CPS 130 Homework 1 - Solutions

1. (CLRS 1.2-2) Suppose we are comparing implementations of insertion sort and merge sort on the same machine. For inputs of size n, insertion sort runs in $8n^2$ steps, while merge sort runs in $64n \log n$ steps. For which values of n does insertion sort beat merge sort?

Solution: We want to find n such that $8n^2 \leq 64n \log n$:

\[
8n^2 \leq 64n \log n \Rightarrow n \leq 8 \log n
\]

\[
\Rightarrow \frac{1}{8} \leq \frac{\log n}{n},
\]

which is satisfied for $n \leq 43$.

2. (CLRS 1-1) For each function $f(n)$ and time t in the following table, determine the largest size n of a problem that can be solved in time t, assuming that the algorithms to solve the problem takes $f(n)$ microseconds.

Solution:

<table>
<thead>
<tr>
<th>n</th>
<th>1 second</th>
<th>1 minute</th>
<th>1 day</th>
<th>1 month</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^6</td>
<td>60×10^6</td>
<td>864×10^6</td>
<td>26×10^{11}</td>
<td></td>
</tr>
<tr>
<td>10^3</td>
<td>7745</td>
<td>29×10^4</td>
<td>16×10^5</td>
<td></td>
</tr>
<tr>
<td>2^n</td>
<td>20</td>
<td>26</td>
<td>36</td>
<td>41</td>
</tr>
</tbody>
</table>

3. (CLRS 2.1-2) How do you modify the INSERTION - SORT procedure to sort into non-increasing instead of non-decreasing order?

Solution: Modify the while loop test as follows: while $i > 0$ and $A[i] < \text{key}$