1. (CLRS 12.2-5) Show that if a node in a binary search tree has two children, then its successor has no left child and its predecessor has no right child.
2. (CLRS 12-2 - Radix trees) Show how to use a radix tree to sort S lexicographically in $O(n)$ time.
3. (CLRS 9-1) Given a set of \(n \) numbers, we wish to find the \(i \) largest in sorted order using a comparison-based algorithm. Find the algorithm that implements each of the following methods with the best asymptotic worst-case running time, and analyze the running times of the algorithms on terms of \(n \) and \(i \).

(a) Sort the numbers, and list the \(i \) largest.
(b) Build a max-priority queue from the numbers, and call EXTRACT-MAX \(i \) times.
(c) Use an order-statistics algorithm to find the \(i \)th largest number, partition around the number, and sort the \(i \) largest numbers.
4. \((extra\;credit)\) (CLRS 8-2)