1. (CLRS 13.1-5) Show that the longest simple path from a node x in a red-black tree to a descendant leaf has length at most twice that of the shortest simple path from node x to a descendant leaf.

2. (CLRS 13.1-6) What is the largest possible number of internal nodes in a red-black tree with black-height k? What is the smallest possible number?

1Collaboration is allowed, even encouraged, provided that the names of the collaborators are listed along with the solutions. Students must write up the solutions on their own.
3. (CLRS 13-2) The join operation takes two dynamic sets S_1 and S_2 and an element x such that for any $x_1 \in S_1$ and $x_2 \in S_2$, we have $key[x_1] \leq key[x] \leq key[x_2]$. It returns a set $S = S_1 \cup \{x\} \cup S_2$. In this problem, we investigate how to implement the join operation on red-black trees.

(a) Given a red-black tree T, we store its black-height as the field $bh[T]$. Argue that this field can be maintained by RB-INSERT and RB-DELETE without requiring extra storage in the tree and without increasing the asymptotic running times. Show while descending through T, we can determine the black-height of each node we visit in $O(1)$ time per node visited.

We wish to implement the operation RB-JOIN(T_1, x, T_2) which destroys T_1 and T_2 and returns a red-black tree $T = T_1 \cup \{x\} \cup T_2$. Let n be the total number of nodes in T_1 and T_2.

(b) Assume without loss of generality that $bh[T_1] \geq bh[T_2]$. Describe an $O(\log n)$ time algorithm that finds a black node y in T_1 with the largest key from among those nodes whose black-height is $bh[T_2]$.

(c) Let T_y be the subtree rooted at y. Describe how T_y can be replaced by $T_y \cup \{x\} \cup T_2$ in $O(1)$ time without destroying the binary-search-tree property.

(d) What color should we make x so that red-black properties 1, 2, and 4 are maintained? Describe how property 3 can be enforced in $O(\log n)$ time.

(e) Argue that the running time of RB-JOIN is $O(\log n)$.