
CompSci 516
Database Systems

Lecture 8b
Storage

Instructor: Sudeepa Roy

1Duke CS, Fall 2018 CompSci 516: Database Systems

Where are we now?

We learnt
ü Relational Model and Query Languages

ü SQL, RA, RC
ü Postgres (DBMS)
ü XML (overview)
§ HW1

ü Database Normalization
ü Big data processing framework – Map-Reduce & Spark

Next
• DBMS Internals

– Storage
– Indexing
– Query Evaluation
– Operator Algorithms
– External sort
– Query Optimization

Duke CS, Fall 2018 CompSci 516: Database Systems 2

Reading Material

• [RG]
– Storage: Chapters 8.1, 8.2, 8.4, 9.4-9.7
– Index: 8.3, 8.5
– Tree-based index: Chapter 10.1-10.7
– Hash-based index: Chapter 11

Additional reading
• [GUW]

– Chapters 8.3, 14.1-14.4

Duke CS, Fall 2018 CompSci 516: Database Systems 3

Acknowledgement:
The following slides have been created adapting the
instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

What will we learn?

• How does a DBMS organize files?
– Record format, Page format

• What is an index?
• What are different types of indexes?
– Tree-based indexing:

• B+ tree
• insert, delete

– Hash-based indexing
• Static and dynamic (extendible hashing, linear hashing)

• How do we use index to optimize performance?

Duke CS, Fall 2018 CompSci 516: Database Systems 4

Storage

Duke CS, Fall 2018 CompSci 516: Database Systems 5

DBMS Architecture

Duke CS, Fall 2018 CompSci 516: Database Systems 6

• A typical DBMS has a layered
architecture

• The figure does not show the
concurrency control and
recovery components
– to be done in “transactions”

• This is one of several possible
architectures
– each system has its own variations

Query Parsing,
Optimization,
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

These layers
must consider
concurrency
control and
recovery

Data on External Storage
• Data must persist on disk across program executions in a

DBMS
– Data is huge
– Must persist across executions
– But has to be fetched into main memory when DBMS processes the

data

• The unit of information for reading data from disk, or writing
data to disk, is a page

• Disks: Can retrieve random page at fixed cost
– But reading several consecutive pages is much cheaper than reading

them in random order

Duke CS, Fall 2018 CompSci 516: Database Systems 7

Disk Space Management
• Lowest layer of DBMS software manages space on disk

• Higher levels call upon this layer to:
– allocate/de-allocate a page
– read/write a page

• Size of a page = size of a disk block
= data unit

• Request for a sequence of pages often satisfied by allocating
contiguous blocks on disk

• Space on disk managed by Disk-space Manager
– Higher levels don’t need to know how this is done, or how free space

is managed

Duke CS, Fall 2018 CompSci 516: Database Systems 8

Buffer Management

Suppose
• 1 million pages in db, but only space for 1000 in memory
• A query needs to scan the entire file
• DBMS has to

– bring pages into main memory
– decide which existing pages to replace to make room for a new

page
– called Replacement Policy

• Managed by the Buffer manager
– Files and access methods ask the buffer manager to access a

page mentioning the “record id” (soon)
– Buffer manager loads the page if not already there

Duke CS, Fall 2018 CompSci 516: Database Systems 9

Buffer Management

• Data must be in RAM for DBMS to operate on it
• Table of <frame#, pageid> pairs is maintained

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

Duke CS, Fall 2018 CompSci 516: Database Systems 10

Buffer pool = main memory is partitioned into frames
either contains a page from disk or is a free frame

When a Page is Requested ...
For every frame, store
• a dirty bit:

– whether the page in the frame has been modified since it has been
brought to memory

– initially 0 or off

• a pin-count:
– the number of times the page in the frame has been requested but

not released (and no. of current users)
– initially 0
– when a page is requested, the count in incremented
– when the requestor releases the page, count is decremented
– buffer manager only reads a page into a frame when its pin-count is 0
– if no frame with pin-count 0, buffer manager has to wait (or a

transaction is aborted -- later)

Duke CS, Fall 2018 CompSci 516: Database Systems 11

When a Page is Requested ...

• Check if the page is already in the buffer pool
• if yes, increment the pin-count of that frame
• If no,

– Choose a frame for replacement using the replacement policy
– If the chosen frame is dirty (has been modified), write it to disk
– Read requested page into chosen frame

• Pin (increase pin-count of) the page and return its address to the
requestor

• If requests can be predicted (e.g., sequential scans), pages
can be pre-fetched several pages at a time

• Concurrency Control & recovery may entail additional I/O when a
frame is chosen for replacement
• e.g. Write-Ahead Log protocol : when we do Transactions

Duke CS, Fall 2018 CompSci 516: Database Systems 12

Buffer Replacement Policy

• Frame is chosen for replacement by a replacement policy

• Least-recently-used (LRU)
– add frames with pin-count 0 to the end of a queue
– choose from head

• Clock (an efficient implementation of LRU)
• First In First Out (FIFO)
• Most-Recently-Used (MRU) etc.

Duke CS, Fall 2018 CompSci 516: Database Systems 13

Buffer Replacement Policy

• Policy can have big impact on # of I/O’s
• Depends on the access pattern
• Sequential flooding: Nasty situation caused by LRU +

repeated sequential scans
– What happens with 10 frames and 9 pages?
– What happens with 10 frames and 11 pages?
– # buffer frames < # pages in file means each page request in each scan

causes an I/O
– MRU much better in this situation (but not in all situations, of course)

Duke CS, Fall 2018 CompSci 516: Database Systems 14

DBMS vs. OS File System

• Operating Systems do disk space and buffer management too:
• Why not let OS manage these tasks?

