
CompSci 516
Database Systems

Lecture 20
Distributed DBMS

NOSQL

Instructor: Sudeepa Roy

1Duke CS, Spring 2022 CompSci 516: Database Systems

Announcements (Tues, 03/22)
• Quiz4 due Thursday
• HW3
• Survey on Ed
• Project report deadline 04/13

2Duke CS, Spring 2022 CompSci 516: Database Systems

3

Relational Model

Query in
SQL / RA / RC Recursion

Normal Forms, FD

Storage Index

Join algo/Sorting Execution/
Optimization

XML NOSQL
JSON/MongoDB

Map-
Reduce/

Spark
Parallel
DBMS

Basics Concurrency
Control Recovery

Where are we now? (detour)
Relational model, queries, db design

Other Topics

Beyond Relational Model

Transactions

(Basic) Big Data Processing

DBMS Internals and Query Processing

Covered

To be covered
Next

Distributed
DBMS

Data Mining Data Cube

Reading Material
• [RG]

– Parallel DBMS: Chapter 22.1-22.5
– Distributed DBMS: Chapter 22.6 – 22.14

• [GUW]
– Parallel DBMS and map-reduce: Chapter 20.1-20.2
– Distributed DBMS: Chapter 20.3, 20.4.1-20.4.2, 20.5-20.6

• Other recommended readings:
– Chapter 2 (Sections 1,2,3) of Mining of Massive Datasets, by Rajaraman and Ullman:

http://i.stanford.edu/~ullman/mmds.html
– Original Google MR paper by Jeff Dean and Sanjay Ghemawat, OSDI’ 04:

http://research.google.com/archive/mapreduce.html

4

Acknowledgement:
The following slides have been created adapting the
instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

Duke CS, Spring 2022 CompSci 516: Database Systems

http://i.stanford.edu/~ullman/mmds.html
http://research.google.com/archive/mapreduce.html

Distributed DBMS

Duke CS, Spring 2022 CompSci 516: Database Systems 5

Topics in Distributed DBMS

• Architecture
• Data Storage
• Query Execution
• Transactions – updates
• Recovery – Two Phase Commit (2PC)

• A brief overview / examples of all these

Duke CS, Spring 2022 CompSci 516: Database Systems 6

Distributed Data Independence
• Users should not have to know where data is

located
– no need to know the locations of references

relations, their copies or fragments (later)
– extends Physical and Logical Data Independence

principles

• Queries spanning multiple sites should be
optimized in a cost-based manner
– taking into account communication costs and

differences in local computation costs

Duke CS, Spring 2022 CompSci 516: Database Systems 7

Distributed DBMS Architectures

• Three alternative approaches

1. Client-Server
– Client: user interace, server: executes queries

2. Collaborating Server
– All are of the same status

3. Middleware
– Good for integrating legacy systems, middleware

coordinates, individual server executes local queries

Duke CS, Spring 2022 CompSci 516: Database Systems 8

CLIENT CLIENT

SERVER SERVER SERVER

QUERY

SERVER
SERVER

SERVERQUERY

Storing Data in a Distributed DBMS
• A single relation may be partitioned or fragmented across

several sites
– typically at sites where they are most often accessed

• The data can be replicated as well
– when the relation is in high demand or for robustness

Duke CS, Spring 2022 CompSci 516: Database Systems 9

• Horizontal:
– Usually disjoint
– Can often be identified by a selection query

• employees in a city – locality of reference
– To retrieve the full relation, need a union

• Vertical:
– Identified by projection queries
– Typically unique TIDs added to each tuple
– TIDs replicated in each fragments
– Ensures that we have a Lossless Join

TID
t1
t2
t3
t4

Joins in a Distributed DBMS
• Can be very expensive if relations are stored at

different sites

1. Fetch as needed
2. Ship to one site
3. Semi-join
4. Bloom join

Duke CS, Spring 2022 CompSci 516: Database Systems 10

Sailors (S) Reserves (R)

LONDON PARIS

500 pages 1000 pages

Sailors as outer – for each S page, fetch all R pages
from Paris
if cached at London, each R page fetched once

