1. In this problem we consider two stacks A and B manipulated using the following operations
(n denotes the size of A and m the size of B):

- $PushA(x)$: Push element x on stack A.
- $PushB(x)$: Push element x on stack B.
- $MultiPopA(k)$: Pop min\{$k, n\}$ elements from A.
- $MultiPopB(k)$: Pop min\{$k, m\}$ elements from B.
- $Transfer(k)$: Repeatedly pop an element from A and push it on B, until either k
eq elements have been moved or A is empty.

Assume that A and B are implemented using doubly-linked lists such that $PushA$ and
$PushB$, as well as a single pop from A or B, can be performed in $O(1)$ time worst-case.

(a) What is the worst-case running time of the operations $MultiPopA$, $MultiPopB$ and
$Transfer$?

Solution: When both operations have to pop the entire stack, the running time of
each op is the size of the stack, so worst case $MultiPopA$ runs in $O(n)$ and $MultiPopB$
runs in $O(m)$ time. $Transfer$ involves popping elements off of A and pushing them
onto B. Since in the worst case we transfer the entire stack on A, we use n pops and
n pushes for a worst case running time of $O(n)$.

(b) Define a potential function $\Phi(n, m)$ and use it to prove that the operations have
amortized running time $O(1)$.

Solution: Define $\Phi(n, m) = 3n + m$. Initially the potential is zero, and for non-
empty stacks, the potential is always positive. The amortized costs are as follows:

$\hat{c}_i = c_i + \Phi(D_{i+1}) - \Phi(D_i)$

$PushA$

- $\hat{c}_i = 1 + 3(n + 1) + m - (3n + m)$
- $\hat{c}_i = 4$

$MultiPopA$

- $\hat{c}_i = k + 3(n - k) + m - (3n + m)$
- $\hat{c}_i = -2k$

$PushB$

- $\hat{c}_i = 1 + 3n + (m + 1) - (3n + m)$
- $\hat{c}_i = 2$

$MultiPopB$

- $\hat{c}_i = k + 3n + (m - k) - (3n + m)$
- $\hat{c}_i = 0$

Transfer

- $\hat{c}_i = 2k + 3(n - k) + (m + k) - (3n + m)$
- $\hat{c}_i = 0$
The amortized cost of each function is bounded above by a constant, so the overall run time for all operations is $O(1)$. It is ok to have a negative amortized cost in the MultiPopA example. PushA pays for a possible transfer, but a MultiPopA makes a transfer unnecessary even though PushA has paid for it.