CompSci 516
 Database Systems

Lecture 22
 Query Optimization

Instructor: Sudeepa Roy

Where are we now?

Announcements (Tues, 03/29)

- HW3 due 4/5 (Tues) noon
- Let us know if you need someone to work with
- More frequent check in for all teams by mentors
- Project report deadline 04/13

Reading Material

- [RG]
- Query optimization: Chapter 15 (overview only)
- [GUW]
- Chapter 16.2-16.7
- Original paper by Selinger et al. :
- P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access Path Selection in a Relational Database Management System
Proceedings of ACM SIGMOD, 1979. Pages 22-34
- No need to understand the whole paper, but take a look at the example (link on the course webpage)

Acknowledgement:

- The following slides have been created adapting the instructor material of the [RG] book provided by the authors Dr. Ramakrishnan and Dr. Gehrke.
- Some of the following slides have been created by adapting slides by Profs. Shivnath Babu and Magda Balazinska

Query Blocks: Units of Optimization

- Query Block
- No nesting
- One SELECT, one FROM
- At most one WHERE, GROUP BY, HAVING
- SQL query
- => parsed into a collection of query blocks

SELECT S.sname
FROM Sailors S
WHERE S.age IN
(SELECT MAX (S2.age)
FROM Sailors S2
GROUP BY S2.rating)

Nested block

- => the blocks are optimized one block at a time
- Express single-block it as a relational algebra (RA) expression

Cost Estimation

- For each plan considered, must estimate cost:
- Must estimate cost of each operation in plan tree.
- Depends on input cardinalities
- We've discussed how to estimate the cost of operations (sequential scan, index scan, joins, etc.)
- Must also estimate size of result for each operation in tree
- gives input cardinality of next operators
- Also consider
- whether the output is sorted
- intermediate results written to disk

Relational Algebra Equivalences

- Allow us to choose different join orders and to `push’ selections and projections ahead of joins.
: Selections: $\sigma_{c 1 \wedge \ldots \wedge c n}(R) \equiv \sigma_{c 1}\left(\ldots \sigma_{c n}(R)\right)$ (Cascade)

$$
\sigma_{c 1}\left(\sigma_{c 2}(R)\right) \equiv \sigma_{c 2}\left(\sigma_{c 1}(R)\right) \quad \text { (Commute) }
$$

* Projections: $\pi_{a 1}(R) \equiv \pi_{a 1}\left(\ldots\left(\pi_{a n}(R)\right)\right)$
(Cascade)
* Joins: $R \bowtie(S \bowtie T) \equiv(R \bowtie S) \bowtie T$
(Associative)

$$
(R \bowtie S) \equiv(S \bowtie R)
$$

(Commute)

There are many more intuitive equivalences, see 15.3 .4 for details if interested

Notation

- $T(R)$: Number of tuples in R
- $B(R)$: Number of blocks (pages) in R
- $V(R, A)$: Number of distinct values of attribute A in R

Query Optimization Problem

Pick the best plan from the space of physical plans

Cost-based Query Optimization

Pick the plan with least cost

Challenge:

- Do not want to execute more than one plans
- Need to estimate the cost without executing the plan!
"heuristic-based" optimizer (e.g. push selections down) have limited power and not used much

Cost-based Query Optimization

Pick the plan with least cost

Tasks:

1. Estimate the cost of individual operators
done
2. Estimate the size of output of individual operators today
3. Combine costs of different operators in a plan
today
4. Efficiently search the space of plans today

Task 1 and 2

Estimating cost and size of different operators

- Size = \#tuples, NOT \#pages
- Cost = \#page I/O
- need to consider whether the intermediate relation fits in memory, is written back to/read from disk (or on-the-fly goes to the next operator), etc.

