
1/11/22

1

CompSci 516
Database Systems

Lecture 2
Data Models

and
More SQL

Instructor: Sudeepa Roy

1Duke CS, Spring 2022 CompSci 516: Database Systems

1

Announcements - 01/11 (Tues)

• HW1-Part 1 posted on sakai
– XML -> Relational database
– Start working on it!
– Part 2 will have SQL queries and data analysis
– Both parts due on 01/27/2022

• Office hour times + Zoom link posted on Ed
• Threads for project teams posted on Ed
– If you are looking for teammates or a team, please

post

Duke CS, Spring 2022 CompSci 516: Database Systems 2

2

What is a Database?

3Duke CS, Spring 2022 CompSci 516: Database Systems

3

Revisit: Why use a DBMS?

• Recall the book-selling-platform exercise!

• Some nice properties of a DBMS?

4Duke CS, Spring 2022 CompSci 516: Database Systems

4

Revisit: Why use a DBMS?

• A DBMS is a piece of software (i.e., a big
program written by someone else) that makes
these tasks easier

5Duke CS, Spring 2022 CompSci 516: Database Systems

5

Why use a DBMS?

6Duke CS, Spring 2022 CompSci 516: Database Systems

6

1/11/22

2

Why use a DBMS?

7Duke CS, Spring 2022 CompSci 516: Database Systems

7

Why use a DBMS?

8Duke CS, Spring 2022 CompSci 516: Database Systems

8

When NOT to use a DBMS?

9Duke CS, Spring 2022 CompSci 516: Database Systems

9

Data Model
• Applications need to model some real-world units
• Entities:
– Students, Departments, Courses, Faculty, Organization,

Employee, …
• Relationships:
– Course enrollments by students, Product sales by an

organization

• A data model is a collection of high-level data
description constructs that hide many low-level
storage details

10Duke CS, Spring 2022 CompSci 516: Database Systems

10

Data Model
Can Specify:

1. Structure of the data
– like arrays or structs in a programming language
– but at a higher level (conceptual model)

2. Operations on the data
– unlike a programming language, not any operation can be performed
– allow limited sets of queries and modifications
– a strength, not a weakness!

3. Constraints on the data
– what the data can be
– e.g., a movie has exactly one title

11Duke CS, Spring 2022 CompSci 516: Database Systems

11

Important Data Models

• Structured Data
• Semi-structured Data
• Unstructured Data

What are these?

12Duke CS, Spring 2022 CompSci 516: Database Systems

12

1/11/22

3

Important Data Models
• Structured Data

– All elements have a fixed format
– Relational Model (table, Lecture-1)

• Semi-structured Data
– Some structure but not fixed
– Hierarchically nested tagged-elements in tree structure
– XML

• Unstructured Data
– No structure
– Text, image, audio, video (still some structure)

13Duke CS, Spring 2022 CompSci 516: Database Systems

13

Levels of Abstractions in a DBMS

• Physical schema
– Storage as files, row vs.

column store, indexes

– will discuss these in
later lectures

Duke CS, Spring 2022 CompSci 516: Database Systems 14

Disk

Physical Schema

Logical Schema

External Schema External Schema External Schema

14

Levels of Abstractions in a DBMS

• Logical/Conceptual schema
– describes the stored data in the

physical schema

• Decided by conceptual schema
design
– e.g. ER Diagram

• not covered in this course

– Normalization
• will be covered

Students(sid: string, name: string, login:
string, age: integer, gpa: real)

Duke CS, Spring 2022 CompSci 516: Database Systems 15

Disk

Physical Schema

Logical Schema

External Schema External Schema External Schema

15

Levels of Abstractions in a DBMS

• External schema
– different “views” of the

database to different
users

– will discuss views later

• One physical and logical
schema but there can
be multiple external
schemas

Duke CS, Spring 2022 CompSci 516: Database Systems 16

Disk

Physical Schema

Logical Schema

External Schema External Schema External Schema

16

Data Independence

• Application programs are insulated from
changes in the way the data is structured and
stored