• DBMS can predict the page reference patterns much more
accurately
– can optimize
– adjust replacement policy
– pre-fetch pages – already in buffer + contiguous allocation
– pin a page in buffer pool, force a page to disk (important for

implementing Transactions concurrency control & recovery)

• Differences in OS support: portability issues

• Some limitations, e.g., files can’t span disks

Duke CS, Fall 2018 CompSci 516: Database Systems 15

Next..

• How are pages stored in a file?
• How are records stored in a page?
– Fixed length records
– Variable length records

• How are fields stored in a record?
– Fixed length fields/records
– Variable length fields/records

Duke CS, Fall 2018 CompSci 516: Database Systems 16

Files of Records

• Page or block is OK when doing I/O, but higher
levels of DBMS operate on records, and files of
records

• FILE: A collection of pages, each containing a
collection of records

• Must support:
– insert/delete/modify record
– read a particular record (specified using record id)
– scan all records (possibly with some conditions on the

records to be retrieved)

Duke CS, Fall 2018 CompSci 516: Database Systems 17

File Organization

• File organization: Method of arranging a file of
records on external storage
– One file can have multiple pages
– Record id (rid) is sufficient to physically locate the page

containing the record on disk
– Indexes are data structures that allow us to find the

record ids of records with given values in index search key
fields

• NOTE: Several uses of “keys” in a database
– Primary/foreign/candidate/super keys
– Index search keys

Duke CS, Fall 2018 CompSci 516: Database Systems 18

Alternative File Organizations
Many alternatives exist, each ideal for some situations, and

not so good in others:
• Heap (random order) files: Suitable when typical access is a

file scan retrieving all records
• Sorted Files: Best if records must be retrieved in some

order, or only a “range” of records is needed.
• Indexes: Data structures to organize records via trees or

hashing
– Like sorted files, they speed up searches for a subset of records,

based on values in certain (“search key”) fields
– Updates are much faster than in sorted files

Duke CS, Fall 2018 CompSci 516: Database Systems 19

Unordered (Heap) Files

• Simplest file structure contains records in no
particular order

• As file grows and shrinks, disk pages are allocated
and de-allocated

• To support record level operations, we must:
– keep track of the pages in a file
– keep track of free space on pages
– keep track of the records on a page

• There are many alternatives for keeping track of this

Duke CS, Fall 2018 CompSci 516: Database Systems 20

Heap File Implemented as a List

• The header page id and Heap file name must be stored
someplace

• Each page contains 2 `pointers’ plus data
• Problem?

– to insert a new record, we may need to scan several pages
on the free list to find one with sufficient space

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page Pages with

Free Space

Full Pages

Duke CS, Fall 2018 CompSci 516: Database Systems 21

Heap File Using a Page Directory

• The entry for a page can include the number of free
bytes on the page.

• The directory is a collection of pages
– linked list implementation of directory is just one alternative
– Much smaller than linked list of all heap file pages!

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

Duke CS, Fall 2018 CompSci 516: Database Systems 22

How do we arrange a collection of
records on a page?

• Each page contains several slots
– one for each record

• Record is identified by <page-id, slot-number>

• Fixed-Length Records
• Variable-Length Records

• For both, there are options for
– Record formats (how to organize the fields within a record)
– Page formats (how to organize the records within a page)

Duke CS, Fall 2018 CompSci 516: Database Systems 23

Page Formats: Fixed Length Records

• Record id = <page id, slot #>
• Packed: moving records for free space management changes rid; may not be

acceptable
• Unpacked: use a bitmap – scan the bit array to find an empty slot
• Each page also may contain additional info like the id of the next page (not shown)

Slot 1
Slot 2

Slot N

.

N M10. . .

M ... 3 2 1
PACKED UNPACKED, BITMAP

Slot 1
Slot 2

Slot N

Free
Space

Slot M

11

number
of records

number
of slots

Duke CS, Fall 2018 CompSci 516: Database Systems 24

End of
lecture 6

Page Formats: Variable Length Records

• Need to find a page with the right amount of space
– Too small – cannot insert
– Too large – waste of space

• if a record is deleted, need to move the records so that all free space
is contiguous
– need ability to move records within a page

• Can maintain a directory of slots (next slide)
– Slot contains <record-offset, record-length>
– deletion = set record-offset to -1

• Record-id rid = <page, slot-in-directory> remains unchanged

Duke CS, Fall 2018 CompSci 516: Database Systems 25

Page Formats: Variable Length Records

• Can move records on page without changing rid
– so, attractive for fixed-length records too

• Store (record-offset, record-length) in each slot
• rid-s unaffected by rearranging records in a page

Page i
Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer
to start
of free
space

SLOT DIRECTORY

N . . . 2 1
20 16 24 N

slots

Duke CS, Fall 2018 CompSci 516: Database Systems 26

Record Formats: Fixed Length

• Each field has a fixed length
– for all records
– the number of fields is also fixed
– fields can be stored consecutively

• Information about field types same for all records in a file
– stored in system catalogs

• Finding i-th field does not require scan of record
– given the address of the record, address of a field can be obtained

easily

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

Duke CS, Fall 2018 CompSci 516: Database Systems 27

Record Formats: Variable Length
• Cannot use fixed-length slots for records
• Two alternative formats (# fields is fixed):

• Second offers direct access to i-th field, efficient storage of nulls (special don’t
know value); small directory overhead

• Modification may be costly (may grow the field and not fit in the page)

4 $ $ $ $

Field
Count

Fields Delimited by Special Symbols

F1 F2 F3 F4

F1 F2 F3 F4

Array of Field Offsets

1. use delimiters

2. use offsets at the
start of each record

Duke CS, Fall 2018 CompSci 516: Database Systems 28

