Write and justify your answers in the space provided. ¹

1. (CLRS 6.1-1) What are the minimum and maximum number of elements in a heap of height h?

2. (CLRS 6.1-4) Where in a max-heap might the smallest element reside, assuming that all elements are distinct?

3. (CLRS 6.2-4) What is the effect of calling MAX-HEAPIFY(A, i) for $i > \text{size}[A]/2$?

¹Collaboration is allowed, even encouraged, provided that the names of the collaborators are listed along with the solutions. Students must write up the solutions on their own.
4. (CLRS 6.5-3) Write pseudocode for the procedures HEAP-MINIMUM, HEAP-EXTRACT-MIN, HEAP-DECREASE-KEY and MIN-HEAP-INSERT that implement a min-priority queue with a min-heap.
5. (CLRS 6-2) Analysis of d-ary heaps

A d-ary heap is like a binary heap, but instead of 2 children, nodes have \(d \) children.

a. How would you represent a \(d \)-ary heap in an array?

b. What is the height of a \(d \)-ary heap of \(n \) elements in terms of \(n \) and \(d \)?

c. Give an efficient implementation of EXTRACT-MAX. Analyze its running time in terms of \(d \) and \(n \).

d. Give an efficient implementation of INSERT. Analyze its running time in terms of \(d \) and \(n \).

e. Give an efficient implementation of \texttt{HEAP-INCREASE-KEY}(A, i, k), which sets \(A[i] \leftarrow \max(A[i], k) \) and updates the heap structure appropriately. Analyze its running time in terms of \(d \) and \(n \).