Desired Properties of

Estimating Sizes of Intermediate Relations

Ideally,

- should give accurate estimates (as much as possible)
- should be easy to compute
- should be logically consistent
- size estimate should be independent of how the relation is computed (e.g. which join algorithm/join order is used)
- But, no "universally agreed upon" ways to meet these goals

Cost of Table Scan

Cost: $\mathrm{B}(\mathrm{R})$
 Size: $T(R)$

$T(R):$ Number of tuples in R
$B(R):$ Number of blocks in R

Cost of Index Scan

Cost: $B(R)$ - if clustered $T(R)$ - if unclustered

Size: $T(R)$

Note:

$$
\begin{aligned}
& T(R): \text { Number of tuples in } R \\
& B(R): \text { Number of blocks in } R
\end{aligned}
$$

1. size is independent of the implementation of the scan/index
2. Index scan is bad if unclustered

Cost of Index Scan with Selection

$$
X=\sigma_{R . A>50} R
$$

> Cost: $B(R)^{*} f-$ if clustered $T(R)^{*} f-$ if unclustered

Size: $T(R)$ * f

$T(R)$: Number of tuples in R
$B(R)$: Number of blocks in R
Reduction factor
$\mathrm{f}=(\operatorname{Max}(\mathrm{R} . \mathrm{A})-50) /(\operatorname{Max}(\mathrm{R} . \mathrm{A})-\operatorname{Min}($ R.A $))$
assumes uniform distribution

Cost of Index Scan with Selection (and multiple conditions)

$$
X=\sigma_{R . A}>50 \text { and } R \cdot B=c R
$$

assume index on
(A, B)

What is $f 1$ if the first condition is $100>$ R. $1>50$?

Cost: $B(R){ }^{*} f$ - if clustered $T(R) * f-$ if unclustered

Size: $T(R)$ * f

R
$T(R)$: Number of tuples in R $B(R)$: Number of blocks in R $\mathrm{V}(\mathrm{R}, \mathrm{A})$: Number of distinct values of attribute A in R $\mathrm{f}=\mathrm{f} 1$ * f2 (assumes independence and uniform distribution)

Cost of Projection

$$
X=\pi_{A} R
$$

Cost: depends on the method of scanning R

$B(R)$ for table scan or clustered index scan

Size: $T(R)$

But tuples are smaller
If you have more information on the size of the smaller tuples, can estimate \#I/O better

Size of Join

Quite tricky

- If disjoint A and B values
- then 0
- If A is key of R and B is foreign key of S
- then $T(S)$
- If all tuples have the same value of R.A= S.B = x
- then $T(R)$ * $T(S)$
$T(R)$: Number of tuples in R $B(R)$: Number of blocks in R $V(R, A)$: Number of distinct values of attribute A in R
$T(R):$ Number of tuples in R
$B(R)$: Number of blocks in R $\mathrm{V}(\mathrm{R}, \mathrm{A})$: Number of distinct values of attribute A in R

Size of Join

Two standard assumptions

1. Containment of value sets:

- if $V(R, A)<=V(S, B)$, then all A-values of R are included in B-values of S
- e.g. satisfied when A is foreign key, B is key

2. Preservation of value sets:

- For all "non-joining" attributes, the set of distinct values is preserved in join
- $\quad V(R \bowtie S, C)=V(R, C)$, where $C \neq A$ is an attribute in R
$V(R \bowtie S, D)=V(S, D)$, where $D \neq B$ is an attribute in S
- \quad Helps estimate distinct set size in $R \bowtie S \bowtie T$

Size of Join

Size of Join

Reduction factor

$f=1 / \max (V(R, A), V(S, B))$

Size $=T(R){ }^{*} T(S) * f$

Why max?

- Suppose $V(R, A)<=V(S, B)$
- The probability of a A-value joining with a B-value is $1 / V(S . B)=$ reduction factor
- Under the two assumptions stated earlier + uniformity
$T(R)$: Number of tuples in R $B(R)$: Number of blocks in R $V(R, A)$: Number of distinct values of attribute A in R

Task 3: Combine cost of different operators in a plan

With Examples
 "Given" the physical plan

- Size = \#tuples, NOT \#pages
- Cost = \#page I/O
- but, need to consider whether the intermediate relation fits in memory, is written back to disk (or on-the-fly goes to the next operator) etc.

Example Query

Student (sid, name, age, address)
Book(bid, title, author)
Checkout(sid, bid, date)
Query:
SELECT S.name
FROM Student S, Book B, Checkout C
WHERE S.sid = C.sid
AND B. bid = C.bid
AND B.author = 'Olden Fames'
AND S.age > 12
AND S.age < 20

S(sid,name,age,addr) B(bid,title,author) C(sid,bid,date)

Assumptions

- Student: S, Book: B, Checkout: C On disk initially
- Sid, bid foreign key in C referencing S and B resp.
- There are 10,000 Student records stored on 1,000 pages.
- There are 50,000 Book records stored on 5,000 pages.
- There are 300,000 Checkout records stored on 15,000 pages.
- There are 500 different authors.
- Student ages range from 7 to 24.

