
CompSci 516
Database Systems

Lecture 25
Recursive Query Evaluation

Datalog
And Views

Instructor: Sudeepa Roy

1Duke CS, Spring 2022 CompSci 516: Database Systems

2

Relational Model

Query in
SQL / RA / RC Recursion

Normal Forms, FD

Storage Index

Join algo/Sorting Execution/
Optimization

XML NOSQL
JSON/MongoDB

Map-
Reduce/

Spark
Parallel
DBMS

Basics Concurrency
Control Recovery

Where are we now?
Relational model, queries, db design

Other Topics

Beyond Relational Model

Transactions

(Basic) Big Data Processing

DBMS Internals and Query Processing

Covered

To be covered
Next

Distributed
DBMS

Data Mining
Data Cube

Duke CS, Spring 2022 CompSci 516: Database Systems

Today

• Semantic of recursion in databases

• Recursion in SQL

• Datalog
– Another language for recursion in database queries

• Views

Duke CS, Spring 2022 CompSci 516: Database Systems 3

Reading Material: Datalog
Optional:
1. The datalog chapters in the “Alice Book”
Foundations of Databases
Abiteboul-Hull-Vianu
Available online: http://webdam.inria.fr/Alice/

2. Datalog tutorial
SIGMOD 2011
“Datalog and Emerging Applications: An
Interactive Tutorial”

Duke CS, Spring 2022 CompSci 516: Database Systems 4

Acknowledgement:
Some of the slides have been borrowed from
slides by Prof. Jun Yang

http://webdam.inria.fr/Alice/

5

http://xkcdsw.com/1105

Recursion!

Duke CS, Spring 2022 CompSci 516: Database Systems

A motivating example

• Example: find Bart’s ancestors
• “Ancestor” has a recursive definition
– 𝑋 is 𝑌’s ancestor if

• 𝑋 is 𝑌’s parent, or
• 𝑋 is 𝑍’s ancestor and 𝑍 is 𝑌’s ancestor

6

Parent (parent, child)
parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Bart Lisa

MargeHomer

Abe

Ape

Duke CS, Spring 2022 CompSci 516: Database Systems

Recursion in SQL

• SQL2 had no recursion
– You can find Bart’s parents, grandparents, great

grandparents, etc.
SELECT p1.parent AS grandparent
FROM Parent p1, Parent p2
WHERE p1.child = p2.parent
AND p2.child = 'Bart';

– But you cannot find all his ancestors with a single
query

– No RA/RC expressions can express ANCESTOR or
REACHABILITY (TRANSITIVE CLOSURE in a graph)
[Aho-Ullman, 1979]

7Duke CS, Spring 2022 CompSci 516: Database Systems

Recursion in Databases

• What can we do to overcome the limitation?

1. Embed SQL in a high-level language supporting recursion
– (-) destroys the high-level declarative characteristic of SQL

2. Augment RC with a high-level declarative mechanism for
recursion
– Datalog (Chandra-Harel, 1982)

• SQL2 had no recursion
• SQL:1999 (SQL3) and later versions support “linear Datalog”

– WITH Clause
– In Postgres

Duke CS, Spring 2022 CompSci 516: Database Systems 8

Brief History of Datalog

• Motivated by Prolog – started back in 80’s – then quiet for a long
time

• A long argument in the Database community whether recursion
should be supported in query languages
– “No practical applications of recursive query theory ... have been found to

date”—Michael Stonebraker, 1998
Readings in Database Systems, 3rd Edition Stonebraker and Hellerstein,
eds.

– Recent work by Hellerstein et al. on Datalog-extensions to build
networking protocols and distributed systems. [Link]

Duke CS, Spring 2022 CompSci 516: Database Systems 9

http://dl.acm.org/citation.cfm?id=1860704

Datalog is resurging

• Number of papers and tutorials in DB conferences

• Applications in
– data integration, declarative networking, program analysis, information

extraction, network monitoring, security, and cloud computing

• Systems supporting datalog in both academia and industry:
– Lixto (information extraction)
– LogicBlox (enterprise decision automation)
– Semmle (program analysis)
– BOOM/Dedalus (Berlekey)
– Coral
– LDL++

Duke CS, Spring 2022 CompSci 516: Database Systems 10

base case

Ancestor query in SQL3

WITH RECURSIVE
Ancestor(anc, desc) AS
(
(SELECT parent, child FROM Parent)
UNION

(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc)