• A very important property of a DBMS

• Logical and Physical

Duke CS, Spring 2022 CompSci 516: Database Systems 17

17

Logical Data Independence
• Users can be shielded from changes in the logical

structure of data
• e.g. Students:

Students(sid: string, name: string, login: string, age: integer, gpa: real)
• Divide into two relations

Students_public(sid: string, name: string, login: string)
Students_private(sid: string, age: integer, gpa: real)

• Still a “view” Students can be obtained using the above
new relations
– by “joining” them with sid

• A user who queries this view Students will get the same
answer as before

Duke CS, Spring 2022 CompSci 516: Database Systems 18

18

1/11/22

4

Physical Data Independence

• The logical/conceptual schema insulates users
from changes in physical storage details
– how the data is stored on disk
– the file structure
– the choice of indexes

• The application remains unaltered
– But the performance may be affected by such

changes

Duke CS, Spring 2022 CompSci 516: Database Systems 19

19

XML: A brief overview

Duke CS, Spring 2022 CompSci 516: Database Systems 20

20

Semi-structured Data and XML
• XML: Extensible Markup Language

• Will not be covered in detail in class, but many datasets
available to download (DBLP, Yelp) are in this form
– You will download the DBLP publication dataset

(https://dblp.org/, CS Bibliography) in XML format and
transform into relational form (in HW1)

• Data does not have a fixed schema
– “Attributes” are part of the data
– The data is “self-describing”
– Tree-structured

Duke CS, Spring 2022 CompSci 516: Database Systems 21

21

XML: Example
<article mdate="2011-01-11” key="journals/acta/Saxena96">

<author>Sanjeev Saxena</author>
<title>Parallel Integer Sorting and Simulation Amongst CRCW

Models.</title>
<pages>607-619</pages>
<year>1996</year>
<volume>33</volume>
<journal>Acta Inf.</journal>
<number>7</number>
<url>db/journals/acta/acta33.html#Saxena96</url>
<ee>http://dx.doi.org/10.1007/BF03036466</ee>

</article>

Duke CS, Spring 2022 CompSci 516: Database Systems 22

Attributes

Elements

22

Attribute vs. Elements

• Elements can be repeated and nested
• Attributes are unique and atomic

Duke CS, Spring 2022 CompSci 516: Database Systems 23

23

Why XML?
+ Serves as a model suitable for integration of databases containing similar
data with different schemas

– e.g. try to integrate two student databases: S1(sid, name, gpa) and S2(sid, dept,
year)

– Many “NULL”s (for unknown data) if done in relational model, very easy in XML

+ Flexible – easy to change the schema and data

- Makes query processing more difficult

Which one is easier?
• XML (semi-structured) to relational (structured)
or
• relational (structured) to XML (semi-structured)?

Duke CS, Spring 2022 CompSci 516: Database Systems 24

24

https://dblp.org/

1/11/22

5

XML to Relational Model
• Problem 1: Repeated attributes
<book>

<author>Ramakrishnan</author>
<author>Gehrke</author>
<title>Database Management Systems</title>
<pubisher> McGraw Hill

</book>

What is a good relational schema?

Duke CS, Spring 2022 CompSci 516: Database Systems 25

25

XML to Relational Model
• Problem 1: Repeated attributes
<book>

<author>Ramakrishnan</author>
<author>Gehrke</author>
<title>Database Management Systems</title>
<pubisher> McGraw Hill</publisher>

</book>

Duke CS, Spring 2022 CompSci 516: Database Systems 26

Title Publisher Author1 Author2

26

XML to Relational Model
• Problem 1: Repeated attributes
<book>

<author>Garcia-Molina</author>
<author>Ullman</author>
<author>Widom</author>
<title>Database Systems – The Complete Book</title>
<pubisher>Prentice Hall</publisher>

</book>

Duke CS, Spring 2022 CompSci 516: Database Systems 27

Title Publisher Author1 Author2

Does not work

Better design?

