Lecture 5: Master Method and Quick-Sort
(CLRS 4.3-4.4 (read this note instead), 7.1-7.2)

May 22nd, 2002

1 Master Method (recurrences)

- We have solved several recurrences using substitution and iteration.
- Last time we solved several recurrences of the form $T(n) = aT(n/b) + n^c$ ($T(1) = 1$).
 - Strassen’s algorithm $T(n) = 7T(n/2) + n^2$ ($a = 7, b = 2, c = 2$)
 - Merge-sort $T(n) = 2T(n/2) + n$ ($a = 2, b = 2, c = 1$).
- It would be nice to have a general solution to the recurrence $T(n) = aT(n/b) + n^c$.
- We do!

\[
T(n) = aT\left(\frac{n}{b}\right) + n^c \quad a \geq 1, b \geq 1, c > 0
\]
\[
\begin{cases}
\Theta(n^{\log_b a}) & a > b^c \\
\Theta(n^c \log_b n) & a = b^c \\
\Theta(n^c) & a < b^c
\end{cases}
\]

Proof (Iteration method)

\[
T(n) = aT\left(\frac{n}{b}\right) + n^c \\
= n^c + a\left(\left(\frac{n}{b}\right)^c + aT\left(\frac{n}{b^2}\right)\right) \\
= n^c + \left(\frac{a}{b^c}\right)n^c + a^2T\left(\frac{n}{b^2}\right) \\
= n^c + \left(\frac{a}{b^c}\right)n^c + a^2\left(\left(\frac{n}{b^2}\right)^c + aT\left(\frac{n}{b^4}\right)\right) \\
= n^c + \left(\frac{a}{b^c}\right)n^c + a^2\left(\left(\frac{n}{b^2}\right)^c + aT\left(\frac{n}{b^4}\right)\right) \\
= \cdots \\
= n^c + \left(\frac{a}{b^c}\right)n^c + \left(\frac{a}{b^c}\right)^2n^c + \left(\frac{a}{b^c}\right)^3n^c + \cdots + \left(\frac{a}{b^c}\right)^{\log_b n - 1}n^c + a^{\log_b n}T(1) \\
= n^c \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^c}\right)^k + a^{\log_b n} \\
= n^c \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^c}\right)^k + n^{\log_b a}
\]

Recall geometric sum $\sum_{k=0}^{n-1} x^k = \frac{x^{n+1} - 1}{x-1} = \Theta(x^n)$

- $a < b^c$ \iff $\frac{a}{b^c} < 1$ \implies $\sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^c}\right)^k \leq \sum_{k=0}^{+\infty} \left(\frac{a}{b^c}\right)^k = \frac{1}{1-(\frac{a}{b^c})} = \Theta(1)$
- $a < b^c$ \iff $\log_b a < \log_b b^c = c$
- $T(n) = n^c \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^c}\right)^k + n^{\log_b a} \\
= n^c \cdot \Theta(1) + n^{\log_b a} \\
= \Theta(n^c)$
\[a = b^c \]

\[a = b^c \iff \frac{a}{b} > 1 \Rightarrow \sum_{k=0}^{\log_b n} \left(\frac{a}{b} \right)^k = \sum_{k=0}^{\log_b n-1} 1 = \Theta(\log_b n) \]

\[a = b^c \iff \log_b a = \log_b b^c = c \]

\[T(n) = \sum_{k=0}^{\log_b n} \left(\frac{a}{b} \right)^k + n^{\log_b a} = n^c \Theta(\log_b n) + n^{\log_b a} = \Theta(n^c \log_b n) \]

\[a > b^c \iff \frac{a}{b^c} > 1 \Rightarrow \sum_{k=0}^{\log_b n} \left(\frac{a}{b^c} \right)^k = \Theta \left(\left(\frac{a}{b^c} \right)^{\log_b n} \right) = \Theta \left(\frac{a^{\log_b n}}{n^c} \right) \]

\[T(n) = n^c \cdot \Theta \left(\frac{a^{\log_b n}}{n^c} \right) + n^{\log_b a} = \Theta \left(n^{\log_b a} \right) + n^{\log_b a} = \Theta \left(n^{\log_b a} \right) \]

- Note: Book states and proves the result slightly differently (don’t read it).

1.1 Other recurrences

Some important/typical bounds on recurrences not covered by master method:

- **Logarithmic:** \(\Theta(\log n) \)
 - Recurrence: \(T(n) = 1 + T(n/2) \)
 - Typical example: Recurse on half the input (and throw half away)
 - Variations: \(T(n) = 1 + T(99n/100) \)

- **Linear:** \(\Theta(N) \)
 - Recurrence: \(T(n) = 1 + T(n-1) \)
 - Typical example: Single loop
 - Variations: \(T(n) = 1 + 2T(n/2), T(n) = n + T(n/2), T(n) = T(n/5) + T(7n/10 + 6) + n \)

- **Quadratic:** \(\Theta(n^2) \)
 - Recurrence: \(T(n) = n + T(n-1) \)
 - Typical example: Nested loops

- **Exponential:** \(\Theta(2^n) \)
 - Recurrence: \(T(n) = 2T(n-1) \)

