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Announcements (Tues, 03/22)
• Quiz4 due Thursday
• HW3
• Survey on Ed
• Project report deadline 04/13
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Reading Material
• [RG]

– Parallel DBMS: Chapter 22.1-22.5
– Distributed DBMS: Chapter 22.6 – 22.14

• [GUW]  
– Parallel DBMS and map-reduce: Chapter 20.1-20.2
– Distributed DBMS: Chapter 20.3, 20.4.1-20.4.2, 20.5-20.6

• Other recommended readings:
– Chapter 2 (Sections 1,2,3) of Mining of Massive Datasets, by Rajaraman and Ullman:  

http://i.stanford.edu/~ullman/mmds.html
– Original Google MR paper by Jeff Dean and Sanjay Ghemawat, OSDI’ 04: 

http://research.google.com/archive/mapreduce.html
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Distributed DBMS
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Topics in Distributed DBMS

• Architecture
• Data Storage
• Query Execution
• Transactions – updates
• Recovery – Two Phase Commit (2PC)

• A brief overview / examples of all these
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Distributed Data Independence
• Users should not have to know where data is 

located
– no need to know the locations of references 

relations, their copies or fragments (later)
– extends Physical and Logical Data Independence 

principles

• Queries spanning multiple sites should be 
optimized in a cost-based manner
– taking into account communication costs and 

differences in local computation costs
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Distributed DBMS Architectures

• Three alternative approaches

1. Client-Server
– Client: user interace, server: executes queries

2. Collaborating Server
– All are of the same status

3. Middleware
– Good for integrating legacy systems, middleware 

coordinates, individual server executes local queries
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Storing Data in a Distributed DBMS
• A single relation may be partitioned or fragmented across 

several sites
– typically at sites where they are most often accessed

• The data can be replicated as well
– when the relation is in high demand or for robustness
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• Horizontal: 
– Usually disjoint
– Can often be identified by a selection query

• employees in a city – locality of reference
– To retrieve the full relation, need a union

• Vertical:
– Identified by projection queries
– Typically unique TIDs added to each tuple
– TIDs replicated in each fragments
– Ensures that we have a Lossless Join

TID
t1
t2
t3
t4



Joins in a Distributed DBMS
• Can be very expensive if relations are stored at 

different sites

1. Fetch as needed
2. Ship to one site
3. Semi-join
4. Bloom join
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Sailors (S) Reserves (R)

LONDON PARIS

500 pages 1000 pages

Sailors as outer – for each S page, fetch all R pages 
from Paris
if cached at London, each R page fetched once

Ship Sailor to Paris
Unnecessary shipping
Not all tuples used



Semijoin
• Suppose want to ship R to London and then do join with S at 

London. Instead,
1. At London, project S onto join columns and ship this to Paris

– Here foreign keys, but could be arbitrary join

2. At Paris, join S-projection with R
– Result is called reduction of Reserves w.r.t. Sailors (only these tuples are 

needed)

3. Ship reduction of R to back to London
4. At London, join S with reduction of R
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LONDON PARIS

500 pages 1000 pages

Sailors (S) Reserves (R)

• Tradeoff the cost of computing and shipping projection for cost of shipping full 
R relation
– Especially useful if there is a selection on Sailors, and answer desired at London



Bloomjoin

• Similar idea like semi-join
• Suppose want to ship R to London and then do join with S at London (like semijoin)
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1. At London, compute a bit-vector of some size k:
– Hash column values into range 0 to k-1
– If some tuple hashes to p, set bit p to 1 (p from 0 to k-1)
– Ship bit-vector to Paris

2. At Paris, hash each tuple of R similarly
– discard tuples that hash to 0 in S’s bit-vector
– Result is called reduction of R w.r.t S

3. Ship “bit-vector-reduced” R to London
4. At London, join S with reduced R
• Bit-vector cheaper to ship, almost as effective

– the size of the reduction of R shipped back can be larger. Why?