27

XML to Relational Model

Duke CS, Spring 2022 CompSci 516: Database Systems 28

28

XML to Relational Model
• Problem 2: Missing

attributes
<book>

<author>Ramakrishnan</author>
<author>Gehrke</author>
<title>Database Management Systems</title>
<pubisher> McGraw Hill
<edition>Third</edition>

</book>
<book>

<author>Garcia-Molina</author>
<author>Ullman</author>
<author>Widom</author>
<title>Database Systems – The Complete

Book</title>
<pubisher>Prentice Hall</publisher>

</book>

Duke CS, Spring 2022 CompSci 516: Database Systems 29

BookI
d

Title Publisher Edition

b1 Database
Manageme
nt Systems

McGraw
Hill

Third

b2 Database
Systems –
The
Complete
Book

Prentice
Hall

null

29

Summary: Data Model
• Relational data model is the most standard for

database managements
– semi-structured model/XML is also used in practice – you

will use them in hw assignments
– unstructured data (text/photo/video) is unavoidable, but

won’t be covered in this class

• A DBMS provides data independence and insulates the
application programmer from many low level details

• We will learn about those low level details as well as
high level data management in this course

Duke CS, Spring 2022 CompSci 516: Database Systems 30

30

1/11/22

6

SQL Programming

Duke CS, Spring 2022 CompSci 516: Database Systems 31

31

SQL Programming:
Working with SQL through an API

• E.g.: Python psycopg2, JDBC, ODBC (C/C++/VB)
– All based on the SQL/CLI (Call-Level Interface)

standard
– You can use any of these in HW1

• The application program sends SQL
commands to the DBMS at runtime

• Responses/results are converted to objects in
the application program

32

32

Example API: Python psycopg2
import psycopg2
conn = psycopg2.connect(dbname='beers')
cur = conn.cursor()
list all drinkers:
cur.execute('SELECT * FROM Drinker')
for drinker, address in cur:

print(drinker + ' lives at ' + address)
print menu for bars whose name contains “a”:
cur.execute('SELECT * FROM Serves WHERE bar LIKE %s', ('%a%',))
for bar, beer, price in cur:

print('{} serves {} at ${:,.2f}'.format(bar, beer, price))
cur.close()
conn.close()

33

You can iterate over cur
one tuple at a time

Placeholder for
query parameter

Tuple of parameter values,
one for each %s

(note that the trailing “,” is needed when
the tuple contains only one value)

beers database
Drinker(drinker, address)
Serves(bar, beer, price)

Optional slide

33

More psycopg2 examples
“commit” each change immediately (later in transactions)—need to set this option just
once at the start of the session
conn.set_session(autocommit=True)
...
bar = input('Enter the bar to update: ').strip()
beer = input('Enter the beer to update: ').strip()
price = float(input('Enter the new price: '))
try:

cur.execute('''
UPDATE Serves
SET price = %s
WHERE bar = %s AND beer = %s''', (price, bar, beer))

if cur.rowcount != 1:
print('{} row(s) updated: correct bar/beer?'\

.format(cur.rowcount))
except Exception as e:

print(e)

34

of tuples modified

Exceptions can be thrown
(e.g., if positive-price constraint is violated)

Optional slide

34

Prepared statements: motivation
while True:

Input bar, beer, price…
cur.execute('''

UPDATE Serves
SET price = %s
WHERE bar = %s AND beer = %s''', (price, bar, beer))

Check result...

• Every time we send an SQL string to the DBMS, it
must perform parsing, semantic analysis,
optimization, compilation, and finally execution

• A typical application issues many queries with a
small number of patterns (with different
parameter values)

• Can we reduce this overhead?

