Duke CS, Fall 2018

CompSci 516
Database Systems

Lecture 8b
Storage

Instructor: Sudeepa Roy

CompSci 516: Database Systems

Where are we now?

We learnt
v" Relational Model and Query Languages
v SQL, RA, RC

v' Postgres (DBMS)
v' XML (overview)
= HWI1

v' Database Normalization
v' Big data processing framework — Map-Reduce & Spark

Next
e DBMS Internals
— Storage
— Indexing
— Query Evaluation
— Operator Algorithms

— External sort
— Query Optimization

Duke CS, Fall 2018 CompSci 516: Database Systems

Reading Material

* [RG]
— Storage: Chapters 8.1, 8.2, 8.4, 9.4-9.7
— Index: 8.3, 8.5
— Tree-based index: Chapter 10.1-10.7
— Hash-based index: Chapter 11

Additional reading
c [GUW]
— Chapters 8.3, 14.1-14.4

Acknowledgement:
The following slides have been created adapting the

instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

What will we learn?

* How does a DBMS organize files?
— Record format, Page format

e What is an index?

 What are different types of indexes?

— Tree-based indexing:

e B+ tree
* insert, delete

— Hash-based indexing
 Static and dynamic (extendible hashing, linear hashing)

e How do we use index to optimize performance?

Duke CS, Fall 2018 CompSci 516: Database Systems

Storage

Duke CS, Fall 2018 CompSci 516: Database Systems

DBMS Architecture

 Atypical DBMS has a layered
architecture

Query Parsing,
Optimization,
and Execution

* The figure does not show the .
concurrency control and Relational Operators

recovery com ponents
— to be done in “transactions”

Files and Access Methods [

Buffer Management o

e This is one of several possible
architectures

— each system has its own variations

Disk Space Management |-

These layers

— must consider
DB J concurrency
control and

recovery

Duke CS, Fall 2018 CompSci 516: Database Systems

Data on External Storage

e Data must persist on disk across program executions in a
DBMS
— Data is huge
— Must persist across executions

— But has to be fetched into main memory when DBMS processes the
data

* The unit of information for reading data from disk, or writing
data to disk, is a page

* Disks: Can retrieve random page at fixed cost

— But reading several consecutive pages is much cheaper than reading
them in random order

Duke CS, Fall 2018 CompSci 516: Database Systems

Disk Space Management

* Lowest layer of DBMS software manages space on disk

* Higher levels call upon this layer to:

— allocate/de-allocate a page
— read/write a page

- Size of a page = size of a disk block
= data unit

 Request for a sequence of pages often satisfied by allocating
contiguous blocks on disk

 Space on disk managed by Disk-space Manager

— Higher levels don’t need to know how this is done, or how free space
is managed

Duke CS, Fall 2018 CompSci 516: Database Systems 8

Buffer Management

Suppose

* 1 million pages in db, but only space for 1000 in memory
* A query needs to scan the entire file

e DBMS hasto

— bring pages into main memory
— decide which existing pages to replace to make room for a new
page
— called Replacement Policy
 Managed by the Buffer manager

— Files and access methods ask the buffer manager to access a
page mentioning the “record id” (soon)

— Buffer manager loads the page if not already there

Duke CS, Fall 2018 CompSci 516: Database Systems

Buffer Management

Buffer pool = main memory is partitioned into frames
either contains a page from disk or is a free frame

Page Requests from Higher Levels

BUFFER POOL I

N

disk page

/\4/

free frame

MAIN MEMORY

DISK E 55 j choice of frame dictated

by replacement policy

* Data must be in RAM for DBMS to operate on it
 Table of <frame#, pageid> pairs is maintained

Duke CS, Fall 2018 CompSci 516: Database Systems 10

When a Page is Requested ...