LONDON PARIS

500 pages 1000 pages

Sailors (S) Reserves (R)



Distributed Query Optimization

• Similar to centralized optimization, but have differences
1. Communication costs must be considered
2. Local site autonomy must be respected
3. New distributed join methods should be considered

• Query site constructs global plan, with suggested 
local plans describing processing at each site
– If a site can improve suggested local plan, free to do so
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Review
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Announcements (Thurs, 03/24)
• Quiz4 due today noon
• HW3 due 4/5 (Tues) noon
• Survey on Ed due by tonight on project teams 

dynamics
• More frequent check in for all teams by 

mentors
• Project report deadline 04/13

15Duke CS, Spring 2022 CompSci 516: Database Systems



Updating Distributed Data
• Synchronous Replication: All copies of a modified relation (or 

fragment) must be updated before the modifying transaction 
commits
– Always updated but expensive commit protocols (2PC – soon!)
– By “voting” - e.g., 10 copies; 7 written for update; 4 copies read (why 4?)
– Read-any Write-all (special case of voting, why not write-any read all?)

• Asynchronous Replication:  Copies of a modified relation are only 
periodically updated; different copies may get out-of-sync in the 
meantime
– More efficient – many current products follow this approach
– Primary site (one master copy) or peer-to-peer (multiple master copies)
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Distributed Locking
• How do we manage locks for objects across many sites?  

1. Centralized:  One site does all locking
– Vulnerable to single site failure

2. Primary Copy:  All locking for an object done at the primary copy site
– Reading requires access to locking site as well as site where the object 

copy is stored
3. Fully Distributed:  Locking for a copy done at site where the copy is stored

– Locks at all sites while writing an object (unlike previous two)
– May lead to “undetected” or “missing” ”global deadlock” due to delay in 

information propagation
– Timeout or hierarchical detection

• e.g. sites (every 10 sec)-> sites in a state (every min)-> sites in a country (every 
10 min) -> global waits for graph. Intuition: more deadlocks are likely across 
closely related sites
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Distributed Recovery

• Two new issues:
– New kinds of failure, e.g., links and remote sites
– If “sub-transactions” of a transaction execute at 

different sites, all or none must commit
– Need a commit protocol to achieve this
– Most widely used: Two Phase Commit (2PC)

• A log is maintained at each site
– as in a centralized DBMS
– commit protocol actions are additionally logged
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Two-Phase Commit (2PC)

• Site at which transaction originates is 
coordinator

• Other sites at which it executes are 
subordinates
– w.r.t. coordination of this transaction

Example on slides
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When a transaction wants to commit – 1/5

1. Coordinator sends prepare message to each 
subordinate
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When a transaction wants to commit – 2/5

2. Subordinate receives the prepare message
a) decides whether to abort or commit its subtransaction
b) force-writes an abort or prepare log record 
c) then sends a no or yes message to coordinator
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When a transaction wants to commit – 3/5
3. If coordinator gets unanimous yes votes from all subordinates

a) it force-writes a commit log record
b) then sends commit message to all subs

Else (if receives a no message or no response from some subordinate),
a) it force-writes abort log record
b) then sends abort messages
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When a transaction wants to commit – 4/5

4. Subordinates force-write abort/commit log record 
based on message they get

a) then send ack message to coordinator
b) If commit received, commit the subtransaction
c) write an end record
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When a transaction wants to commit – 5/5

5. After the coordinator receives ack from all subordinates, 
– writes end log record

Transaction is officially committed when the coordinator’s 
commit log record reaches the disk
– subsequent failures cannot affect the outcomes
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Comments on 2PC
• Two rounds of communication

– first, voting
– then, termination
– Both initiated by coordinator

• Any site (coordinator or subordinate) can unilaterally decide to 
abort a transaction
– but unanimity/consensus needed to commit

• Every message reflects a decision by the sender
– to ensure that this decision survives failures, it is first recorded in the local 

log and is force-written to disk

• All commit protocol log records for a transaction contain tid and 
Coordinator-id
– The coordinator’s abort/commit record also includes ids of all 

subordinates.
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Restart After a Failure at a Site – 1/4

• Recovery process is invoked after a sites comes back up 
after a crash
– reads the log and executes the commit protocol
– the coordinator or a subordinate may have a crash
– one site can be the coordinator some transaction and 

subordinates for others
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Restart After a Failure at a Site – 2/4

