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Today

• Semantic of recursion in databases

• Recursion in SQL

• Datalog
– Another language for recursion in database queries

• Views
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Reading Material:  Datalog
Optional:
1. The datalog chapters in the “Alice Book” 
Foundations of Databases
Abiteboul-Hull-Vianu
Available online:  http://webdam.inria.fr/Alice/

2. Datalog tutorial
SIGMOD 2011
“Datalog and Emerging Applications: An 
Interactive Tutorial”
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http://xkcdsw.com/1105

Recursion!
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A motivating example

• Example: find Bart’s ancestors
• “Ancestor” has a recursive definition
– 𝑋 is 𝑌’s ancestor if

• 𝑋 is 𝑌’s parent, or
• 𝑋 is 𝑍’s ancestor and 𝑍 is 𝑌’s ancestor
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Parent (parent, child)
parent child
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Recursion in SQL

• SQL2 had no recursion
– You can find Bart’s parents, grandparents, great 

grandparents, etc.
SELECT p1.parent AS grandparent
FROM Parent p1, Parent p2
WHERE p1.child = p2.parent
AND p2.child = 'Bart';

– But you cannot find all his ancestors with a single 
query

– No RA/RC expressions can express ANCESTOR or 
REACHABILITY (TRANSITIVE CLOSURE in a graph) 
[Aho-Ullman, 1979]
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Recursion in Databases

• What can we do to overcome the limitation?

1. Embed SQL in a high-level language supporting recursion
– (-) destroys the high-level declarative characteristic of SQL

2. Augment RC with a high-level declarative mechanism for 
recursion 
– Datalog (Chandra-Harel, 1982)

• SQL2 had no recursion
• SQL:1999 (SQL3) and later versions support “linear Datalog”

– WITH Clause
– In Postgres
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Brief History of Datalog

• Motivated by Prolog – started back in 80’s – then quiet for a long 
time

• A long argument in the Database community whether recursion 
should be supported in query languages
– “No practical applications of recursive query theory ... have been found to 

date”—Michael Stonebraker, 1998
Readings in Database Systems, 3rd Edition Stonebraker and Hellerstein, 
eds.

– Recent work by Hellerstein et al. on Datalog-extensions to build 
networking protocols and distributed systems. [Link]
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Datalog is resurging

• Number of papers and tutorials in DB conferences

• Applications in 
– data integration, declarative networking, program analysis, information 

extraction, network monitoring, security, and cloud computing 

• Systems supporting datalog in both academia and industry:
– Lixto (information extraction)
– LogicBlox (enterprise decision automation)
– Semmle (program analysis) 
– BOOM/Dedalus (Berlekey)
– Coral
– LDL++
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base case

Ancestor query in SQL3

WITH RECURSIVE
Ancestor(anc, desc) AS
(
(SELECT parent, child FROM Parent) 
UNION

(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc)

)
SELECT anc
FROM Ancestor
WHERE desc = 'Bart';

11

Query using 
the relation
defined in 
WITH clause

Define a
relation

recursively

recursion step
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Fixed point of a function

• If 𝑓: 𝑇 → 𝑇 is a function from a type 𝑇 to itself, 
a fixed point of 𝑓 is a value 𝑥 such that 𝑓 𝑥 =
𝑥

• Example: What is the fixed point of 𝑓 𝑥 =
⁄𝑥 2?
– 0, because 𝑓 0 = ⁄0 2 = 0
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To compute fixed point of a function f

• Start with a “seed”: 𝑥 ← 𝑥$
• Compute 𝑓 𝑥
– If 𝑓 𝑥 = 𝑥, stop; 𝑥 is fixed point of 𝑓
– Otherwise, 𝑥 ← 𝑓 𝑥 ; repeat

• Example: compute the fixed point of 𝑓 𝑥 = ⁄𝑥 2
– With seed 1: 1, 1/2, 1/4, 1/8, 1/16, … → 0

FDoesn’t always work, but happens to work for us!

13Duke CS, Spring 2022 CompSci 516: Database Systems



Fixed point of a query

• A query 𝑞 is a function that maps an input table to an output table
• so a fixed point of 𝑞 is a table 𝑇 such that 𝑞 𝑇 = 𝑇
• i.e., if you run the query again on the result, it does not change

To compute fixed point of 𝑞
• Start with an empty table: 𝑇 ← ∅
• Evaluate 𝑞 over 𝑇
– If the result is identical to 𝑇, stop; 𝑇 is a fixed point
– Otherwise, let 𝑇 be the new result; repeat

F Starting from ∅ produces the unique minimal fixed point (assuming 𝑞
is monotone)
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Finding ancestors
• WITH RECURSIVE

Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))
– Think of the definition as Ancestor = 𝑞(Ancestor)
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Linear recursion

• With linear recursion, a recursive definition can make only one 
reference to itself

• Non-linear
– WITH RECURSIVE Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

• Linear
– WITH RECURSIVE Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent)
UNION
(SELECT anc, child
FROM Ancestor, Parent
WHERE desc = parent))
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Linear vs. non-linear recursion

