1 Introduction

- We have discussed several fundamental algorithms (e.g. sorting)
- We will now turn to data structures; Play an important role in algorithms design.
 - Today we will discuss priority queues and next time structures for maintaining ordered sets.

2 Priority Queue

- A priority queue supports the following operations on a set S of n elements:
 - INSERT: Insert a new element e in S
 - FINDMIN: Return the minimal element in S
 - DELETEMIN: Delete the minimal element in S

- Sometimes we are also interested in supporting the following operations:
 - CHANGE: Change the key (priority) of an element in S
 - DELETE: Delete an element from S

- We can obviously sort using a priority queue:
 - Insert all elements using INSERT
 - Delete all elements in order using FINDMIN and DELETEMIN

- Priority queues have many other applications, e.g. in discrete event simulation, graph algorithms

2.1 Array or List implementations

- The first implementation that comes to mind is ordered array:

 1 3 5 6 7 8 9 15 12 15 17

 - FINDMIN can be performed in $O(1)$ time
 - DELETEMIN and INSERT takes $O(n)$ time since we need to expand/compress the array after inserting or deleting element.

- If the array is unordered all operations take $O(n)$ time.
• We could use double linked sorted list instead of array to avoid the $O(n)$ expansion/compression cost

 – but INSERT can still take $O(n)$ time.

2.2 Heap implementation

• One way of implementing a priority queue is using a heap

• Heap definition:

 – Perfectly balanced binary tree
 * lowest level can be incomplete (but filled from left-to-right)

 – For all nodes v we have $\text{key}(v) \geq \text{key}(\text{parent}(v))$

• Example:

 ![Heap example diagram]

 Heap can be implemented (stored) in two ways (at least)

 – Using pointers
 – In an array level-by-level, left-to-right

 Example:

 ![Heap array example diagram]

 * Note the nice property that the left and right children of node stored in entry i is in entry $2i$ and $2i + 1$, respectively

• Properties of heap:

 – Height $\Theta(\log n)$
 – Minimum of S is stored in root

• Operations:

 – INSERT
 * Insert element in new leaf in leftmost possible position on lowest level
 * Repeatedly swap element with element in parent node until heap order is reestablished (up-heapify)
Example: Insertion of 4

- **FindMin**
 - Return root element
- **DeleteMin**
 - Delete element in root
 - Move element from rightmost leaf on lowest level to the root (and delete leaf)
 - Repeatedly swap element with element in child node with *minimal* element until heap order is reestablished (**down-heapify**)

Example:

- Running time: All operations traverse at most one root-leaf path ⇒ $O(\log n)$ time.
- **Change** and **Delete** can be handled similarly in $O(\log n)$ time
 - Assuming that we know the element to be changed/deleted.
- Sorting using heap (**Heap-Sort**) takes $\Theta(n \log n)$ time.
 - $n \cdot O(\log n)$ time to insert all elements (build the heap)
 - $n \cdot O(\log n)$ time to output sorted elements
- Sometimes we would like to build a heap faster than $O(n \log n)$
 - Insert elements in any order in perfectly balanced tree
 - **down-heapify** all nodes level-by-level, bottom-up

Correctness:
- Induction on height of tree: When doing level i, all trees rooted at level $i-1$ are heaps.

Analysis:
- Define leaves to be on level 1 (root on level $\log n$)
- n elements ⇒ $\leq \left\lceil \frac{n}{2^\rho} \right\rceil$ leaves ⇒ $\left\lceil \frac{n}{2^\rho} \right\rceil$ elements on level h
- Cost of **down-heapify** on a node on level h is h
- Total cost: $\sum_{i=1}^{\log n} h \cdot \left\lceil \frac{n}{2^\rho} \right\rceil = \Theta(n) \cdot \sum_{i=1}^{\log n} \frac{h}{2^\rho}$
- $\sum_{i=1}^{\log n} \frac{h}{2^\rho} = O(1)$ so cost is $\Theta(n)$
 - Assume $|x| < 1$ and differentiate $\sum_{h=0}^{\infty} x^h = \frac{1}{x-1}$
 - $\sum_{h=0}^{\infty} h x^{h-1} = \frac{1}{(x-1)^2}$ ⇒ $\sum_{h=0}^{\infty} h x^h = \frac{x}{(x-1)^2}$ ⇒ $\sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1/2-1)^2} = O(1)$