can discard versions that are “too old to be of interest”

e Each transaction is classified as Reader or Writer.
— Writer may write some object; Reader never will
— Transaction declares whether it is a Reader when it begins

Duke CS, Spring 2022 CompSci 516: Database Systems 31

Reader Transactlon See example first

And read yourself

* For each object to be read:
— Finds newest version with WT < TS(T)

— Starts with current version in the main segment and chains
backward through earlier versions

— Update RT if necessary (i.e., if TS(T) > RT, then RT = TS(T))

* Assuming that some version of every object exists from the
beginning of time, Reader transactions are never restarted

— However, might block until writer of the appropriate version

commits
WTS timeline old new >
version thaw
T

Duke CS, Spring 2022 CompSci 516: Database Systems 32

See example first

erte r Tra NSa Ctio N Andread yourself

To read an object, follows reader protocol
To write an object:

— must make sure that the object has not been read by a "later” transaction
— Finds newest version V s.t. WT(V) <= TS(T).
If RT(V) <= TS(T)
— T makes a copy CV of V, with a pointerto V,
with WT(CV) = TS(T), RT(CV) = TS(T)

— Write is buffered until T commits; other transactions can see TS values but
can’t read version CV

Else
— reject write

Duke CS, Spring 2022 CompSci 516: Database Systems 33

Example

* Four transactions T1 (TS = 150), T2 (TS = 200), T3 (TS =
175), T4(TS = 225)

* One object A
— Initial version is A,

e Sequence of actions
_ Rl(A)/ Wl(A)/ RZ(A)/ WZ(A)I RB(A)r R4(A)

e Q. What s the state of the database at the end if the
multiversion CC protocol is followed

Duke CS, Spring 2022 CompSci 516: Database Systems 34

Initial condition and Steps

A, existed before the transactions started

Step T1 T2 T3 T4 Ao
150 200 175 225 RT=0,
WT=0

1 R1(A)

2 W3 (A)

3 R,(A)

4 W, (A)

5 R3(A)

6 R4(A)

Duke CS, Spring 2022 CompSci 516: Database Systems 35

After Step 1

A, is the newest version with WT <= TS(T,)

Read A,
Step T1 T2 LE’ T4 Ay
150 200 175 225 RT=0,
WT=0
1 Ri(A) Read
RT = 150
2 Wi(A)
3 Ra(A)
4 W,(A)
5 R3(A)
6 Ra(A)

Duke CS, Spring 2022

CompSci 516: Database Systems

36

After Step 2

* Apisthe newest version with WT <= TS(T,)

* RT(Ap) <=TS(T,)

* Create a new version Az

e Setits WT, RT to TS(T) = 150 (A5, named accordingly)

Step T1 T2 LE’ T4 A, A;so
150 200 175 225 RT=150 RT=150
WT=0 WT=150
1 R1(A) Read
RT =150
2 W, (A) Create
RT=150
WT=150
3 Ra2(A)
4 W,(A)
5 R3(A)
6 Ra(A)

Duke CS, Spring 2022 CompSci 516: Database Systems 37

After Step 3

A1so is the newest version with WT <= TS(T,)

* Read A150
 Update RT
Step T2 T3
150 200 175 225 RT=150 | RT=200
WT=0 | WT=150
1 Ri(A) Read
2 W (A) Create
RT=150
WT=150
3 R,(A) Read
RT=200
4 W, (A)
5 R3(A)
6 Ra(A)

Duke CS, Spring 2022

CompSci 516: Database Systems

38

After Step 4

A1sg is the newest version with WT <= TS(T,)
* RT(As50) <=TS(Ty)
* Create a new version A,
e Setits WT, RT to TS(T,) = 200 (A,9o named accordingly)

Step
150 200 175 225 RT=150 | RT=200 RT=200
WT=0 | WT=150 | WT=200
1 R1(A) Read
2 W(A) Create
RT=150
WT=150
3 R,(A) Read
RT=200
4 W,(A) Create
RT=200
WT=200
5 R3(A)
6 R4(A)

Duke CS, Spring 2022 CompSci 516: Database Systems 39

After Step 5

A1sg is the newest version with WT <= TS(T5;)
Read A150
DO NOT Update RT

Step
150 200 175 225 RT=150 | RT=200 RT=200
WT=0 | WT=150 | WT=200
1 R1(A) Read
2 W(A) Create
RT=150
WT=150
3 R,(A) Read
RT=200
4 W,(A) Create
RT=200
WT=200
5 R5(A) Read
6 R4(A)