• If we have a commit or abort log record for transaction T, 
but not an end record, must redo/undo T respectively
– If this site is the coordinator for T (from the log record), keep 

sending commit/abort messages to subs until acks received
– then write an end log record for T
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Restart After a Failure at a Site – 3/4

• If we have a prepare log record for transaction T, but not 
commit/abort
– This site is a subordinate for T
– Repeatedly contact the coordinator to find status of T
– Then write commit/abort log record
– Redo/undo T
– and write end log record
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Restart After a Failure at a Site – 4/4

• If we don’t have even a prepare log record for T
– T was not voted to commit before crash
– unilaterally abort and undo T
– write an end record

• No way to determine if this site is the coordinator or subordinate
– If this site is the coordinator, it might have sent prepare messages
– then, subs may send yes/no message – coordinator is detected – ask 

subordinates to abort
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Blocking

• If coordinator for transaction T fails, subordinates who have voted 
yes cannot decide whether to commit or abort T until coordinator 
recovers.
– T is blocked
– Even if all subordinates know each other (extra overhead in prepare

message) they are blocked unless one of them voted no
• Note: even if all subs vote yes, the coordinator then can give a no 

vote, and decide later to abort!
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Link and Remote Site Failures

• If a remote site does not respond during the 
commit protocol for transaction T, either because 
the site failed or the link failed:
– If the current site is the coordinator for T, should abort T
– If the current site is a subordinate, and has not yet voted 

yes, it should abort T
– If the current site is a subordinate and has voted yes, it is 

blocked until the coordinator responds
– needs to periodically contact the coordinator until 

receives a reply
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Observations on 2PC

• Ack messages used to let coordinator know when it 
can “forget” a transaction; until it receives all acks, it 
must keep T in the transaction Table

• If coordinator fails after sending prepare messages 
but before writing commit/abort log records, when it 
recovers, it aborts the transaction

• If a subtransaction does no updates, its commit or 
abort status is irrelevant
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NoSQL

• Optional reading:
– Cattell’s paper (2010-11)
– Warning! some info will be outdated 
– see webpage http://cattell.net/datastores/ for 

updates and more pointers
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NOSQL
• Many of the new systems are referred to as “NoSQL” data 

stores
– MongoDB, CouchDB, VoltDB, Dynamo, Membase, ….

• NoSQL stands for “Not Only SQL” or “Not Relational”
– not entirely agreed upon

• NoSQL =  “new” database systems
– not typically RDBMS
– relax on some requirements, gain efficiency and scalability

• New systems choose to use/not use several concepts we 
learnt so far
– You may find systems that use multi-version Concurrency Control 

(MVCC) or, asynchronous replication
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OLTP (Online 
Transaction Processing)

Data Warehousing/OLAP (On 
Line Analytical Processing)

Mostly updates Mostly reads
Applications: 
Order entry, sales update, 
banking transactions

Applications:
Decision support in industry/organization

Detailed, up-to-date data Summarized, historical data
(from multiple operational db, grows over 
time)

Structured, repetitive, short tasks Query intensive, ad hoc, complex queries
Each transaction reads/updates 
only a few tuples (tens of)

Each query can access many records, and 
perform many joins, scans, aggregates

MB-GB data GB-TB data
Typically clerical users Decision makers, analysts as users
Important: 
Consistency, recoverability,
Maximizing tr. throughput  

Important:
Query throughput
Response times
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Applications of New Systems

• Designed to scale simple “OLTP”-style application 
loads 
– to do updates as well as reads
– in contrast to traditional DBMSs and data warehouses
– to provide good horizontal scalability for simple read/write 

database operations distributed over many servers 

• Originally motivated by Web 2.0 applications
– these systems are designed to scale to thousands or 

millions of users
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NoSQL: Key Features

1. the ability to horizontally scale “simple operations” 
throughput over many servers

2. the ability to replicate and to distribute (partition) data over 
many servers

3. a weaker concurrency model than the ACID transactions of 
most relational (SQL) database systems 

4. efficient use of distributed indexes and RAM for data storage
5. the ability to dynamically add new attributes to data records
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BASE (not ACID J)

• Recall ACID for RDBMS desired properties of 
transactions: 
– Atomicity, Consistency, Isolation, and Durability 