For every frame, store
* adirty bit:

whether the page in the frame has been modified since it has been
brought to memory

initially O or off

* a pin-count:

the number of times the page in the frame has been requested but
not released (and no. of current users)

initially O

when a page is requested, the count in incremented

when the requestor releases the page, count is decremented

buffer manager only reads a page into a frame when its pin-count is 0

if no frame with pin-count 0, buffer manager has to wait (or a
transaction is aborted -- later)

When a Page is Requested ...

Check if the page is already in the buffer pool

if yes, increment the pin-count of that frame

If no,
— Choose a frame for replacement using the replacement policy
— If the chosen frame is dirty (has been modified), write it to disk
— Read requested page into chosen frame

Pin (increase pin-count of) the page and return its address to the
requestor

If requests can be predicted (e.g., sequential scans), pages
can be pre-fetched several pages at a time

Concurrency Control & recovery may entail additional I/O when a
frame is chosen for replacement

- e.g. Write-Ahead Log protocol : when we do Transactions

Buffer Replacement Policy

 Frame is chosen for replacement by a replacement policy

« Least-recently-used (LRU)
— add frames with pin-count 0 to the end of a queue
— choose from head

« Clock (an efficient implementation of LRU)
First In First Out (FIFO)

- Most-Recently-Used (MRU) etc.

Duke CS, Fall 2018 CompSci 516: Database Systems 13

Buffer Replacement Policy

* Policy can have big impact on # of |/O’s
 Depends on the access pattern

e Sequential flooding: Nasty situation caused by LRU +
repeated sequential scans
— What happens with 10 frames and 9 pages?
— What happens with 10 frames and 11 pages?

— # buffer frames < # pages in file means each page request in each scan
causes an |I/O

— MRU much better in this situation (but not in all situations, of course)

Duke CS, Fall 2018 CompSci 516: Database Systems 14

DBMS vs. OS File System

 Operating Systems do disk space and buffer management too:

* Why not let OS manage these tasks?

e DBMS can predict the page reference patterns much more
accurately

— can optimize
— adjust replacement policy

— pre-fetch pages — already in buffer + contiguous allocation

— pin a page in buffer pool, force a page to disk (important for
implementing Transactions concurrency control & recovery)

e Differences in OS support: portability issues

 Some limitations, e.g., files can’t span disks

Duke CS, Fall 2018 CompSci 516: Database Systems

15

Next..

* How are pages stored in a file?
* How are records stored in a page?

— Fixed length records

— Variable length records

* How are fields stored in a record?
— Fixed length fields/records
— Variable length fields/records

Duke CS, Fall 2018 CompSci 516: Database Systems

16

Files of Records

* Page or block is OK when doing I/0O, but higher
levels of DBMS operate on records, and files of
records

 FILE: A collection of pages, each containing a
collection of records

* Must support:
— insert/delete/modify record

— read a particular record (specified using record id)

— scan all records (possibly with some conditions on the
records to be retrieved)

Duke CS, Fall 2018 CompSci 516: Database Systems 17

File Organization

* File organization: Method of arranging a file of
records on external storage

— One file can have multiple pages

— Record id (rid) is sufficient to physically locate the page
containing the record on disk

— |Indexes are data structures that allow us to find the

record ids of records with given values in index search key
fields

* NOTE: Several uses of “keys” in a database

— Primary/foreign/candidate/super keys
— Index search keys

Duke CS, Fall 2018 CompSci 516: Database Systems 18

Alternative File Organizations

Many alternatives exist, each ideal for some situations, and
not so good in others:

- Heap (random order) files: Suitable when typical access is a
file scan retrieving all records

- Sorted Files: Best if records must be retrieved in some
order, or only a “range” of records is needed.