35

Optional slide

35

Prepared statements: example
cur.execute(''' # Prepare once (in SQL).
PREPARE update_price AS # Nam e the prepared plan,
UPDATE Serves
SET price = $1 # and note the $1, $2, … notation for
W HERE bar = $2 AND beer = $3''') # param eter placeholders.
while True:

Input bar, beer, price…
cur.execute('EXECUTE update_price(%s, %s, %s)',\ # Execute m any tim es.

(price, bar, beer))
Note the switch back to %s for param eter placeholders.

Check result...

• The DBMS performs parsing, semantic analysis, optimization, and
compilation only once, when it “prepares” the statement

• At execution time, the DBMS only needs to check parameter types
and validate the compiled plan

• Most other API’s have better support for prepared statements than
psycopg2
– E.g., they would provide a cur.prepare() method

36

36

1/11/22

7

SQL Injection Attack

• The school probably had something like:
cur.execute("SELECT * FROM Students " + \

"WHERE (name = '" + name + "')")
where name is a string input by user

• Suppose name = Robert’; DROP TABLE Students; --
– Drop deletes a table
– -- starts a comment
– Becomes SELECT * FROM Students WHERE (name = 'Robert’;

DROP TABLE Students; -- ‘) 37

http://xkcd.com/327/

37

Guarding against SQL injection
• Escape certain characters in a user input string, to

ensure that it remains a single string
– E.g., ', which would terminate a string in SQL, must be

replaced by '' (two single quotes in a row) within the
input string

• Luckily, most API’s provide ways to “sanitize”
input automatically (if you use them properly)
– E.g., pass parameter values in psycopg2 through %s’s

• Check out Ashley Madison data breach story or
https://medium.com/five-guys-facts/sql-injection-
98199af86c9

38

38

Very important

Understand the Course-Policy

See “what is allowed/not allowed”

Duke CS, Spring 2022 CompSci 516: Database Systems 39

39

Back to SQL!

Duke CS, Spring 2022 40CompSci 516: Database Systems

40

The SQL Query Language

• To find all 18 year old students, we can write:

SELECT *
FROM Students S
WHERE S.age=18

•To find just names and logins, replace the first line:

SELECT S.name, S.login

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2

Duke CS, Spring 2022 41

all attributes

41

Querying Multiple Relations
• What does the following

query compute?
SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=“A”

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

Given the following instances of
Enrolled and Students:

we get: ??

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

Students

Enrolled

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

42

1/11/22

8

Querying Multiple Relations
• What does the following

query compute?
SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=“A”

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

Given the following instances of
Enrolled and Students:

we get:

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

Students

Enrolled

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

43

Basic SQL Query

• relation-list A list of relation names
– possibly with a “range variable” after each name

• target-list A list of attributes of relations in relation-list
• qualification Comparisons

– (Attr op const) or (Attr1 op Attr2)
– where op is one of = , <, >, <=, >= combined using AND, OR and NOT

• DISTINCT is an optional keyword indicating that the answer should not
contain duplicates
– Default is that duplicates are not eliminated!

SELECT [DISTINCT] <target-list>
FROM <relation-list>
WHERE <qualification>

Duke CS, Spring 2022 44

Read yourself, after reading the next few slides first

44

Conceptual Evaluation Strategy

• Semantics of an SQL query defined in terms of the following
conceptual evaluation strategy:
– Compute the cross-product of <relation-list>
– Discard resulting tuples if they fail <qualifications>
– Delete attributes that are not in <target-list>
– If DISTINCT is specified, eliminate duplicate rows

• This strategy is probably the least efficient way to compute a
query!
– An optimizer will find more efficient strategies to compute the

same answers

SELECT [DISTINCT] <target-list>
FROM <relation-list>
WHERE <qualification>

Duke CS, Spring 2022 45

Read yourself, after reading the next few slides first

45

Example of Conceptual Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves

Sailor

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

What does this query return?