• Linear recursion is easier to implement
– For linear recursion, just keep joining “newly generated” 

Ancestor rows with Parent
• try to figure out why it should work

– For non-linear recursion, need to join newly generated Ancestor
rows with all existing Ancestor rows

• Non-linear recursion may take fewer steps to converge, but 
perform more work
– Example: 𝑎 → 𝑏 → 𝑐 → 𝑑 → 𝑒
– Linear recursion takes 4 steps
– Non-linear recursion takes 3 steps

• More work: e.g., 𝑎 → 𝑑 has two different derivations
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Datalog
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Datalog: Another query language for 
recursion

• Ancestor(x, y) :- Parent(x, y)
• Ancestor(x, y):- Parent(x, z), Ancestor(z, y)

• Like logic programming
• Multiple rules
• Same “head” = union
• “,” = AND

• Same semantics that we discussed so far
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Practice Datalog

• Write Datalog program for reachability:
– R(x, y) :- E(x, y)
– R(x, y) :- E(x, z), R(z, y)

• E(u, v, c): an edge exists from u to v of color “c”
– e.g. E(1, 2, ‘blue’),E(2, 3, ‘red’), ….

• Find node pairs x, y such that x can reach y by a blue path
– BR(x, y) :- E(x, y, ‘blue’) 
– BR(x, y) :- BR(x, z), E(x, y, ’blue’)

• Try reachable by odd number of edges, by odd number of blue 
edges, by alternating blue and red paths etc.
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Optional reading for SQL programming
(from Lecture 3) 
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SQL Injection Attack

• The school probably had something like:
cur.execute("SELECT * FROM Students " + \

"WHERE (name = '" + name + "')")
where name is a string input by user

• Suppose name = Robert’; DROP TABLE Students; --
– Drop deletes a table
– -- starts a comment
– Becomes SELECT * FROM Students WHERE (name = 'Robert’; 

DROP TABLE Students; -- ‘)
22

http://xkcd.com/327/
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Guarding against SQL injection

• Escape certain characters in a user input string, to 
ensure that it remains a single string
– E.g., ', which would terminate a string in SQL, must be 

replaced by '' (two single quotes in a row) within the 
input string

• Luckily, most API’s provide ways to “sanitize” 
input automatically (if you use them properly)
– E.g., pass parameter values in psycopg2 through %s’s

• Check out Ashley Madison data breach story or 
https://medium.com/five-guys-facts/sql-injection-
98199af86c9
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Prepared statements: motivation

while True:
# Input bar, beer, price…
cur.execute('''

UPDATE Serves
SET price = %s
WHERE bar = %s AND beer = %s''', (price, bar, beer))

# Check result...

• Every time we send an SQL string to the DBMS, it 
must perform parsing, semantic analysis, 
optimization, compilation, and finally execution

• A typical application issues many queries with a 
small number of patterns (with different 
parameter values)

• Can we reduce this overhead?
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Optional slide
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Prepared statements: example
cur.execute('''                 # Prepare once (in SQL).
PREPARE update_price AS          # Name the prepared plan,
UPDATE Serves
SET price = $1                   # and note the $1, $2, … notation for
WHERE bar = $2 AND beer = $3''') # parameter placeholders.
while True:

# Input bar, beer, price…
cur.execute('EXECUTE update_price(%s, %s, %s)',\ # Execute many times.

(price, bar, beer))
# Note the switch back to %s for parameter placeholders.

# Check result...

• The DBMS performs parsing, semantic analysis, optimization, and 
compilation only once, when it “prepares” the statement

• At execution time, the DBMS only needs to check parameter types 
and validate the compiled plan

• Most other API’s have better support for prepared statements than 
psycopg2
– E.g., they would provide a cur.prepare() method
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Views
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Views

• A view is like a “virtual” table
– Defined by a query, which describes how to 

compute the view contents on the fly
– DBMS stores the view definition query instead of 

view contents
– Can be used in queries just like a regular table
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Creating and dropping views

• Example: members of Jessica’s Circle
– CREATE VIEW JessicaCircle AS

SELECT * FROM User
WHERE uid IN (SELECT uid FROM Member

WHERE gid = 'jes');

– Tables used in defining a view are called “base tables”
• User and Member above

• To drop a view
– DROP VIEW JessicaCircle;
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User(uid, name, pop)
Member(gid, uid)
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Using views in queries

• Example: find the average popularity of members in 
Jessica’s Circle

– SELECT AVG(pop) FROM JessicaCircle;

– To process the query, replace the reference to the view by its 
definition

– SELECT AVG(pop)
FROM (SELECT * FROM User

WHERE uid IN
(SELECT uid FROM Member
WHERE gid = 'jes'))

AS JessicaCircle;
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Why use views?

• To hide data from users
• To hide complexity from users

• Logical data independence
– If applications deal with views, we can change the 

underlying schema without affecting applications

• To provide a uniform interface for different 
implementations or sources

FReal database applications use tons of views
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