- Indexes: Data structures to organize records via trees or
hashing

— Like sorted files, they speed up searches for a subset of records,
based on values in certain (“search key”) fields

— Updates are much faster than in sorted files

Duke CS, Fall 2018 CompSci 516: Database Systems 19

Unordered (Heap) Files

e Simplest file structure contains records in no
particular order

* As file grows and shrinks, disk pages are allocated
and de-allocated

* To support record level operations, we must:
— keep track of the pages in a file
— keep track of free space on pages
— keep track of the records on a page

 There are many alternatives for keeping track of this

Duke CS, Fall 2018 CompSci 516: Database Systems 20

Heap File Implemented as a List

e i

Data Data Data
Page Page Page

T T R "

: 7N N 7Y q
Data Data Data P_ h
Page Page Page a5es Wi

Free Space
N AL AL

Full Pages

\4

The header page id and Heap file name must be stored
someplace

e Each page contains 2 pointers’ plus data

* Problem?

— to insert a new record, we may need to scan several pages
on the free list to find one with sufficient space

Duke CS, Fall 2018 CompSci 516: Database Systems 21

Heap File Using a Page Directory

Data

Header Page 1
Page

Data
Page 2

Data
DIRECTORY Page N

* The entry for a page can include the number of free
bytes on the page.

 The directory is a collection of pages
— linked list implementation of directory is just one alternative
— Much smaller than linked list of all heap file pages!

Duke CS, Fall 2018 CompSci 516: Database Systems

How do we arrange a collection of
records on a page?

* Each page contains several slots
— one for each record

* Record is identified by <page-id, slot-number>

* Fixed-Length Records
e Variable-Length Records

* For both, there are options for
— Record formats (how to organize the fields within a record)
— Page formats (how to organize the records within a page)

Duke CS, Fall 2018 CompSci 516: Database Systems 23

Page Formats: Fixed Length Records

Slot 1 Slot 1
Slot 2 Slot 2
Free ~ ™~
e o o Space e o o
lecture 6
Slot M
ln.Olth\\
number M.. 321 number
PACKED of records UNPACKED, BITMAP of slots

 Record id = <page id, slot #>

* Packed: moving records for free space management changes rid; may not be

acceptable

* Unpacked: use a bitmap — scan the bit array to find an empty slot
* Each page also may contain additional info like the id of the next page (not shown)

Duke CS, Fall 2018 CompSci 516: Database Systems

24

Page Formats: Variable Length Records

Need to find a page with the right amount of space
— Too small — cannot insert

— Too large — waste of space

 ifarecordis deleted, need to move the records so that all free space
Is contiguous

— need ability to move records within a page

e Can maintain a directory of slots (next slide)
— Slot contains <record-offset, record-length>
— deletion = set record-offset to -1

 Record-id rid = <page, slot-in-directory> remains unchanged

Duke CS, Fall 2018 CompSci 516: Database Systems

25

Page Formats: Variable Length Records

Pointer
N) 1 to start
/ # SlOtS of free
space
SLOT DIRECTORY

e Can move records on page without changing rid
— 5o, attractive for fixed-length records too

e Store (record-offset, record-length) in each slot
* rid-s unaffected by rearranging records in a page
Duke CS, Fall 2018 CompSci 516: Database Systems 26

Record Formats: Fixed Length

F1l F2 F3 F4
11 .2 .3 L4
Base address (B) Address = B+L1+L2

* Each field has a fixed length
— for all records
— the number of fields is also fixed
— fields can be stored consecutively
* Information about field types same for all records in a file
— stored in system catalogs
* Finding i-th field does not require scan of record

— given the address of the record, address of a field can be obtained
easily

Duke CS, Fall 2018 CompSci 516: Database Systems 27

Record Formats: Variable Length

 Cannot use fixed-length slots for records
 Two alternative formats (# fields is fixed):

F1 F2 F3 F4
4 $ $ $ $
ol / Fields Delimited by Special Symbols 1 use delimiters
Count
F1 F2 F3 F4
%///Z use offsets at the
Array of Field Offsets start of each record

* Second offers direct access to i-th field, efficient storage of nulls (special don’t
know value); small directory overhead

* Modification may be costly (may grow the field and not fit in the page)

Duke CS, Fall 2018 CompSci 516: Database Systems 28