Ship Sailor to Paris
Unnecessary shipping
Not all tuples used

Semijoin
• Suppose want to ship R to London and then do join with S at

London. Instead,
1. At London, project S onto join columns and ship this to Paris

– Here foreign keys, but could be arbitrary join

2. At Paris, join S-projection with R
– Result is called reduction of Reserves w.r.t. Sailors (only these tuples are

needed)

3. Ship reduction of R to back to London
4. At London, join S with reduction of R

Duke CS, Spring 2022 CompSci 516: Database Systems 11

LONDON PARIS

500 pages 1000 pages

Sailors (S) Reserves (R)

• Tradeoff the cost of computing and shipping projection for cost of shipping full
R relation
– Especially useful if there is a selection on Sailors, and answer desired at London

Bloomjoin

• Similar idea like semi-join
• Suppose want to ship R to London and then do join with S at London (like semijoin)

Duke CS, Spring 2022 CompSci 516: Database Systems 12

1. At London, compute a bit-vector of some size k:
– Hash column values into range 0 to k-1
– If some tuple hashes to p, set bit p to 1 (p from 0 to k-1)
– Ship bit-vector to Paris

2. At Paris, hash each tuple of R similarly
– discard tuples that hash to 0 in S’s bit-vector
– Result is called reduction of R w.r.t S

3. Ship “bit-vector-reduced” R to London
4. At London, join S with reduced R
• Bit-vector cheaper to ship, almost as effective

– the size of the reduction of R shipped back can be larger. Why?

LONDON PARIS

500 pages 1000 pages

Sailors (S) Reserves (R)

Distributed Query Optimization

• Similar to centralized optimization, but have differences
1. Communication costs must be considered
2. Local site autonomy must be respected
3. New distributed join methods should be considered

• Query site constructs global plan, with suggested
local plans describing processing at each site
– If a site can improve suggested local plan, free to do so

Duke CS, Spring 2022 CompSci 516: Database Systems 13

Review

Duke CS, Spring 2022 CompSci 516: Database Systems 14

Announcements (Thurs, 03/24)
• Quiz4 due today noon
• HW3 due 4/5 (Tues) noon
• Survey on Ed due by tonight on project teams

dynamics
• More frequent check in for all teams by

mentors
• Project report deadline 04/13

15Duke CS, Spring 2022 CompSci 516: Database Systems

Updating Distributed Data
• Synchronous Replication: All copies of a modified relation (or

fragment) must be updated before the modifying transaction
commits
– Always updated but expensive commit protocols (2PC – soon!)
– By “voting” - e.g., 10 copies; 7 written for update; 4 copies read (why 4?)
– Read-any Write-all (special case of voting, why not write-any read all?)

• Asynchronous Replication: Copies of a modified relation are only
periodically updated; different copies may get out-of-sync in the
meantime
– More efficient – many current products follow this approach
– Primary site (one master copy) or peer-to-peer (multiple master copies)

Duke CS, Spring 2022 CompSci 516: Database Systems 16

Distributed Locking
• How do we manage locks for objects across many sites?

1. Centralized: One site does all locking
– Vulnerable to single site failure

2. Primary Copy: All locking for an object done at the primary copy site
– Reading requires access to locking site as well as site where the object

copy is stored
3. Fully Distributed: Locking for a copy done at site where the copy is stored

– Locks at all sites while writing an object (unlike previous two)
– May lead to “undetected” or “missing” ”global deadlock” due to delay in

information propagation
– Timeout or hierarchical detection

• e.g. sites (every 10 sec)-> sites in a state (every min)-> sites in a country (every
10 min) -> global waits for graph. Intuition: more deadlocks are likely across
closely related sites

Duke CS, Spring 2022 CompSci 516: Database Systems 17

T1 T1 T1T2 T2 T2

SITE A SITE B GLOBAL

Distributed Recovery

• Two new issues:
– New kinds of failure, e.g., links and remote sites
– If “sub-transactions” of a transaction execute at

different sites, all or none must commit
– Need a commit protocol to achieve this
– Most widely used: Two Phase Commit (2PC)

• A log is maintained at each site
– as in a centralized DBMS
– commit protocol actions are additionally logged

Duke CS, Spring 2022 CompSci 516: Database Systems 18

Two-Phase Commit (2PC)

