
CompSci 516
Database Systems

Lecture 15
Transactions –

Recovery

Instructor: Sudeepa Roy

1Duke CS, Spring 2022 CompSci 516: Database Systems

Announcements (Thurs 2/24)
• HW2-part 1 due next week 3/3 (Thursday) 12 noon
– Extended deadline by two days
– One group submission per pair is needed
– Part 2 (on cloud) will be released later in the semester if we

have time due to change in AWS setups
– If you are still looking for someone to work with, send me

an email NOW by 12 noon today!
– Shweta had a tutorial yesterday, watch the recording

• Midterm Project report due next week 3/4 (Friday) 12
noon
– Extended by ~3 days
– Keep working on your project

2Duke CS, Spring 2022 CompSci 516: Database Systems

Reading Material
• [GUW]
– 17.4: UNDO/REDO
– Lecture slides will be sufficient for exams

3

Acknowledgement:
A few of the following slides have been created adapting the
instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

Duke CS, Spring 2022 CompSci 516: Database Systems

Today

Recovery
• STEAL/ NO STEAL
• FORCE/NO FORCE
• UNDO/REDO log
• Checkpointing and Recovery

Duke CS, Spring 2022 CompSci 516: Database Systems 4

Review: The ACID properties

• A tomicity: All actions in the transaction happen, or none
happen.

• C onsistency: If each transaction is consistent, and the DB starts
consistent, it ends up consistent.

• I solation: Execution of one transaction is isolated from that of
other transactions.

• D urability: If a transaction commits, its effects persist.

• Which property did we cover in CC? : Isolation
• Now : Atomicity and Durability by recovery manager

Duke CS, Spring 2022 CompSci 516: Database Systems 5

Motivation: A & D

• Atomicity:
– Transactions may abort

(“Rollback”).
• Durability:

– What if DBMS stops running?
– (power failure/crash/error/fire-

flood etc.)

crash!

! Desired Behavior after system restarts:
– T1, T2 & T3 should be durable.
– T4 & T5 should be aborted (effects not seen).

T1
T2
T3
T4
T5

Duke CS, Spring 2022 CompSci 516: Database Systems 6

Commit ≠ Disk Write!
Abort ≠ No Disk Write!

Eventually yes, but not necessarily immediately

Recovery: A & D

• Atomicity
– by ”undo”ing actions of “aborted transactions”

• Durability
– by making sure that all actions of committed

transactions survive crashes and system failure
– i.e. by “redo”-ing actions of “committed

transactions”

Duke CS, Spring 2022 CompSci 516: Database Systems 7

Assumptions

• Concurrency control is in effect

• Updates are happening “in place”.
– i.e., data is overwritten on (deleted from) the disk.

• Simple schemes to guarantee Atomicity &
Durability (next):
– NO STEAL
– FORCE

Duke CS, Spring 2022 CompSci 516: Database Systems 8

Handling the Buffer Pool
• Force every write to

disk?

• Steal buffer-pool
frames from
uncommitted
transactions?

Force

No Force

No Steal Steal

Trivial

Desired

Duke CS, Spring 2022 CompSci 516: Database Systems 9

Handling the Buffer Pool
• Force every write to disk?
– Poor response time
– But provides durability

• Not Steal buffer-pool
frames from uncommitted
transactions?
– If not steal, poor

throughput, holding on to
all dirty blocks requires
lots of memory

– If steal, how can we
ensure atomicity?

Force

No Force

No Steal Steal

Trivial

Desired

Duke CS, Spring 2022 CompSci 516: Database Systems 10

What if we do “Steal” and “NO Force”
• STEAL (why enforcing Atomicity is hard)
– To steal frame F: Current page in F (say P) is written to

disk; some transaction holds lock on P
– What if the transaction with the lock on P aborts?
– Must remember the old value of P at steal time (to

support UNDOing the write to page P)

• NO FORCE (why enforcing Durability is hard)
– What if system crashes before a modified page is

written to disk?
– Write as little as possible, in a convenient place, at

commit time, to support REDOing modifications.