Warning: a few dense slides next ${ }^{-}$

S(sid,name,age,addr)

$$
T(S)=10,000
$$

$B(S)=1,000$
$V(B$, author $)=500$
B(bid, title,author)
$T(B)=50,000$
$B(B)=5,000$
7 <= age <= 24
C(sid,bid,date)
$T(C)=300,000$
B(C) $=15,000$

Physical Query Plan - 1

(Tuple-based nested loop B inner)
(Page-oriented -nested loop, S outer, C inner)

Student S Checkout C (File scan) (File scan)
Q. Compute

1. the cost and cardinality in steps (a) to (d)
2. the total cost

Assumptions (given):

- Data is not sorted on any attributes
- For (b), outer relation fit in memory

S(sid,name,age,addr)
B(bid,title,author)
C(sid,bid,date)
$T(S)=10,000$
$T(B)=50,000$
$T(C)=300,000$
$B(S)=1,000$
$B(B)=5,000$
$V(B$, author $)=500$
$B(C)=15,000$

Cost =
$B(S)+B(S)$ * $B(C)$
$=1000+1000 * 15000$
$=15,001,000$

Cardinality =

$\mathrm{T}(\mathrm{C})=300,000$

- foreign key join, output pipelined to next join
- Can apply the "formula" as well
$T(S)$ * $T(C) / m a x(V(S$, sid),
V(C, sid))
$=T(C)$
since $V(S$, sid $)>=V(C$, sid $)$ and $T(S)=V(S$, sid $)$

Student S Checkout C
(File scan) (File scan)
(Page-oriented -nested loop, S outer, C inner)

S(sid,name,age,addr)
B(bid,title,author)
C(sid,bid,date)
$T(S)=10,000$
$T(B)=50,000$
$T(C)=300,000$
$B(S)=1,000$
$B(B)=5,000$
$V(B$, author $)=500$
$B(C)=15,000$
(On the fly) (d) $\Pi_{\text {name }}$
(On the fly) (c) $\sigma_{12<a g e<20 ~} \wedge$ author $=$ 'Olden Fames'

B inner)
(Page-oriented -nested loop, S outer, C inner)
(Tuple-based nested loop

Student S Checkout C
(File scan) (File scan)
$T(S)=10,000$
$T(B)=50,000$
$T(C)=300,000$
$B(S)=1,000$
$V(B$, author $)=500$

S(sid,name,age,addr)
B(bid, title,author) C(sid,bid,date)
$B(B)=5,000$
7 <= age <= 24
B(C) $=15,000$

(c, d)

(On the fly) (d) $\Pi_{\text {name }}$
(On the fly) (c) $\sigma_{12<\text { age<20 }} \wedge$ author $=$ 'Olden Fames'
(Tuple-based nested loop B inner)
(Page-oriented -nested loop, S outer, C inner)

Cost =
0 (on the fly)
Cardinality $=$ 300,000 * 1/500 * 7/18
$=234$ (approx) (assuming uniformity and independence)

Student S Checkout C
(File scan) (File scan)

S(sid,name,age,addr)
$\begin{array}{lr}T(S)=10,000 & B(S \\ T(B)=50,000 & B(B) \\ T(C)=300,000 & B(C)\end{array}$
(On the fly) (d) $\Pi_{\text {name }}$
(On the fly) (c) $\sigma_{12<a g e<20 ~} \wedge$ author = 'Olden Fames'

Total cost $=$

1,515,001,000
Final cardinality = 234 (approx)
(Tuple-based nested loop

B inner)

(Page-oriented
-nested loop,
S outer, C inner)
(b)

Student S Checkout C
(File scan) (File scan)

S(sid,name,age,addr)
B(bid,title,author)
C(sid,bid,date)

$$
\begin{aligned}
& T(S)=10,000 \\
& T(B)=50,000 \\
& T(C)=300,000
\end{aligned}
$$