• Site at which transaction originates is
coordinator

• Other sites at which it executes are
subordinates
– w.r.t. coordination of this transaction

Example on slides

Duke CS, Spring 2022 CompSci 516: Database Systems 19

When a transaction wants to commit – 1/5

1. Coordinator sends prepare message to each
subordinate

Duke CS, Spring 2022 CompSci 516: Database Systems 20

When a transaction wants to commit – 2/5

2. Subordinate receives the prepare message
a) decides whether to abort or commit its subtransaction
b) force-writes an abort or prepare log record
c) then sends a no or yes message to coordinator

Duke CS, Spring 2022 CompSci 516: Database Systems 21

When a transaction wants to commit – 3/5
3. If coordinator gets unanimous yes votes from all subordinates

a) it force-writes a commit log record
b) then sends commit message to all subs

Else (if receives a no message or no response from some subordinate),
a) it force-writes abort log record
b) then sends abort messages

Duke CS, Spring 2022 CompSci 516: Database Systems 22

When a transaction wants to commit – 4/5

4. Subordinates force-write abort/commit log record
based on message they get

a) then send ack message to coordinator
b) If commit received, commit the subtransaction
c) write an end record

Duke CS, Spring 2022 CompSci 516: Database Systems 23

When a transaction wants to commit – 5/5

5. After the coordinator receives ack from all subordinates,
– writes end log record

Transaction is officially committed when the coordinator’s
commit log record reaches the disk
– subsequent failures cannot affect the outcomes

Duke CS, Spring 2022 CompSci 516: Database Systems 24

Comments on 2PC
• Two rounds of communication

– first, voting
– then, termination
– Both initiated by coordinator

• Any site (coordinator or subordinate) can unilaterally decide to
abort a transaction
– but unanimity/consensus needed to commit

• Every message reflects a decision by the sender
– to ensure that this decision survives failures, it is first recorded in the local

log and is force-written to disk

• All commit protocol log records for a transaction contain tid and
Coordinator-id
– The coordinator’s abort/commit record also includes ids of all

subordinates.
Duke CS, Spring 2022 CompSci 516: Database Systems 25

Restart After a Failure at a Site – 1/4

• Recovery process is invoked after a sites comes back up
after a crash
– reads the log and executes the commit protocol
– the coordinator or a subordinate may have a crash
– one site can be the coordinator some transaction and

subordinates for others

Duke CS, Spring 2022 CompSci 516: Database Systems 26

Restart After a Failure at a Site – 2/4

• If we have a commit or abort log record for transaction T,
but not an end record, must redo/undo T respectively
– If this site is the coordinator for T (from the log record), keep

sending commit/abort messages to subs until acks received
– then write an end log record for T

Duke CS, Spring 2022 CompSci 516: Database Systems 27

Restart After a Failure at a Site – 3/4

• If we have a prepare log record for transaction T, but not
commit/abort
– This site is a subordinate for T
– Repeatedly contact the coordinator to find status of T
– Then write commit/abort log record
– Redo/undo T
– and write end log record

Duke CS, Spring 2022 CompSci 516: Database Systems 28

Restart After a Failure at a Site – 4/4

• If we don’t have even a prepare log record for T
– T was not voted to commit before crash
– unilaterally abort and undo T
– write an end record

• No way to determine if this site is the coordinator or subordinate
– If this site is the coordinator, it might have sent prepare messages
– then, subs may send yes/no message – coordinator is detected – ask

subordinates to abort

Duke CS, Spring 2022 CompSci 516: Database Systems 29

Blocking

• If coordinator for transaction T fails, subordinates who have voted
yes cannot decide whether to commit or abort T until coordinator
recovers.
– T is blocked
– Even if all subordinates know each other (extra overhead in prepare

message) they are blocked unless one of them voted no
• Note: even if all subs vote yes, the coordinator then can give a no

vote, and decide later to abort!

