Lecture 6: Expected Running Time of Quick-Sort
(CLRS 7.3-7.4, (C.2))

May 23rd, 2002

1 Quick-sort review

- Last time we discussed quick-sort.
 - Quick-Sort is ”opposite” of merge-sort
 - Obtained using divide-and-conquer

- Abstract algorithm
 - Divide $A[1...n]$ into subarrays $A' = A[1..q - 1]$ and $A'' = A[q + 1...n]$ such that all elements in A'' are larger than $A[q]$ and all elements in A' are smaller than $A[q]$.
 - Recursively sort A' and A''.
 - (nothing to combine/merge. A already sorted after sorting A' and A'')

- Pseudo code:

```plaintext
PARTITION(A, p, r)
  x = A[r]
  i = p - 1
  FOR j = p TO r - 1 DO
    IF A[j] ≤ x THEN
      i = i + 1
      Exchange A[i] and A[j]
    FI
  OD
  Exchange A[i + 1] and A[r]
  RETURN i + 1

QUICKSORT(A, p, r)
  IF p < r THEN
    q = PARTITION(A, p, r)
    QUICKSORT(A, p, q - 1)
    QUICKSORT(A, q + 1, r)
  FI
```

Sort using QUICKSORT($A, 1, n$)
• Analysis:

 - **PARTITION** runs in $\Theta(r - p)$ time.
 - If array is always partitioned nicely in two halves (partition returns $q = \frac{r + p}{2}$), we have the recurrence $T(n) = 2T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n \log n)$.
 - But in the worst case, **PARTITION** always returns $q = p$ (when input is sorted) and in this case we get the recurrence $T(n) = T(n - 1) + T(1) + \Theta(n) \Rightarrow T(n) = \Theta(n^2)$

What’s maybe even worse is that the worst-case happens when the data is already sorted.

• Quick-sort “often” perform well in practice and last time we started trying to justify this theoretically.

 - We saw that even if all the splits are relatively bad (we looked at the case $\frac{9}{10}n$, $\frac{1}{10}n$) we still get worst-case running time $O(n \log n)$.
 - To justify it further we define *average* and *expected* running time.

2 Average and Expected Running Time (Randomized Algorithms)

• We are normally interested in worst-case running time of an algorithm, that is, the maximal running time over all input of size n

$$T(n) = \max_{|X|=n} T(X)$$

• We are sometimes interested in analyzing the average-case running time of an algorithm, that is, the expected value for the running time, over all input of size n

$$T_a(n) = E_{|X|=n}[T(X)] = \sum_{|X|=n} T(X) \cdot Pr[X]$$

• The problem is that we often don’t know the probability $Pr[X]$ of getting a particular input X.

 - Sometime we assume that all possible inputs are equally likely, but that’s often not very realistic in practice.

• Instead of using average case running time we therefore consider what we call randomized algorithms, that is, algorithms that make some random choices during their execution

 - Running time of normal deterministic algorithm only depend on the input configuration.
 - Running time of randomized algorithm depend not only on input configuration but also on the random choices made by the algorithm.
 - Running time of a randomized algorithm is not fixed for a given input!

• We are often interested in analyzing the worst-case expected running time of a randomized algorithm, that is, the maximal of the average running times for all inputs of size n

$$T_e(n) = \max_{|X|=n} E[T(X)]$$
3 Randomized Quick-Sort

- We could analyze quick-sort assuming that we are sorting numbers 1 through \(n \) and that all \(n! \) different input configurations are equally likely.
 - Average running time would be \(T_n(n) = O(n \log n) \).
- The assumption that all inputs are equally likely are not very realistic (data tend to be somewhat sorted).
- We can enforce that all \(n! \) permutations are equally likely by randomly permuting the input before the algorithm
 - Most computers have pseudo-random number generator \(\text{random}(1, n) \) returning “random” number between 1 and \(n \)
 - Using pseudo-random number generator we can generate random permutation (all \(n! \) permutations equally likely) in \(O(n) \) time:
 (Note: Just choosing \(A[i] \) randomly among elements \(A[1..n] \) for all \(i \) will not give random permutation!)
- Alternatively we can modify \textsc{Partition} sightly and exchange last element in \(A \) with random element in \(A \) before partitioning

\[
\textbf{RanQuicksort}(A, p, r)
\]
\[
\text{IF } p < r \text{ THEN}
\]
\[
\quad q = \text{RanPartition}(A, p, r)
\]
\[
\quad \text{RanQuicksort}(A, p, q - 1)
\]
\[
\quad \text{RanQuicksort}(A, q + 1, r)
\]
\[
\text{FI}
\]
4 Expected Running Time of Randomized Quick-Sort

- Running time of \textsc{RandQuickSort} is dominated by the time spent in \textsc{Partition} procedure.

- \textsc{Partition} is called \(n \) times
 - The pivot element \(x \) is not included in any recursive calls.

- One call of \textsc{Partition} takes \(O(1) \) time plus time proportional to the number of iterations of FOR-loop.
 - In each iteration of FOR-loop we compare an element with the pivot element.

\[X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \]

\[X_{ij} = \begin{cases}
1 & \text{if } z_i \text{ compared to } z_j \\
0 & \text{if } z_i \text{ not compared to } z_j
\end{cases} \]

\[E[X] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr[z_i \text{ compared to } z_j] \]

- To compute \(\Pr[z_i \text{ compared to } z_j] \) it is useful to consider when two elements are \textit{not} compared.

Example: Consider an input consisting of numbers 1 through \(n \).
Assume first pivot it 7 \(\Rightarrow \) first partition separates the numbers into sets \{1, 2, 3, 4, 5, 6\} and \{8, 9, 10\}.
In partitioning, 7 is compared to all numbers. No number from the first set will ever be compared to a number from the second set.

In general, once a pivot \(x, \ z_i < x < z_j \), is chosen, we know that \(z_i \) and \(z_j \) cannot later be compared.

On the other hand, if \(z_i \) is chosen as pivot before any other element in \(Z_{ij} \) then it is compared to each element in \(Z_{ij} \). Similar for \(z_j \).

In example: 7 and 9 are compared because 7 is first item from \(Z_{7,9} \) to be chosen as pivot, and 2 and 9 are not compared because the first pivot in \(Z_{2,9} \) is 7.

Prior to an element in \(Z_{ij} \) being chosen as pivot, the set \(Z_{ij} \) is together in the same partition \(\Rightarrow \) any element in \(Z_{ij} \) is equally likely to be first element chosen as pivot \(\Rightarrow \) the probability that \(z_i \) or \(z_j \) is chosen first in \(Z_{ij} \) is \(\frac{1}{j-i+1} \)

\[\Pr[z_i \text{ compared to } z_j] = \frac{2}{j-i+1} \]
We now have:

\[
E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Pr[z_i \text{ compared to } z_j]
\]

\[
= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{j-i+1}{2}
\]

\[
= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{k+1}{2}
\]

\[
< \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k}
\]

\[
= \sum_{i=1}^{n-1} O(\log n)
\]

\[
= O(n \log n)
\]

- Next time we will see how to make quick-sort run in worst-case \(O(n \log n)\) time.