Physical Query Plan - 2

$B(S)=1,000$
$B(B)=5,000$
$B(C)=15,000$

V(B,author) $=500$
7 <= age <= 24
$V(B$, author $)=500$
7 <= age <= 24
(Indexed-nested loop, B outer, C inner)
(On the fly) (b) $\prod_{\text {bid }}$
(a) $\sigma_{\text {author }}=$ 'Olden Fames' Book B (Index scan)
(On the fly) (g) $\Pi_{\text {name }}$
(d) $\Pi_{\text {sid }}$ (On the fly)

(e) S inner)

bid
Q. Compute

1. the cost and cardinality in steps (a) to (g)
2. the total cost

Assumptions (given):

- Unclustered B+tree index on B.author
- Clustered B+tree index on C.bid
- All index pages are in memory
- Unlimited memory

Student S

(File scan)

S(sid,name,age,addr)
$T(S)=10,000 \quad B(S)=1,000$
$B(B)=5,000$
$\mathrm{V}(\mathrm{B}$, author $)=500$
B (bid,title,author): Un. $B+$ on author $T(B)=50,000$
$T(C)=300,000$
$B(C)=15,000$

> Cost $=$ $T(B) / V(B$, author) $=50,000 / 500$
> $=100$ (unclustered)

Cardinality = 100

(Indexed-nested loop,

B outer, C inner)
(On the fly)

(c) Student S
(File scan)
(a) σ author $=$ 'Olden Fames'

Book B
(e)

S inner)

(Block nested loop
Cost $=$
$T(B) / V(B$, author $)$
$=50,000 / 500$
$=100$ (unclustered)
Cardinality $=$
100

Checkout C
(Index scan)
(Index scan)

S(sid,name,age,addr
$T(S)=10,000 \quad B(S)=1,000$
$B(B)=5,000$
$V(B$, author $)=500$
B (bid,title,author): Un. $B+$ on author $T(B)=50,000$
$T(C)=300,000$
$B(C)=15,000$

Cost $=$ 0 (on the fly)

Cardinality = 100
(On the fly)
sted loop,
(b) $\Pi_{\text {bid }}$
(a) $\sigma_{\text {author }}=$ 'Olden Fames'

Book B
Checkout C
(Index scan) (Index scan)

S(sid,name,age,addr)
$T(S)=10,000 \quad B(S)=1,000$
$V(B$, author $)=500$
B (bid,title,author): Un. B+ on author $T(B)=50,000$
$B(B)=5,000$
7 <= age <= 24
C(sid,bid,date): CI. B+ on bid

(On the fly) $\quad(\mathrm{g}) \Pi_{\text {name }} \quad$ (C)	
(On the fly)	(f) $\sigma_{12<a g e<20}$

(f) 12<age<20

(e)

S inner)

- one index lookup per outer B tuple
- 1 book has $T(C) / T(B)=6$ checkouts (uniformity)
- \# C tuples per page = $\mathrm{T}(\mathrm{C}) / \mathrm{B}(\mathrm{C})=20$
- 6 tuples fit in at most 2 consecutive pages (clustered) could assume 1 page as well
Cost <=
100 * $2=200$
Cardinality =

$$
100 * 6=600
$$

(Indexed-nested loop,
B outer, C inner)
(On the fly)
(b) $\prod_{\text {bid }}$
(a) $\sigma_{\text {author }=\text { 'Olden Fames' }}$

Book B

Checkout C

(Index scan)

S(sid,name,age,addr
$T(S)=10,000 \quad B(S)=1,000$
$B(B)=5,000$
$V(B$, author $)=500$
B (bid,title,author): Un. $B+$ on author $T(B)=50,000$
$T(C)=300,000$
$B(C)=15,000$

Cost $=$
0 (on the fly)
Cardinality = 600
(Indexed-nested loop,
B outer, C inner)
(On the fly)

(Block nested loop S inner)

(a) $\sigma_{\text {author }}=$ 'Olden Fames'

Book B
Checkout C
(Index scan)
(Index scan)

S(sid,name,age,addr)
$T(S)=10,000 \quad B(S)=1,000$
$B(B)=5,000$
$V(B$, author $)=500$
B (bid,title,author): Un. B+ on author $T(B)=50,000$
$T(C)=300,000$
$B(C)=15,000$
(e)