)
SELECT anc
FROM Ancestor
WHERE desc = 'Bart';

11

Query using
the relation
defined in
WITH clause

Define a
relation

recursively

recursion step

Duke CS, Spring 2022 CompSci 516: Database Systems

Fixed point of a function

• If 𝑓: 𝑇 → 𝑇 is a function from a type 𝑇 to itself,
a fixed point of 𝑓 is a value 𝑥 such that 𝑓 𝑥 =
𝑥

• Example: What is the fixed point of 𝑓 𝑥 =
⁄𝑥 2?
– 0, because 𝑓 0 = ⁄0 2 = 0

12Duke CS, Spring 2022 CompSci 516: Database Systems

To compute fixed point of a function f

• Start with a “seed”: 𝑥 ← 𝑥$
• Compute 𝑓 𝑥
– If 𝑓 𝑥 = 𝑥, stop; 𝑥 is fixed point of 𝑓
– Otherwise, 𝑥 ← 𝑓 𝑥 ; repeat

• Example: compute the fixed point of 𝑓 𝑥 = ⁄𝑥 2
– With seed 1: 1, 1/2, 1/4, 1/8, 1/16, … → 0

FDoesn’t always work, but happens to work for us!

13Duke CS, Spring 2022 CompSci 516: Database Systems

Fixed point of a query

• A query 𝑞 is a function that maps an input table to an output table
• so a fixed point of 𝑞 is a table 𝑇 such that 𝑞 𝑇 = 𝑇
• i.e., if you run the query again on the result, it does not change

To compute fixed point of 𝑞
• Start with an empty table: 𝑇 ← ∅
• Evaluate 𝑞 over 𝑇
– If the result is identical to 𝑇, stop; 𝑇 is a fixed point
– Otherwise, let 𝑇 be the new result; repeat

F Starting from ∅ produces the unique minimal fixed point (assuming 𝑞
is monotone)

14Duke CS, Spring 2022 CompSci 516: Database Systems

Finding ancestors
• WITH RECURSIVE

Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))
– Think of the definition as Ancestor = 𝑞(Ancestor)

15

parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

anc desc

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Abe Bart

Abe Lisa

Ape Homer

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Abe Bart

Abe Lisa

Ape Homer

Ape Bart

Ape LisaDuke CS, Spring 2022 CompSci 516: Database Systems

Linear recursion

• With linear recursion, a recursive definition can make only one
reference to itself

• Non-linear
– WITH RECURSIVE Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

• Linear
– WITH RECURSIVE Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent)
UNION
(SELECT anc, child
FROM Ancestor, Parent
WHERE desc = parent))

16Duke CS, Spring 2022 CompSci 516: Database Systems

Linear vs. non-linear recursion

• Linear recursion is easier to implement
– For linear recursion, just keep joining “newly generated”

Ancestor rows with Parent
• try to figure out why it should work

– For non-linear recursion, need to join newly generated Ancestor
rows with all existing Ancestor rows

• Non-linear recursion may take fewer steps to converge, but
perform more work
– Example: 𝑎 → 𝑏 → 𝑐 → 𝑑 → 𝑒
– Linear recursion takes 4 steps
– Non-linear recursion takes 3 steps

• More work: e.g., 𝑎 → 𝑑 has two different derivations

17Duke CS, Spring 2022 CompSci 516: Database Systems

Datalog

Duke CS, Spring 2022 CompSci 516: Database Systems 18

Datalog: Another query language for
recursion

• Ancestor(x, y) :- Parent(x, y)
• Ancestor(x, y):- Parent(x, z), Ancestor(z, y)

• Like logic programming
• Multiple rules
• Same “head” = union
• “,” = AND

• Same semantics that we discussed so far

19Duke CS, Spring 2022 CompSci 516: Database Systems

Body
Head

Practice Datalog

• Write Datalog program for reachability:
– R(x, y) :- E(x, y)
– R(x, y) :- E(x, z), R(z, y)

• E(u, v, c): an edge exists from u to v of color “c”
– e.g. E(1, 2, ‘blue’),E(2, 3, ‘red’), ….