Duke CS, Spring 2022 CompSci 516: Database Systems 30

Link and Remote Site Failures

• If a remote site does not respond during the
commit protocol for transaction T, either because
the site failed or the link failed:
– If the current site is the coordinator for T, should abort T
– If the current site is a subordinate, and has not yet voted

yes, it should abort T
– If the current site is a subordinate and has voted yes, it is

blocked until the coordinator responds
– needs to periodically contact the coordinator until

receives a reply

Duke CS, Spring 2022 CompSci 516: Database Systems 31

Observations on 2PC

• Ack messages used to let coordinator know when it
can “forget” a transaction; until it receives all acks, it
must keep T in the transaction Table

• If coordinator fails after sending prepare messages
but before writing commit/abort log records, when it
recovers, it aborts the transaction

• If a subtransaction does no updates, its commit or
abort status is irrelevant

Duke CS, Spring 2022 CompSci 516: Database Systems 32

NoSQL

• Optional reading:
– Cattell’s paper (2010-11)
– Warning! some info will be outdated
– see webpage http://cattell.net/datastores/ for

updates and more pointers
Duke CS, Spring 2022 CompSci 516: Database Systems 33

http://cattell.net/datastores/

NOSQL
• Many of the new systems are referred to as “NoSQL” data

stores
– MongoDB, CouchDB, VoltDB, Dynamo, Membase, ….

• NoSQL stands for “Not Only SQL” or “Not Relational”
– not entirely agreed upon

• NoSQL = “new” database systems
– not typically RDBMS
– relax on some requirements, gain efficiency and scalability

• New systems choose to use/not use several concepts we
learnt so far
– You may find systems that use multi-version Concurrency Control

(MVCC) or, asynchronous replication

Duke CS, Spring 2022 CompSci 516: Database Systems 34

OLTP (Online
Transaction Processing)

Data Warehousing/OLAP (On
Line Analytical Processing)

Mostly updates Mostly reads
Applications:
Order entry, sales update,
banking transactions

Applications:
Decision support in industry/organization

Detailed, up-to-date data Summarized, historical data
(from multiple operational db, grows over
time)

Structured, repetitive, short tasks Query intensive, ad hoc, complex queries
Each transaction reads/updates
only a few tuples (tens of)

Each query can access many records, and
perform many joins, scans, aggregates

MB-GB data GB-TB data
Typically clerical users Decision makers, analysts as users
Important:
Consistency, recoverability,
Maximizing tr. throughput

Important:
Query throughput
Response times

35Duke CS, Spring 2022 CompSci 516: Database Systems

Applications of New Systems

• Designed to scale simple “OLTP”-style application
loads
– to do updates as well as reads
– in contrast to traditional DBMSs and data warehouses
– to provide good horizontal scalability for simple read/write

database operations distributed over many servers

• Originally motivated by Web 2.0 applications
– these systems are designed to scale to thousands or

millions of users

Duke CS, Spring 2022 CompSci 516: Database Systems 36

NoSQL: Key Features

1. the ability to horizontally scale “simple operations”
throughput over many servers

2. the ability to replicate and to distribute (partition) data over
many servers

3. a weaker concurrency model than the ACID transactions of
most relational (SQL) database systems

4. efficient use of distributed indexes and RAM for data storage
5. the ability to dynamically add new attributes to data records

Duke CS, Spring 2022 CompSci 516: Database Systems 37

BASE (not ACID J)

• Recall ACID for RDBMS desired properties of
transactions:
– Atomicity, Consistency, Isolation, and Durability

• NOSQL systems typically do not provide ACID

• Basically Available
• Soft state
• Eventually consistent

Duke CS, Spring 2022 CompSci 516: Database Systems 38

ACID vs. BASE
• The idea is that by giving up ACID constraints, one

can achieve much higher performance and scalability

• The systems differ in how much they give up
– e.g., most of the systems call themselves “eventually

consistent”, meaning that updates are eventually
propagated to all nodes

– but many of them provide mechanisms for some degree of
consistency, such as multi-version concurrency control
(MVCC)

Duke CS, Spring 2022 CompSci 516: Database Systems 39

“CAP” “Theorem”

• Often Eric Brewer’s CAP theorem cited for NoSQL

• A system can have only two out of three of the following properties:
– Consistency

• Every read receives the most recent write or an error
– Availability

• Every request receives a (non-error) response, without the
guarantee that it contains the most recent write

