(CLRS 10, 12.1-12.3)

May 29th, 2002

1 Maintaining ordered set dynamically

- We want to maintain an ordered set S under operations
 - $\text{SEARCH}(e)$: Return (pointer to) element e in S (if $e \in S$)
 - $\text{INSERT}(e)$: Insert element e in S
 - $\text{DELETE}(e)$: Delete element e from S
 - $\text{SUCCESSOR}(e)$: Return (pointer to) minimal element in S larger than e
 - $\text{PREDECESSOR}(e)$: Return (pointer to) maximal element in S smaller than e

1.1 Ordered array implementation

- The first implementation that comes to mind is the ordered array:

```
1 3 5 6 7 8 9 11 12 15 17
```

- SEARCH can be performed in $O(n)$ time by scanning through array or in $O(\log n)$ time using binary search
- PREDECESSOR/SUCCESSOR can be performed in $O(\log n)$ time like searching
- INSERT/DELETE takes $O(n)$ time since we need to expand/compress the array after finding the position of e

1.2 Double linked list implementation

- Unordered list

```
17 <-> 9 <-> 1 <-> 5 <-> 1 <-> 13 <-> 15 <-> 8 <-> 6 <-> 11 <-> 7 <-> 12
```

- SEARCH takes $O(n)$ time since we have to scan the list
- PREDECESSOR/SUCCESSOR takes $O(n)$ time
- INSERT takes $O(1)$ time since we can just insert e at beginning of list
- DELETE takes $O(n)$ time since we have to perform a search before spending $O(1)$ time on deletion

- Ordered list

```
1 <-> 3 <-> 5 <-> 6 <-> 7 <-> 8 <-> 9 <-> 11 <-> 12 <-> 15 <-> 17
```

1
- SEARCH takes $O(n)$ time since we cannot perform binary search
- PREDECESSOR/SUCCESSOR takes $O(n)$ time
- INSERT/DELETE takes $O(n)$ time since we have to perform a search to locate the position of insertion/deletion

1.3 Binary search tree implementation

- Binary search naturally leads to definition of binary search tree

Binary tree with elements in nodes
- If node v holds element e then
 * All elements in left subtree $< e$
 * All elements in right subtree $> e$

- Search(e) in $O(height)$: Compare with e and recursively search in left or right subtree
- Insert(e) in $O(height)$: Search for e and insert at place where search path terminates
 (Note: height may increase)
 Example: Insertion of 13
Delete(e) in $O(\text{height})$: Search for node v containing e,

1. v is a leaf: Delete v
2. v is internal node with one child: Delete v and attach $\text{child}(v)$ to $\text{parent}(v)$

Example: Delete 7

3. v is internal node with two children:
 * exchange e in v with successor e' in node v' (minimal element in right subtree, found by following left branches as long as possible in right subtree)
 * v' node can be deleted by case 1 or 2

Example: Delete 12

Note:

- Running time of all operations depend on height of tree.
- Intuitively the tree will be nicely balanced if we do insertion and deletion randomly.
- In worst case the height can be $O(n)$.
2 Skip lists

- There are several schemes for keeping search trees reasonably balanced and obtain $O(\log n)$ bounds
 - Often quite complicated—We will discuss one way (red-black trees) later.
- When we discussed Quick-sort we saw how randomization can lead to good expected running times.
 - We will now discuss how randomization can be used to obtain a very simple search structure with expected case performance $O(\log n)$ (independent of data/operations!)
- Idea in a skip list is best illustrated if we try to build a “search tree” on top of double linked list:
 - Insert elements $-\infty$ and ∞
 - Repeatedly construct double linked list (level S_i) on top of current list (level S_{i-1}) by choosing every second element (and link equal elements together)
 - Number of levels is $O(\log n)$

- $\text{Search}(e)$: Start at topmost left element. Repeatedly drop down one level and search forward until max element $\leq e$ is found.

Example: Search for 8

$O(\log n)$ time since we move at most one step to the right at each level.
- $\text{Predecessor/Successor}$ also in $O(\log n)$ time
– \textit{Insert}/\textit{Delete} seems hard to do in better than $O(n)$ time since we might need to rebuild the entire structure after one of the operations.

- Idea in skip list is to let level S_i consist of a randomly generated subset of elements at level S_{i-1}.
 - To decide if an element on level S_{i-1} should be on level S_i, we flip a coin and include the element if it is head.
 \begin{itemize}
 \item Expected size of S_1 is $\frac{n}{2}$
 \item Expected size of S_2 is $\frac{n}{4}$
 \item \ldots
 \item Expected size of S_i is $\frac{n}{2^i}$
 \end{itemize}
 - Expected height is $O(\log n)$

- Operations:
 - \textit{Search}(e) as before.
 - \textit{Delete}(e): Search to find e and delete all occurrences of e.
 - \textit{Insert}(e):
 * search to find position of e in S_0
 * Insert e in S_0.
 * Repeatedly flip a coin; insert e and continue to next level if it comes up head.

- Running time of all the operations is bounded by search running time
 - Down search takes $O(\text{height}) = O(\log n)$ expected.
 - Right search/scan:
 * If we scan an element on level i it cannot be on level $i + 1$ (because then we would have scanned it there)
 \begin{itemize}
 \item Expected number of elements we scan on level i is the expected number of times we have to flip a coin to get head
 \item We expect to scan 2 elements on level i
 \item Running time is $O(\text{height}) = O(\log n)$ expected.
 \end{itemize}

- Note:
 - We only really need forward and down pointers.
 - Expected space use is $\sum_{i=0}^{\log n} \frac{n}{2^i} \leq n \cdot \sum_{i=0}^{\infty} \frac{1}{2^i} = O(n)$.