• Find node pairs x, y such that x can reach y by a blue path
– BR(x, y) :- E(x, y, ‘blue’)
– BR(x, y) :- BR(x, z), E(x, y, ’blue’)

• Try reachable by odd number of edges, by odd number of blue
edges, by alternating blue and red paths etc.

Duke CS, Spring 2022 CompSci 516: Database Systems 20

Optional reading for SQL programming
(from Lecture 3)

Duke CS, Spring 2022 CompSci 516: Database Systems 21

SQL Injection Attack

• The school probably had something like:
cur.execute("SELECT * FROM Students " + \

"WHERE (name = '" + name + "')")
where name is a string input by user

• Suppose name = Robert’; DROP TABLE Students; --
– Drop deletes a table
– -- starts a comment
– Becomes SELECT * FROM Students WHERE (name = 'Robert’;

DROP TABLE Students; -- ‘)
22

http://xkcd.com/327/

Duke CS, Spring 2022 CompSci 516: Database Systems

Guarding against SQL injection

• Escape certain characters in a user input string, to
ensure that it remains a single string
– E.g., ', which would terminate a string in SQL, must be

replaced by '' (two single quotes in a row) within the
input string

• Luckily, most API’s provide ways to “sanitize”
input automatically (if you use them properly)
– E.g., pass parameter values in psycopg2 through %s’s

• Check out Ashley Madison data breach story or
https://medium.com/five-guys-facts/sql-injection-
98199af86c9

23Duke CS, Spring 2022 CompSci 516: Database Systems

Prepared statements: motivation

while True:
Input bar, beer, price…
cur.execute('''

UPDATE Serves
SET price = %s
WHERE bar = %s AND beer = %s''', (price, bar, beer))

Check result...

• Every time we send an SQL string to the DBMS, it
must perform parsing, semantic analysis,
optimization, compilation, and finally execution

• A typical application issues many queries with a
small number of patterns (with different
parameter values)

• Can we reduce this overhead?

24

Optional slide

Duke CS, Spring 2022 CompSci 516: Database Systems

Prepared statements: example
cur.execute(''' # Prepare once (in SQL).
PREPARE update_price AS # Name the prepared plan,
UPDATE Serves
SET price = $1 # and note the $1, $2, … notation for
WHERE bar = $2 AND beer = $3''') # parameter placeholders.
while True:

Input bar, beer, price…
cur.execute('EXECUTE update_price(%s, %s, %s)',\ # Execute many times.

(price, bar, beer))
Note the switch back to %s for parameter placeholders.

Check result...

• The DBMS performs parsing, semantic analysis, optimization, and
compilation only once, when it “prepares” the statement

• At execution time, the DBMS only needs to check parameter types
and validate the compiled plan

• Most other API’s have better support for prepared statements than
psycopg2
– E.g., they would provide a cur.prepare() method

25Duke CS, Spring 2022 CompSci 516: Database Systems

Views

Duke CS, Spring 2022 CompSci 516: Database Systems 26

Views

• A view is like a “virtual” table
– Defined by a query, which describes how to

compute the view contents on the fly
– DBMS stores the view definition query instead of

view contents
– Can be used in queries just like a regular table

27Duke CS, Spring 2022 CompSci 516: Database Systems

Creating and dropping views

• Example: members of Jessica’s Circle
– CREATE VIEW JessicaCircle AS

SELECT * FROM User
WHERE uid IN (SELECT uid FROM Member

WHERE gid = 'jes');

– Tables used in defining a view are called “base tables”
• User and Member above

• To drop a view
– DROP VIEW JessicaCircle;

28

User(uid, name, pop)
Member(gid, uid)

Duke CS, Spring 2022 CompSci 516: Database Systems

Using views in queries

• Example: find the average popularity of members in
Jessica’s Circle

– SELECT AVG(pop) FROM JessicaCircle;

– To process the query, replace the reference to the view by its
definition

– SELECT AVG(pop)
FROM (SELECT * FROM User

WHERE uid IN
(SELECT uid FROM Member
WHERE gid = 'jes'))

AS JessicaCircle;

29Duke CS, Spring 2022 CompSci 516: Database Systems

Why use views?

• To hide data from users
• To hide complexity from users

• Logical data independence
– If applications deal with views, we can change the

underlying schema without affecting applications

• To provide a uniform interface for different
implementations or sources

FReal database applications use tons of views

30Duke CS, Spring 2022 CompSci 516: Database Systems