46

Example of Conceptual Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves

Sailor

sid sname rating age sid bid day

22 dustin 7 45 22 101 10/10/96

22 dustin 7 45 58 103 11/12/96

31 lubber 8 55 22 101 10/10/96

31 lubber 8 55 58 103 11/12/96

58 rusty 10 35 22 101 10/10/96

58 rusty 10 35 58 103 11/12/96

Step 1: Form “cross product” of Sailor and Reserves

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

47

Example of Conceptual Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves

Sailor

sid sname rating age sid bid day

22 dustin 7 45 22 101 10/10/96

22 dustin 7 45 58 103 11/12/96

31 lubber 8 55 22 101 10/10/96

31 lubber 8 55 58 103 11/12/96

58 rusty 10 35 22 101 10/10/96

58 rusty 10 35 58 103 11/12/96

Step 2: Discard tuples that do not satisfy <qualification>

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

48

1/11/22

9

Example of Conceptual Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves

Sailor

sid sname rating age sid bid day

22 dustin 7 45 22 101 10/10/96

22 dustin 7 45 58 103 11/12/96

31 lubber 8 55 22 101 10/10/96

31 lubber 8 55 58 103 11/12/96

58 rusty 10 35 22 101 10/10/96

58 rusty 10 35 58 103 11/12/96

Step 3: Select the specified attribute(s)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

49

Recap
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

1
2

3

Always start from “FROM” -- form cross product
Apply “WHERE” -- filter out some tuples (rows)
Apply “SELECT” -- filter out some attributes (columns)

Ques. Does this get evaluated this way in practice in a Database Management System (DBMS)?

No! This is conceptual evaluation for finding what is correct!
We will learn about join and other operator algorithms later

50

A Note on “Range Variables”

• Sometimes used as a short-name
• The previous query can also be written as:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

SELECT sname
FROM Sailors, Reserves
WHERE Sailors.sid=Reserves.sid

AND bid=103

It is good style,
however, to use
range variables
always!

OR

Duke CS, Spring 2022 51

51

A Note on “Range Variables”

• Really needed only if the same relation appears twice
in the FROM clause (called self-joins)

• Find pairs of Sailors of same age

SELECT S1.sname, S2. name
FROM Sailors S1, Sailors S2
WHERE S1.age = S2.age AND S1.sid < S2.sid

Duke CS, Spring 2022 52

Why do we need the 2nd condition?

52

Find sailor ids who’ve reserved
at least one boat

SELECT ????
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Duke CS, Spring 2022 53

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves

Sailor

53

• Would adding DISTINCT to this
query make a difference?

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Duke CS, Spring 2022 54

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves

Sailor

Find sailor ids who’ve reserved
at least one boat

54

1/11/22

10

Find sailors who’ve reserved at least one boat

• Would adding DISTINCT to this
query make a difference?

• What is the effect of replacing
S.sid by S.sname in the SELECT

clause?

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Duke CS, Spring 2022 55

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves

Sailor

55

Simple Aggregate Operators
COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating= (SELECT MAX(S2.rating)

FROM Sailors S2)

single column

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

Check yourself:
What do these queries compute?