– Partition-tolerance
• The system continues to operate despite an arbitrary number of

messages being dropped (or delayed) by the network between
nodes

• The NoSQL systems generally give up consistency
– However, the trade-offs are complex

Duke CS, Spring 2022 CompSci 516: Database Systems 40

https://en.wikipedia.org/wiki/CAP_theorem

What is different in NOSQL systems

• When you study a new NOSQL system, notice
how it differs from RDBMS in terms of

1. Concurrency Control
2. Data Storage Medium
3. Replication
4. Transactions

Duke CS, Spring 2022 CompSci 516: Database Systems 41

Choices in NOSQL systems:
1. Concurrency Control

a) Locks
– some systems provide one-user-at-a-time read or update locks
– MongoDB provides locking at a field level

b) MVCC
c) None
– do not provide atomicity
– multiple users can edit in parallel
– no guarantee which version you will read

d) ACID
– pre-analyze transactions to avoid conflicts
– no deadlocks and no waits on locks

Duke CS, Spring 2022 CompSci 516: Database Systems 42

Choices in NOSQL systems:
2. Data Storage Medium

a) Storage in RAM
– snapshots or replication to disk
– poor performance when overflows RAM

b) Disk storage
– caching in RAM

Duke CS, Spring 2022 CompSci 516: Database Systems 43

Choices in NOSQL systems:
3. Replication

• whether mirror copies are always in sync
a) Synchronous
b) Asynchronous
– faster, but updates may be lost in a crash

c) Both
– local copies synchronously, remote copies

asynchronously

Duke CS, Spring 2022 CompSci 516: Database Systems 44

Choices in NOSQL systems:
4. Transaction Mechanisms

a) support
b) do not support
c) in between
– support local transactions only within a single

object or “shard”
– shard = a horizontal partition of data in a

database

Duke CS, Spring 2022 CompSci 516: Database Systems 45

Comparison from Cattell’s paper (2011)

Duke CS, Spring 2022 CompSci 516: Database Systems 46

FYI only –Optional slide

Data Store Categories
• The data stores are grouped according to their data model
• Key-value Stores:

– store values and an index to find them based on a programmer- defined key
– e.g., Project Voldemort, Riak, Redis, Scalaris, Tokyo Cabinet,

Memcached/Membrain/Membase

• Document Stores:
– store documents, which are indexed, with a simple query mechanism
– e.g., Amazon SimpleDB, CouchDB, MongoDB, Terrastore

• Extensible Record Stores:
– store extensible records that can be partitioned vertically and horizontally across

nodes (“wide column stores”)
– e.g., Hbase, HyperTable, Cassandra, Yahoo’s PNUTS

• “New” Relational Databases:
– store (and index and query) tuples, e.g., the new RDBMSs that provide horizontal

scaling
– e.g., MySQL Cluster, VoltDB, Clustrix, ScaleDB, ScaleBase, NimbusDB, Google

Megastore (a layer on BigTable)
Duke CS, Spring 2022 CompSci 516: Database Systems 47

FYI only –Optional slide

RDBMS benefits

• Relational DBMSs have taken and retained majority market share
over other competitors in the past 30 years

• While no “one size fits all” in the SQL products themselves, there is
a common interface with SQL, transactions, and relational schema
that give advantages in training, continuity, and data interchange

• Successful relational DBMSs have been built to handle other
specific application loads in the past:
– read-only or read-mostly data warehousing, OLTP on multi-core multi-

disk CPUs, in-memory databases, distributed databases, and now
horizontally scaled databases

Duke CS, Spring 2022 CompSci 516: Database Systems 48

NoSQL benefits
• We haven’t yet seen good benchmarks showing that RDBMSs can achieve

scaling comparable with NoSQL systems like Google’s BigTable

• If you only require a lookup of objects based on a single key, then a key-
value/document store may be adequate and probably easier to
understand than a relational DBMS

• Some applications require a flexible schema

• A relational DBMS makes “expensive” (multi-node multi-table) operations
“too easy”
– NoSQL systems make them impossible or obviously expensive for

programmers

• The new systems are slowly gaining market shares too
Duke CS, Spring 2022 CompSci 516: Database Systems 49