• NOSQL systems typically do not provide ACID

• Basically Available
• Soft state
• Eventually consistent 
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ACID vs. BASE
• The idea is that by giving up ACID constraints, one 

can achieve much higher performance and scalability

• The systems differ in how much they give up
– e.g., most of the systems call themselves “eventually 

consistent”, meaning that updates are eventually 
propagated to all nodes

– but many of them provide mechanisms for some degree of 
consistency, such as multi-version concurrency control
(MVCC)
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“CAP” “Theorem”

• Often Eric Brewer’s CAP theorem cited for NoSQL

• A system can have only two out of three of the following properties: 
– Consistency

• Every read receives the most recent write or an error
– Availability

• Every request receives a (non-error) response, without the 
guarantee that it contains the most recent write

– Partition-tolerance
• The system continues to operate despite an arbitrary number of 

messages being dropped (or delayed) by the network between 
nodes

• The NoSQL systems generally give up consistency
– However, the trade-offs are complex 
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What is different in NOSQL systems

• When you study a new NOSQL system, notice 
how it differs from RDBMS in terms of

1. Concurrency Control
2. Data Storage Medium
3. Replication
4. Transactions
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Choices in NOSQL systems: 
1. Concurrency Control

a) Locks 
– some systems provide one-user-at-a-time read or update locks
– MongoDB provides locking at a field level

b) MVCC
c) None
– do not provide atomicity
– multiple users can edit in parallel
– no guarantee which version you will read

d) ACID
– pre-analyze transactions to avoid conflicts
– no deadlocks and no waits on locks
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Choices in NOSQL systems: 
2. Data Storage Medium

a) Storage in RAM
– snapshots or replication to disk
– poor performance when overflows RAM

b) Disk storage
– caching in RAM
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Choices in NOSQL systems: 
3. Replication

• whether mirror copies are always in sync
a) Synchronous
b) Asynchronous
– faster, but updates may be lost in a crash

c) Both
– local copies synchronously, remote copies 

asynchronously
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Choices in NOSQL systems: 
4. Transaction Mechanisms

a) support
b) do not support
c) in between
– support local transactions only within a single 

object or “shard”
– shard = a horizontal partition of data in a 

database
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Comparison from Cattell’s paper (2011)
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Data Store Categories
• The data stores are grouped according to their data model 
• Key-value Stores: 

– store values and an index to find them based on a programmer- defined key
– e.g., Project Voldemort, Riak, Redis, Scalaris, Tokyo Cabinet, 

Memcached/Membrain/Membase

• Document Stores: 
– store documents, which are indexed, with a simple query mechanism
– e.g., Amazon SimpleDB, CouchDB, MongoDB, Terrastore

• Extensible Record Stores:
– store extensible records that can be partitioned vertically and horizontally across 

nodes (“wide column stores”)
– e.g., Hbase, HyperTable, Cassandra, Yahoo’s PNUTS

• “New” Relational Databases: 
– store (and index and query) tuples, e.g., the new RDBMSs that provide horizontal 

scaling
– e.g., MySQL Cluster, VoltDB, Clustrix, ScaleDB, ScaleBase, NimbusDB, Google 

Megastore (a layer on BigTable)
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RDBMS benefits

• Relational DBMSs have taken and retained majority market share 
over other competitors in the past 30 years

• While no “one size fits all” in the SQL products themselves, there is 
a common interface with SQL, transactions, and relational schema 
that give advantages in training, continuity, and data interchange

• Successful relational DBMSs have been built to handle other 
specific application loads in the past: 
– read-only or read-mostly data warehousing, OLTP on multi-core multi-

disk CPUs, in-memory databases, distributed databases, and  now 
horizontally scaled databases 
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NoSQL benefits
• We haven’t yet seen good benchmarks showing that RDBMSs can achieve 

scaling comparable with NoSQL systems like Google’s BigTable

• If you only require a lookup of objects based on a single key, then a key-
value/document store may be adequate and probably easier to 
understand than a relational DBMS

• Some applications require a flexible schema

• A relational DBMS makes “expensive” (multi-node multi-table) operations 
“too easy”
– NoSQL systems make them impossible or obviously expensive for 

programmers

• The new systems are slowly gaining market shares too
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