Duke CS, Spring 2022 CompSci 516: Database Systems 11

Basic Idea: Logging
• Log: An ordered list of REDO/UNDO actions

– Log record may contain:
<Tr.ID, pageID, offset, length, old data, new data>

• Record REDO and UNDO information, for every update, in
a log

• one change turns into two—bad for performance?
– Sequential writes to log (put it on a separate disk) – append

only
– Minimal info (diff) written to log, so multiple updates fit in a

single log page
– Log blocks are created and updated in the main memory first,

then written to disk
– Can use dedicated disk(s) to improve performance

Duke CS, Spring 2022 CompSci 516: Database Systems 12

Different types of logs

• UNDO (STEAL + FORCE)
• REDO (NO STEAL + NO FORCE)
• UNDO/REDO (STEAL + NO FORCE)

• ARIES
– an UNDO/REDO log implementation

Duke CS, Spring 2022 CompSci 516: Database Systems 13

GUW 17.4
(Lecture material will be sufficient for
Exams)

Will talk about ARIES if we have time later

We only talk about UNDO/REDO
In this lecture

UNDO/REDO logging

Duke CS, Spring 2022 CompSci 516: Database Systems 14

UNDO/REDO logging

• Simple representation for illustration
– (actual implementation has more info)

• <T, X, v, w>
– Transaction T changed the value of element X
– former value v
– new value w

Duke CS, Spring 2022 CompSci 516: Database Systems 15

UNDO/REDO logging rule

When a transaction T starts, log 〈 S𝑇𝐴𝑅𝑇 𝑇〉

Before modifying any element X on disk, <T, X, v, w> must
appear on disk

A transaction Ti is committed when its commit log record
〈COMMIT T〉 is written to disk
– can precede or follow any of the changes to the db

elements on disk

Duke CS, Spring 2022 CompSci 516: Database Systems 16

WAL

• Write-ahead logging (WAL): Before X is modified on
disk, the log record pertaining to X must be flushed
– Without WAL, system might crash after X is modified on

disk but before its log record is written to disk—no way
to undo

• No force: A transaction can commit even if its
modified memory blocks have not been written to
disk (since redo information is logged)

• Steal: Modified memory blocks can be flushed to
disk anytime (since undo information is logged)

17Duke CS, Spring 2022 CompSci 516: Database Systems

Undo/redo logging example

18

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log

Duke CS, Spring 2022 CompSci 516: Database Systems

Undo/redo logging example

19

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

Duke CS, Spring 2022 CompSci 516: Database Systems

Undo/redo logging example

20

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

Duke CS, Spring 2022 CompSci 516: Database Systems

Undo/redo logging example

21

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800

Duke CS, Spring 2022 CompSci 516: Database Systems

Undo/redo logging example

22

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

Duke CS, Spring 2022 CompSci 516: Database Systems

Undo/redo logging example

23

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

〈 T1, A, 800, 700 〉

700

Duke CS, Spring 2022 CompSci 516: Database Systems

Undo/redo logging example

24

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

〈 T1, A, 800, 700 〉

700read(B, b); b = b + 100;

Duke CS, Spring 2022 CompSci 516: Database Systems

Undo/redo logging example

25

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

〈 T1, A, 800, 700 〉

700read(B, b); b = b + 100;

B = 400

Duke CS, Spring 2022 CompSci 516: Database Systems

Undo/redo logging example

26

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

〈 T1, A, 800, 700 〉

700read(B, b); b = b + 100;

B = 400write(B, b);

Duke CS, Spring 2022 CompSci 516: Database Systems

Undo/redo logging example

27

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

〈 T1, A, 800, 700 〉

700read(B, b); b = b + 100;

B = 400write(B, b);

〈 T1, B, 400, 500 〉

500

Duke CS, Spring 2022 CompSci 516: Database Systems

Undo/redo logging example

28

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

〈 T1, A, 800, 700 〉

700read(B, b); b = b + 100;

B = 400write(B, b);

〈 T1, B, 400, 500 〉

500

700Steal: can flush
before commit

Duke CS, Spring 2022 CompSci 516: Database Systems

Undo/redo logging example

29

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

〈 T1, A, 800, 700 〉

700read(B, b); b = b + 100;

B = 400write(B, b);

〈 T1, B, 400, 500 〉

500

700Steal: can flush
before commit

commit;

Duke CS, Spring 2022 CompSci 516: Database Systems

Undo/redo logging example

30

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

〈 T1, A, 800, 700 〉

700read(B, b); b = b + 100;

