1 Quick-Sort Review

• The last two lectures we have considered Quick-Sort:
 – Divide $A[1...n]$ (using PARTITION) into subarrays $A' = A[1..q - 1]$ and $A'' = A[q + 1...n]$ such that all elements in A'' are larger than $A[q]$ and all elements in A' are smaller than $A[q]$.
 – Recursively sort A' and A''.

• We discussed how split point q produced by PARTITION only depends on last element in A

• We discussed how randomization can be used to get good expected partition point.

• Analysis:
 – Best case ($q = n/2$): $T(n) = 2T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n \log n)$.
 – Worst case ($q = 1$): $T(n) = T(1) + T(n - 1) + \Theta(n) \Rightarrow T(n) = \Theta(n^2)$.
 – Expected case for randomized algorithm: $\Theta(n \log n)$

2 Selection

• If we could find element e such that $\text{rank}(e) = n/2$ (the median) in $O(n)$ time we could make quick-sort run in $\Theta(n \log n)$ time worst case.
 – We could just exchange e with last element in A in beginning of PARTITION and thus make sure that A is always partition in the middle

• We will consider a more general problem than finding the i’th element:
 – Selection problem

$$\text{SELECT}(i) \text{ is the } i\text{'th element in the sorted order of elements}$$

• Note: We do not require that we sort to find $\text{SELECT}(i)$
• Note: $\text{SELECT}(1)=$minimum, $\text{SELECT}(n)=$maximum, $\text{SELECT}(n/2)=$median
• Special cases of SELECT\(i\)

 – Minimum or maximum can easily be found in \(n - 1\) comparisons
 * Scan through elements maintaining minimum/maximum

 – Second largest/smallest element can be found in \((n - 1) + (n - 2) = 2n - 3\) comparisons
 * Find and remove minimum/maximum
 * Find minimum/maximum

 – Median:
 * Using the above idea repeatedly we can find the median in time \(\sum_{i=1}^{n/2}(n - i) = n^2/2 - \sum_{i=1}^{n/2}i = n^2/2 - (n/2 \cdot (n/2 + 1))/2 = \Theta(n^2)\)
 * We can easily design \(\Theta(n \log n)\) algorithm using sorting

• Can we design \(O(n)\) time algorithm for general \(i\)?

• If we could partition nicely (which is what we are really trying to do) we could solve the problem

 – by partitioning and then recursively looking for the element in one of the partitions:

 \[
 \text{SELECT}(A, p, r, i) \\
 \text{IF } p = r \text{ THEN RETURN } A[p] \\
 q=\text{PARTITION}(A, p, r) \\
 \text{k = q} - p + 1 \\
 \text{IF } i \leq k \text{ THEN} \\
 \text{RETURN SELECT}(A, p, q, i) \\
 \text{ELSE} \\
 \text{RETURN SELECT}(A, q + 1, r, i - k) \\
 \text{FI}
 \]

Select \(i\)'th elements using \(\text{SELECT}(A, 1, n, i)\)

 – If the partition was perfect \((q = n/2)\) we have

 \[
 T(n) = T(n/2) + n \\
 = n + n/2 + n/4 + n/8 + \cdots + 1 \\
 = \sum_{i=0}^{\log n} \frac{n}{2^i} \\
 = n \cdot \sum_{i=0}^{\log n} \left(\frac{1}{2}\right)^i \\
 \leq n \cdot \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^i \\
 = \Theta(n)
 \]
Note:
* The trick is that we only recurse on one side.
* In the worst case the algorithm runs in \(T(n) = T(n-1) + n = \Theta(n^2) \) time.
* We could use randomization to get good expected partition.
* Even if we just always partition such that a constant fraction (\(\alpha < 1 \)) of the elements are eliminated we get running time \(T(n) = T(\alpha n) + n = n \sum_{i=0}^{\log n} \alpha^i = \Theta(n) \).
* It turns out that we can modify the algorithm and get \(T(n) = \Theta(n) \) in the worst case
 - The idea is to find a split element \(q \) such that we always eliminate a fraction of the elements:

```
SELECT(i)
  * Divide \( n \) elements into groups of 5
  * Select median of each group (\( \Rightarrow \lfloor \frac{n}{5} \rfloor \) selected elements)
  * Use SELECT recursively to find median \( q \) of selected elements
  * Partition all elements based on \( q \)

* Use SELECT recursively to find \( i \)'th element
  * If \( i \leq k \) then use SELECT(\( i \)) on \( k \) elements
  * If \( i > k \) then use SELECT(\( i-k \)) on \( n-k \) elements
```

- If \(n' \) is the maximal number of elements we recurse on in the last step of the algorithm the running time is given by \(T(n) = \Theta(n) + T(\lfloor \frac{n}{5} \rfloor) + \Theta(n) + T(n') \)

* Estimation of \(n' \):
 - Consider the following figure of the groups of 5 elements
 * An arrow between element \(e_1 \) and \(e_2 \) indicates that \(e_1 > e_2 \)
 * The \(\lfloor \frac{n}{5} \rfloor \) selected elements are drawn solid (\(q \) is median of these)
 * Elements > \(q \) are indicated with box
- Number of elements \(> q\) is larger than 3\(\left(\frac{1}{2} \left\lceil \frac{n}{5} \right\rceil - 2\right) \geq \frac{3n}{10} - 6\)
 * We get 3 elements from each of \(\frac{1}{2} \left\lceil \frac{n}{5} \right\rceil\) columns except possibly the one containing \(q\) and the last one.

- Similarly the number of elements \(< q\) is larger than \(\frac{3n}{10} - 6\)

\[
\downarrow
\]

We recurse on at most \(n' = n - \left(\frac{3n}{10} - 6\right) = \frac{7}{10}n + 6\) elements

- So \(\text{Selection}(i)\) runs in time \(T(n) = \Theta(n) + T(\left\lceil \frac{n}{5} \right\rceil) + T(\frac{7}{10}n + 6)\)

- Solution to \(T(n) = n + T(\left\lceil \frac{n}{5} \right\rceil) + T(\frac{7}{10}n + 6)\):
 - Guess \(T(n) \leq cn\)
 - Induction:

\[
T(n) = n + T(\left\lceil \frac{n}{5} \right\rceil) + T(\frac{7}{10}n + 6) \\
\leq n + c \cdot \left\lceil \frac{n}{5} \right\rceil + c \cdot (\frac{7}{10}n + 6) \\
\leq n + c\left\lceil \frac{n}{5} \right\rceil + c + \frac{7}{10}cn + 6c \\
= \frac{9}{10}cn + n + 7c \\
\leq cn
\]

If \(7c + n \leq \frac{1}{10}cn\) which can be satisfied (e.g. true for \(c = 20\) if \(n > 140\))

- Note: It is important that we chose every 5’th element, not all other choices will work (homework).