Outer relation is already in (unlimited) memory need to scan S relation

Cost $=$ $B(S)=1000$

Cardinality = 600
(one student per checkout)
(b) $\prod_{\text {bid }}$
(a) $\sigma_{\text {author }}=$ 'Olden Fames'

Book B

Checkout C
(Index scan)

S(sid,name,age,addr
$T(S)=10,000 \quad B(S)=1,000$
$B(B)=5,000$
$\mathrm{V}(\mathrm{B}$, author $)=500$
B (bid,title,author): Un. $B+$ on author $T(B)=50,000$
$T(C)=300,000 \quad B(C)=15,000$

Cost =
$\mathbf{0}$ (on the fly)
Cost =
$\mathbf{0}$ (on the fly)

Cardinality $=$

600 * $7 / 18=234$ (approx)

(Block nested loop
S inner)
(e)
sid
(Indexed-nested loop,
B outer, C inner)
(On the fly)

(c) Student S
(File scan)
(a) σ author $=$ 'Olden Fames'

Book B
Checkout C
(Index scan)

S(sid,name,age,addr
$T(S)=10,000 \quad B(S)=1,000$
$B(B)=5,000$
$\mathrm{V}(\mathrm{B}$, author $)=500$
B (bid,title,author): Un. $B+$ on author $T(B)=50,000$
$T(C)=300,000 \quad B(C)=15,000$
(g)

Cost = 0 (on the fly)

Cardinality = 234
(On the fly)
sted loop,
(b) $\Pi_{\text {bid }}$
(a) σ author $=$ 'OIden Fames'

Book B
Checkout C
(Index scan) (Index scan)

S(sid,name,age,addr)
$T(S)=10,000 \quad B(S)=1,000$
$B(B)=5,000$
$V(B$, author $)=500$
B (bid,title,author): Un. $B+$ on author $T(B)=50,000$
$T(C)=300,000$
$B(C)=15,000$

(total)

Total cost $=$ 1300

(compare with 1,515,001,000 for plan 1!)

Final cardinality = 234 (approx)
(same as plan 1!)
(On the fly)
(Indexed-nested loop,
B outer, C inner)
(On the fly)

Checkout C
(Index scan)

(a) $\sigma_{\text {author }}=$ 'Olden Fames' Book B
(Index scan)

S inner)
(e)
(c) Student S
(File scan)

Task 4:

Efficiently searching the plan space

Use dynamic-programming based
Selinger's algorithm!

Heuristics for pruning plan space

- Apply predicates as early as possible
- Avoid plans with cross products
- Consider only left-deep join trees

Join Trees

Query: R1 $\bowtie R 2 \bowtie R 3 \bowtie R 4 \bowtie R 5$

left-deep join tree

(logical plan space)

- Several possible structure of the trees
- Each tree can have n ! permutations of relations on leaves (physical plan space)
- Different implementation and scanning of intermediate operators for each logical plan

Selinger Algorithm

- Dynamic Programming based
- Dynamic Programming:
- General algorithmic paradigm
- Exploits "principle of optimality"
- Useful reading: Chapter 16, Introduction to Algorithms, Cormen, Leiserson, Rivest
- Considers the search space of left-deep join trees
- reduces search space (only one structure)
- but still $n!$ permutations
- interacts well with join algos (esp. NLJ)
- e.g., might not need to write tuples to disk if enough memory

Principle of Optimality

Optimal for "whole" made up from optimal for "parts"

Principle of Optimality

Query: $R 1 \bowtie R 2 \bowtie R 3 \bowtie R 4 \bowtie \sim 5$

this is an Optimal Plan for joining R1 ...R5:

Principle of Optimality

Query: $R 1 \bowtie R 2 \bowtie R 3 \bowtie R 4 \bowtie R 5$

This has to be th'e optimal plan for joining R3, R2, R4, R1

Principle of Optimality

Query: R1 $\bowtie R 2 \bowtie A 3 \bowtie R 4 \bowtie \Delta 5$

We are using the associativity and commutativity of joins $(R \bowtie S) \bowtie T=R \bowtie(S \bowtie T)$ $R \bowtie S=S \bowtie R$