B = 400write(B, b);

〈 T1, B, 400, 500 〉

500

700Steal: can flush
before commit

commit;

〈 T1, commit 〉

Duke CS, Spring 2022 CompSci 516: Database Systems

Undo/redo logging example

31

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

〈 T1, A, 800, 700 〉

700read(B, b); b = b + 100;

B = 400write(B, b);

〈 T1, B, 400, 500 〉

500

700Steal: can flush
before commit

commit;

〈 T1, commit 〉
500

No force: can flush
after commit

Duke CS, Spring 2022 CompSci 516: Database Systems

Undo/redo logging example

32

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log
〈 T1, start 〉

read(A, a); a = a – 100;

A = 800
write(A, a);

〈 T1, A, 800, 700 〉

700read(B, b); b = b + 100;

B = 400write(B, b);

〈 T1, B, 400, 500 〉

500

700Steal: can flush
before commit

commit;

〈 T1, commit 〉
500

No force: can flush
after commit

No restriction (except WAL) on when memory blocks can/should be flushedDuke CS, Spring 2022 CompSci 516: Database Systems

Checkpointing

• Where does recovery start? Beginning of very large log
file?
– No – use checkpointing

Naïve approach:
• To checkpoint:
– Stop accepting new

transactions (lame!)
– Finish all active

transactions
– Take a database dump

• To recover:
– Start from last checkpoint

33
http://www.saintlouischeckpoints.com/wp-content/uploads/2013/08/dui20checkpoint200220172011.jpg

Duke CS, Spring 2022 CompSci 516: Database Systems

Fuzzy checkpointing

• Add to log records <START CKPT S> and <END
CKPT>
– Transactions normally proceed and new transactions

can start during checkpointing (between START CKPT
and END CKPT)

• Determine S, the set of (ids of) currently active
transactions, and log 〈 START CKPT S 〉

• Flush all blocks (dirty at the time of the checkpoint)
at your leisure

• Log 〈END CKPT START-CKPT_location 〉
– To easily access <START CKPT> of an <END CKPT>

otherwise can read the log backword to find it
34Duke CS, Spring 2022 CompSci 516: Database Systems

An UNDO/REDO log with checkpointing
Log records

<START T1>

<T1, A, 4, 5>

<START T2>

<COMMIT T1>

<T2, B, 9, 10>

<START CKPT(T2)>

<T2, C, 14, 15>

<START T3>

<T3, D, 19, 20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

35

• T2 is active, T1 already committed
– So <START CKPT (T2)>

• During CKPT,
– flush A to disk if it is not already there

(dirty buffer)
– flush B to disk if it is not already there

(dirty buffer)
– Assume that the DBMS keeps track of

dirty buffers

Duke CS, Spring 2022 CompSci 516: Database Systems

Recovery using Log and CKPT:
Three steps at a glance

1. Analysis
– Runs backward, from end of log, to the <START CKPT> of the last <END CKPT>

record found (note this would be encountered “first” when reading
backwards)

– Goal: Reach the relevant <START CKPT> record

2. Repeating history (also completes REDO for committed transactions)
– Runs forward, from START CKPT, to the end of log
– Goal: (1) Repeat all updates from START CKPT (whether or not they already

went to the disk, whether or not they are from committed transactions), (2)
Build set U of uncommitted transaction to be used in UNDO step below

3. UNDO
– Runs backward, from end of log, to the earliest <START T> of the uncomitted

transactions stored in set U (note this may be before or after the <START
CKPT> found in analysis step)

– Goal: UNDO the actions of uncommitted transactions
36Duke CS, Spring 2022 CompSci 516: Database Systems

Read yourself after
seeing the examples next

Recovery: (1) analysis and (2)
repeating history/REDO phase

• Need to determine U, the set of active transactions at time of
crash

• Scan log backward to find the last <END CKPT> record and
follow the pointer to find the corresponding 〈START CKPT S〉

• Initially, let U be S
• Scan forward from that start-checkpoint to end of the log

– For a log record 〈 T, start 〉, add T to U
– For a log record 〈 T, commit | abort 〉, remove T from U
– For a log record 〈 T, X, old, new 〉, issue write(X, new)
F Basically repeats history!