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

56

Next: different types of joins

• Theta-join
• Equi-join
• Natural join
• Outer Join

Duke CS, Spring 2022 57

57

Condition/Theta Join

Duke CS, Spring 2022 58

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

SELECT *
FROM Sailors S, Reserves R
WHERE S.sid=R.sid and age >= 40

sid sname rating age sid bid day

22 dustin 7 45 22 101 10/10/96

22 dustin 7 45 58 103 11/12/96

31 lubber 8 55 22 101 10/10/96

31 lubber 8 55 58 103 11/12/96

58 rusty 10 35 22 101 10/10/96

58 rusty 10 35 58 103 11/12/96

Form cross product, discard rows that do not satisfy the condition

58

Equi Join

Duke CS, Spring 2022 59

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

SELECT *
FROM Sailors S, Reserves R
WHERE S.sid=R.sid and age = 45

sid sname rating age sid bid day

22 dustin 7 45 22 101 10/10/96

22 dustin 7 45 58 103 11/12/96

31 lubber 8 55 22 101 10/10/96

31 lubber 8 55 58 103 11/12/96

58 rusty 10 35 22 101 10/10/96

58 rusty 10 35 58 103 11/12/96

A special case of theta join
Join condition only has equality predicate =

59

Natural Join

Duke CS, Spring 2022 60

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

SELECT *
FROM Sailors S NATURAL JOIN Reserves R

sid sname rating age bid day

22 dustin 7 45 101 10/10/96

22 dustin 7 45 103 11/12/96

31 lubber 8 55 101 10/10/96

31 lubber 8 55 103 11/12/96

58 rusty 10 35 101 10/10/96

58 rusty 10 35 103 11/12/96

A special case of equi join
Equality condition on ALL common predicates (sid)
Duplicate columns are eliminated

60

1/11/22

11

Outer Join

Duke CS, Spring 2022 61

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

SELECT S.sid, R. bid
FROM Sailors S LEFT OUTER JOIN Reserves R
ON S.sid=R.sid

Preserves all tuples from the left table whether or not there is a match
if no match, fill attributes from right with null
Similarly RIGHT/FULL outer join

sid bid

22 101

31 null

58 103

61

Expressions and Strings

• Illustrates use of arithmetic expressions and string pattern matching
• Find triples (of ages of sailors and two fields defined by expressions)

for sailors
– whose names begin and end with B and contain at least three characters

• LIKE is used for string matching. `_’ stands for any one character
and `%’ stands for 0 or more arbitrary characters
– You will need these often

SELECT S.age, age1=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

Duke CS, Spring 2022 62

62

Find sid’s of sailors who’ve reserved a red or a
green boat

• UNION: Can be used to
compute the union of any
two union-compatible sets of
tuples
– can themselves be the result of

SQL queries

• If we replace OR by AND in the
first version, what do we get?

• Also available: EXCEPT (What
do we get if we replace UNION
by EXCEPT?)

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

63

Find sid’s of sailors who’ve reserved
a red and a green boat

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

64

Find sid’s of sailors who’ve reserved
a red and a green boat

• Does not work ->

• INTERSECT: Can be used to
compute the intersection of
any two union-compatible
sets of tuples.
– Included in the SQL/92

standard, but some systems
don’t support it

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

65

Nested Queries

• A very powerful feature of SQL:
– a WHERE/FROM/HAVING clause can itself contain an SQL query

• To find sailors who’ve not reserved #103, use NOT IN.
• To understand semantics of nested queries, think of a

nested loops evaluation
– For each Sailors tuple, check the qualification by computing the

subquery

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid=103)

Find names of sailors who’ve reserved boat #103:

Duke CS, Spring 2022 66

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

66

1/11/22

12

Nested Queries with Correlation

• EXISTS is another set comparison operator, like IN
• Illustrates why, in general, subquery must be re-

computed for each Sailors tuple

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Duke CS, Spring 2022 67

Find names of sailors who’ve reserved boat #103:

67

Nested Queries with Correlation

• If UNIQUE is used, and * is replaced by R.bid, finds
sailors with at most one reservation for boat #103
– UNIQUE checks for duplicate tuples

SELECT S.sname
FROM Sailors S
WHERE UNIQUE (SELECT R.bid

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Duke CS, Spring 2022 68

Find names of sailors who’ve reserved boat #103
at most once:

68

More on Set-Comparison Operators

• We’ve already seen IN, EXISTS and UNIQUE

• Can also use NOT IN, NOT EXISTS and NOT UNIQUE.
• Also available: op ANY, op ALL, op IN

– where op : >, <, =, <=, >=
• Find sailors whose rating is greater than that of some

sailor called Horatio
– similarly ALL SELECT *

FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname=‘Horatio’)

Duke CS, Spring 2022 69

69

Summary

• Relational Data
• SQL
– Semantic
– Join
– Simple Aggregates
– Nested Queries

Duke CS, Spring 2022 70

70