This has to be th'e optimal plan for joining R3, R2, R4

Exploiting Principle of Optimality

Query: $R 1 \bowtie R 2 \bowtie \Delta \quad \ldots n$

Notation

OPT ($\{R 1, R 2, R 3\}$):

Cost of optimal plan to join $R 1, R 2, R 3$

T ($\{R 1, R 2, R 3\})$:
Number of tuples in $R 1 \bowtie R 2 \bowtie R 3$

Simple Cost Model

$$
\operatorname{Cost}(R \bowtie S)=T(R)+T(S)
$$

All other operators have 0 cost

Note: The simple cost model used for illustration only, it is not used in practice

Cost Model Example

Total Cost: $T(R)+T(S)+T(T)+T(X)$

Selinger Algorithm:

OPT (\{ R1, R2, R3 \}):

Note: Valid only for the simple cost model

Selinger Algorithm:

Query: $R 1 \bowtie R 2 \bowtie R 3 \bowtie R 4$

Selinger Algorithm:

Query: $R 1 \bowtie R 2 \bowtie R 3 \bowtie R 4$

Suppose this path is chosen by the algorithm How to translate to a query plan?

Progress of

algorithm

Selinger Algorithm:

Query: $R 1 \bowtie R 2 \bowtie R 3 \bowtie R 4$
Q. How to optimally compute join of $\{R 1, R 2, R 3, R 4\}$?

Ans: First optimally join $\{R 1, R 3, R 4\}$ then join with $R 2$ as inner.

Progress of

Selinger Algorithm:

Query: $R 1 \bowtie R 2 \bowtie R 3 \bowtie R 4$
Q. How to optimally compute join of $\{R 1, R 3, R 4\}$?

Ans: First optimally join $\{R 1, R 3\}$, then join with R4 as inner.

Progress of

algorithm

$\{R 1, R 2, R 3\} \quad\{R 1, R 2, R 4\} \quad\{R 1, R 3, R 4\}\{R 2, R 3, R 4\}$

Selinger Algorithm:

Query: $R 1 \bowtie \Delta 2 \bowtie R 3 \bowtie \Delta 4$

Q. How to optimally compute join of $\{R 1, R 3\}$?

Ans: First optimally join $\{\mathrm{R} 3\}$, then join with R1 as inner.

Progress of

algorithm

$\{R 1, R 2, R 3\} \quad\{R 1, R 2, R 4\} \quad\{R 1, R 3, R 4\}\{R 2, R 3, R 4\}$

$\{R 1, R 2\} \quad\{R 1, R 3\}\{R 1, R 4\} \quad\{R 2, R 3\} \quad\{R 2, R 4\} \quad\{R 3, R 4\}$

Selinger Algorithm:

Query: $R 1 \bowtie R 2 \bowtie R 3 \bowtie R 4$

Q. How to optimally compute join of $\{R 3\}$?

Ans: Single relation - so optimally scan R3.

Progress of

algorithm

$\{R 1, R 2, R 3\} \quad\{R 1, R 2, R 4\} \quad\{R 1, R 3, R 4\}\{R 2, R 3, R 4\}$

Selinger Algorithm:

Query: $R 1 \bowtie R 2 \bowtie R 3 \bowtie R 4$

Final optimal plan:

NOTE : There is a one-one correspondence between the permutation (R3, R1, R4, R2) and the above left deep plan

Selinger Algorithm:

Query: $R 1 \bowtie R 2 \bowtie R 3 \bowtie R 4$

NOTE:

This is *NOT* done by top-down recursive calls.

- This is done BOTTOM-UP computing the optimal cost of *all* nodes in this lattice only once (dynamic programming).

Progress
of
algorithm

Is it efficient? © $^{-}$

Reduces n ! to 2^{n}
Other optimizations employed too..

More on Query Optimizations

- See the survey:
"An Overview of Query Optimization in Relational
Systems" by Surajit Chaudhuri (link)
- Pushing group by before joins
- Merging views and nested queries
- "Semi-join"-like techniques for multi-block queries
- Recall joins in distributed databases
- Statistics and optimizations
- Starbust and Volcano/Cascade architecture, etc
- New research topics: Robust query optimization, "learned" query optimization, approximate selectivity estimation...