Duke CS, Spring 2022

CompSci 516: Database Systems

40

After Step 6

A,qo is the newest version with WT <=TS(T,)

* Read Azoo
 Update RT
Step T1 T2 LE] T4 A, A5 Asoo
150 200 175 225 RT=150 | RT=200 RT=225
WT=0 | WT=150 | WT=200
1 R1(A) Read
2 W (A) Create
RT=150
WT=150
3 R,(A) Read
RT=200
4 W,(A) Create
RT=200
WT=200
5 R;(A) Read
6 R4(A) Read
RT=225

Duke CS, Spring 2022

CompSci 516: Database Systems

41

Duke CS, Spring 2022

Dynamic Database
and Phantom Problem

CompSci 516: Database Systems

42

Dynamic Databases

* |f we relax the assumption that the DB is a fixed
collection of objects

e Then even Strict 2PL will not assure
serializability

e causes "Phantom Problem” in dynamic
databases

Duke CS, Spring 2022 CompSci 516: Database Systems 43

Example: Phantom Problem

Sailors(sid, name, age, rating)

 T1 wants to find oldest sailors in rating levels 1 and 2
— Suppose the oldest at rating 1 has age 71 S4,Bob, 71, 1

— Suppose the oldest at rating 2 has age 80
S7, Mary, 80, 2 Removed by T2

— Suppose the second oldest at rating 2 has age 63 $3, Alice, 63, 2

* Another transaction T2 intervenes: S5, Ken, 96, 1 New by T2

— Step 1: T1 locks all pages containing sailor records with rating = 1, and finds oldest
sailor (age = 71)

— Step 2: Next, T2 inserts a new sailor onto a new page (rating = 1, age = 96)

— Step 3: T2 locks pages with rating = 2, deletes oldest sailor with rating = 2 (age = 80),
commits, releases all locks

— Step 4: T1 now locks all pages with rating = 2, and finds oldest sailor (age = 63)

 No consistent DB state where T1 is “correct”
— T1 found oldest sailor with rating = 1 before modification by T2
— T1 found oldest sailor with rating = 2 after modification by T2

Duke CS, Spring 2022 CompSci 516: Database Systems 44

What was the problem?

Conflict serializability guarantees serializability only if the set
of objects is fixed

— T1 implicitly and incorrectly assumed that it has locked the set of all
sailor records with rating =1

Solution to Phantom Problem

— Index locking: Lock the index, no new rating = 1 records can be
inserted

— predicate locking: Lock on “predicate” (any condition) like “rating = 1”
— more flexible but more expensive than index locking

Duke CS, Spring 2022 CompSci 516: Database Systems

45

Multiple-granularity Locking

Duke CS, Spring 2022 CompSci 516: Database Systems

46

DB “Objects” may contain other obj

* A DB contains several files
* Afile is a collection of pages
* A page is a collection of records/tupl

ects

es

Database

_ Tabl
contains

Pag

es

2S

Tuples

Duke CS, Spring 2022 CompSci 516: Database Systems

47

Carefully choose lock granularity

* If atransaction needs most of the pages
— set a lock on the entire file, reduces locking

overhead Database X
* If only a few pages are needed
— lock only those pages contains fables
* Need to efficiently ensure no conflicts Pages
— e.g., a page should not be locked by T1 if T2 \
already holds the lock on the file Tuples Unlock

* Acquire “intention locks” on all the
ancestors before locking an item

— Conflicts with lock requests
— Unlock bottom-up (tuple-> pages->..)

Duke CS, Spring 2022 CompSci 516: Database Systems 48

Transaction in SQL

e SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED [;]
* BEGIN TRANSACTION

* <...SQL STATEMENTS>

e COMMIT or ROLLBACK

* Fourisolation levels : performance and serializability

Dirty Read Unrepeatable
Read

READ UNCOMMITTED Maybe Maybe Maybe
READ COMMITTED No Maybe Maybe
REPEATABLE READS No No Maybe
SERIALIZABLE No No No

Duke CS, Spring 2022 CompSci 516: Database Systems 49

Summary

* Note the key ideas for three timestamp-based alternative
approaches (to Lock-based approaches) to CC

— Optimistic: validation tests
— Timestamp: RT(O) & WT(O) on each object O

— Multiversion: multiple versions of each object O with different WT and
RT

* Note: a new action (block or delay) in addition to commit or
abort

* “Phantom Problem” and why serializability/2PL fails

 New requirements and mechanisms for multiple-granularity
locks

Duke CS, Spring 2022 CompSci 516: Database Systems 50

