CPS 130 Homework 6 - Solutions

1. (CLRS 7.4-5) The running time of QUICKSORT can be improved in practice by taking advantage of the fast running time of INSERTION-SORT when its input is “nearly” sorted. When QUICKSORT is called on a subarray with fewer than \(k \) elements, let it simply return without sorting the subarray. After the top-level call to QUICKSORT returns, run INSERTION-SORT on the entire array to finish the sorting process. Argue that this sorting algorithm runs in \(O(nk + n\lg(n/k)) \) expected time. How should \(k \) be picked, both in theory and in practice?

Answer: A complete proof would be similar with the proof of the average case running time of QUICKSORT (CLR section 7.4.2).

The main idea is to note that the recursion stops when \(\frac{n}{2^i} = k \), that is \(i = \log_2 \frac{n}{k} \). The recursion takes in total \(O(n \cdot \lg \frac{n}{k}) \). The resulting array is composed of \(k \) subarrays of size \(n/k \), where the elements in each subarray are all less than all the subarrays following it. Running INSERTION-SORT on the entire array is thus equivalent to sorting each of the \(\frac{n}{k} \) subarrays of size \(k \), which takes on the average \(\frac{n}{k} \cdot O(k^2) = O(nk) \) (the expected running time of INSERTION-SORT is \(O(n^2) \)).

If \(k \) is chosen too big, then the \(O(nk) \) cost of insertion becomes bigger than \(\Theta(n \lg n) \). Therefore \(k \) must be \(O(\lg n) \). Furthermore it must be that \(O(nk + n \lg \frac{n}{k}) = O(n \lg n) \). If the constant factors in the big-oh notation are ignored, than it follows that \(k \) should be such that \(k < \lg k \) which is impossible (unless \(k = 1 \) - the error comes from ignoring the constant factors. Let \(c_1 \) be the constant factor in quicksort, and \(c_2 \) be the constant factor in insertion sort. Than \(k \) must be chosen such that \(c_2 k + c_1 \lg \frac{n}{k} k < c_1 \lg n \) which requires \(c_1 k < c_2 \lg k \). In practice these constants cannot be ignored (also there can be lower order terms in \(O(n \lg n) \)) and \(k \) should be chosen experimentally.

2. (CLRS 7-3) Professors Dewey, Cheatham, and Howe have proposed the following “elegant” sorting algorithm:

\[
\text{STOOGESORT}(A,i,j)
\]

 then exchange \(A[i] \leftrightarrow A[j] \)
if \(i + 1 \geq j \)
 then return
\(k \leftarrow \lfloor (j - i + 1)/3 \rfloor \)
\text{STOOGESORT}(A,i,j-k)
\text{STOOGESORT}(A,i+k,j)
\text{STOOGESORT}(A,i,j-k)

a. Argue that \text{STOOGESORT}(A,1,length[A]) correctly sorts the input array \(A[1..n] \), where \(n = length[A] \).

Solution: By induction:
For the base case let \(n = 2 \). The first two lines of the algorithm will check if
the two elements are sorted; if not, it exchanges them (and now they are sorted).
The algorithm returns after the following if statement. Thus STOOGESORT sorts
correctly for \(n = 2 \).

Assume STOOGESORT correctly sorts an input array \(A[1..k] \), where \(k = \text{length}[A] \)
and \(1 \leq k < n \). In particular, STOOGESORT correctly sorts an input array of size
\(k = 2n/3 \) (you may also assume STOOGESORT sorts correctly for \(1 < k = 2n/3 \)).
Let \(A[1..n] \) be an input array of size \(n = \text{length}[A] \). By the induction hypothesis
the first call to STOOGESORT\((A, i, j - k) \) correctly sorts the first \(2n/3 \) elements,
so that the elements \(1 \ldots n/3 \) are less than elements \((n + 1)/3 \ldots 2n/3 \). The call
to STOOGESORT\((A, i, j - k) \) correctly sorts the last \(2n/3 \) elements, so that the
elements \((n + 1)/3 \ldots 2n/3 \) are less than elements \(2(n + 1)/3 \ldots n \), which are the
largest \(n/3 \) elements in \(A \). The last call to STOOGESORT\((A, i, j - k) \) sorts correctly
(by induction hypothesis) the sorted elements are less than elements \(2(n + 1)/3 \ldots n \).
Thus the array \(A \) of size \(n \) is sorted.

b. Give a recurrence for the worst-case running time of STOOGESORT and a tight
asymptotic (\(\Theta \)-notation) bound on the worst-case running time.

Solution:

\[
T(n) = 3T\left(\frac{2n}{3}\right) + \Theta(1)
\]

\[
= \Theta\left(n^{\log_{3/2}\frac{2}{3}}\right)
\]

\[
= \Theta(n^{2.7\ldots}).
\]

c. Compare the worst-case running time of STOOGESORT with that of INSERTION-
SORT, MERGE-SORT, HEAPSORT, and QUICKSORT. Do the professors deserve
tenure?

Solution: STOOGESORT is the worst of all the algorithms – the professors do not
deserve tenure.

\[
\text{INSERTION-SORT: } \Theta(n^2)
\]

\[
\text{MERGE-SORT: } \Theta(n \lg n)
\]

\[
\text{HEAPSORT: } \Theta(n \lg n)
\]

\[
\text{QUICKSORT: } \Theta(n^2)
\]

\[
\text{STOOGESORT: } \Theta(n^{2.7\ldots})
\]