37

REDO is done and committed transactions are all in good shape now!
Still need to do UNDO for aborted/uncommitted transactions

Read yourself after
seeing the examples next

Duke CS, Spring 2022

Recovery: (3) UNDO phase

• Scan log backward
– Undo the effects of transactions in U
– That is, for each log record 〈 T, X, old, new 〉 where T is

in U, issue write(X, old), and log this operation too
(part of the “repeating-history” paradigm)

– Log 〈 T, abort 〉 when all effects of T have been undone

FAn optimization
– Each log record stores a pointer to the previous log

record for the same transaction; follow the pointer
chain during undo

38

Read yourself after
seeing the examples next

Duke CS, Spring 2022 CompSci 516: Database Systems

Recovery: Example 1
Log records

<START T1>

<T1, A, 4, 5>

<START T2>

<COMMIT T1>

<T2, B, 9, 10>

<START CKPT(T2)>

<T2, C, 14, 15>

<START T3>

<T3, D, 19, 20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

39

• T1 has committed and writes are
already on disk

• After analysis, U = S = {T2}
• REDO all actions
• Write C = 15 (T2)
• UPDATE U to {T2, T3}
• Write D = 20 (T3)
• <COMMIT T2> found: U= {T3}
• <COMMIT T3> found: U = {}
• At the end U = empty, do nothing

(NO UNDO PHASE)

CRASH

Assume every log record before crash is on disk

An
al

ys
is

RE
DO

Duke CS, Spring 2022 CompSci 516: Database Systems

Log records

<START T1>

<T1, A, 4, 5>

<START T2>

<COMMIT T1>

<T2, B, 9, 10>

<START CKPT(T2)>

<T2, C, 14, 15>

<START T3>

<T3, D, 19, 20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

40

Recovery: Example 2
• T1 has committed and writes are

already on disk
• After analysis, U = S = {T2}
• REDO all actions
• Write C = 15 (T2)
• UPDATE U to {T2, T3}
• Write D = 20 (T3)
• <COMMIT T2> found: U= {T3}

– not necessary to set B to 10 (before
END CKPT – already on disk)

• UNDO actions of T3 until its start
• Write D = 19 (T3)An

al
ys

is

RE
DO

U
N

DO

Assume every log record before crash is on diskDuke CS, Spring 2022 CompSci 516: Database Systems

Log records

<START T1>

<T1, A, 4, 5>

<START T2>

<COMMIT T1>

<T2, B, 9, 10>

<START CKPT(T2)>

<T2, C, 14, 15>

<START T3>

<T3, D, 19, 20>

<END CKPT>

<COMMIT T3>

<COMMIT T2>

41

Recovery: Example 3
• T1 has committed and writes are

already on disk
• After analysis, U = S = {T2}
• REDO all actions
• Write C = 15 (T2)
• UPDATE U to {T2, T3}
• Write D = 20 (T3)
• <COMMIT T3> found: U= {T2}
• UNDO actions of T2 until its start

– Beyond <START CKPT>!
– Those changes already went to disk

• Write C = 14 (T2)
• Write B = 9 (T2)An

al
ys

is

RE
DO

U
N

DO

Assume every log record before crash is on diskDuke CS, Spring 2022 CompSci 516: Database Systems

A Glimpse at ARIES Data Structures

42

(Details will be covered if we have time)

P500
PageLSN= 103

P600
PageLSN= 102

P505
PageLSN= 104

P700
PageLSN= -

B = klm

pageID recoveryLSN

P500 101

P600 102

P505 104

LSN prevLS
N

tID pID Log entry Type undoNextLSN

101 - T1000 P500 Write A
“abc” -> “def”

Update -

102 - T2000 P600 Write B
“hij” -> “klm”

Update -

103 102 T2000 P500 Write D
“mnp” -> “qrs”

Update -

104 101 T1000 P505 Write C
“tuv” -> “wxy”

Update -

Dirty page table Log

transID lastLSN status

T1000 104 Running

T2000 103 Running

Transaction table

A = def D = qrs

E = pq

P500
PageLSN= -

P600
PageLSN= -

P505
PageLSN= -

P700
PageLSN= -

B = hij

Disk

A = abc D = mnp

C = tuv E = pq

Buffer Pool

42

Developed at IBM, now used in many DBMS, an actual implementation Optional slide

Duke CS, Spring 2022 CompSci 516: Database Systems