2 Quick-sort

- We previously saw how divide-and-conquer can be used to design sorting algorithm—Merge-sort
 - Partition \(n \) elements array \(A \) into two subarrays of \(n/2 \) elements each
 - Sort the two subarrays recursively
 - Merge the two subarrays

Running time: \(T(n) = 2T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n \log n) \)
Another possibility is to use the “opposite” version of divide-and-conquer—Quick-sort

- Partition \(A[1...n] \) into subarrays \(A' = A[1..q] \) and \(A'' = A[q+1...n] \) such that all elements in \(A'' \) are larger than all elements in \(A' \).
- Recursively sort \(A' \) and \(A'' \).
- (nothing to combine/merge. \(A \) already sorted after sorting \(A' \) and \(A'' \))

If \(q = n/2 \) and we divide in \(\Theta(n) \) time, we again get the recurrence \(T(n) = 2T(n/2) + \Theta(n) \) for the running time \(\Rightarrow T(n) = \Theta(n \log n) \)

The problem is that it is hard to develop partition algorithm which always divide \(A \) in two halves

- Pseudo code for Quick-sort:

```
QUICKSORT(A, p, r)
IF p < r THEN
    q = PARTITION(A, p, r)
    QUICKSORT(A, p, q - 1)
    QUICKSORT(A, q + 1, r)
FI
```

Sort using \(\text{QUICKSORT}(A, 1, n) \)

```
PARTITION(A, p, r)
x = A[r]
i = p - 1
FOR j = p TO r - 1 DO
    IF A[j] \leq x THEN
        i = i + 1
        Exchange A[i] and A[j]
    FI
OD
Exchange A[i + 1] and A[r]
RETURN i + 1
```

- \(\text{Partition} \) runs in time \(\Theta(n) \)
• Correctness:
 – Clear if \textsc{Partition} divides correctly
 – Example:

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
2 & 8 & 7 & 1 & 3 & 5 & 6 & 4 \\
2 & 8 & 7 & 1 & 3 & 5 & 6 & 4 \\
2 & 8 & 7 & 1 & 3 & 5 & 6 & 4 \\
2 & 8 & 7 & 1 & 3 & 5 & 6 & 4 \\
2 & 1 & 7 & 8 & 3 & 5 & 6 & 4 \\
2 & 1 & 3 & 8 & 7 & 5 & 6 & 4 \\
2 & 1 & 3 & 8 & 7 & 5 & 6 & 4 \\
2 & 1 & 3 & 8 & 7 & 5 & 6 & 4 \\
\hline
i=0, j=1 & i=1, j=2 & i=1, j=3 & i=1, j=4 & i=2, j=5 & i=3, j=6 & i=3, j=7 & i=3, j=8 & q=4
\end{array}
\]

– \textsc{Partition} can be proved correct (by induction) using the loop invariant:
 * \(A[k] \leq x \) for \(p \leq k \leq i \)
 * \(A[k] > x \) for \(i + 1 \leq k \leq j - 1 \)
 * \(A[k] = x \) for \(k = r \)

• Running time depends on how well \textsc{Partition} divides \(A \).
 – In the example it does reasonably well.
 – In the worst case \(q \) is always \(p \) and the running time becomes \(T(n) = \Theta(n) + T(1) + T(n-1) \Rightarrow T(n) = \Theta(n^2) \).

 * and what is maybe even worse, the worst case is when \(A \) is already sorted.

• So why is it called "quick"-sort? Because it "often" performs very well—can we theoretically justify this?

 – Even if all the splits are relatively bad, we get \(\Theta(n \log n) \) time:

 * Example: Split is \(\frac{9}{10}n, \frac{1}{10}n \).

 \[
 T(n) = T\left(\frac{9}{10}n\right) + T\left(\frac{1}{10}n\right) + n
 \]

 Solution?
 Guess: \(T(n) \leq cn \log n \)

Induction

\[
T(n) = T\left(\frac{9}{10}n\right) + T\left(\frac{1}{10}n\right) + n
\]

\[
\leq \frac{9cn}{10} \log\left(\frac{9n}{10}\right) + \frac{cn}{10} \log\left(\frac{n}{10}\right) + n
\]

\[
\leq \frac{9cn}{10} \log n + \frac{9cn}{10} \log\left(\frac{9}{10}\right) + \frac{cn}{10} \log n + \frac{cn}{10} \log\left(\frac{1}{10}\right) + n
\]

\[
\leq cn \log n + \frac{9cn}{10} \log 9 - \frac{9cn}{10} \log 10 - \frac{cn}{10} \log 10 + n
\]

\[
\leq cn \log n - n(c \log 10 - \frac{9c}{10} \log 9 - 1)
\]

\[T(n) \leq cn \log n \text{ if } c \log 10 - \frac{9c}{10} \log 9 - 1 > 0 \text{ which is definitely true if } c > \frac{10}{\log 10}\]
– So, in other words, if just the splits happen at a constant fraction of n we get $\Theta(n \lg n)$—or, its almost never bad!

• Next time we will further justify the good practical performance by looking at average case running time.