1 Dynamic programming

- We have previously discussed how divide-and-conquer can often be used to obtain efficient algorithms.
 - Examples: matrix multiplication, merge-sort, quick-sort,....
- Sometimes direct use of divide-and-conquer does not yield efficient algorithms—in fact, sometimes it results in really bad algorithms.
- Today we will discuss a technique which can often be used to improve upon an inefficient divide-and-conquer algorithm.
 - The technique is called "Dynamic programming". It is neither especially 'dynamic' nor especially 'programming' related.
 - We will discuss dynamic programming by looking at an example.

1.1 Matrix-chain multiplication

- Problem: Given a sequence of matrices \(A_1, A_2, A_3, \ldots, A_n \), find the best way (using the minimal number of multiplications) to compute their product.
 - Isn’t there only one way? \(((\cdots ((A_1 \cdot A_2) \cdot A_3) \cdots) \cdot A_n) \)
 - No, matrix multiplication is associative.
 e.g. \(A_1 \cdot (A_2 \cdot (A_3 \cdot (\cdots (A_{n-1} \cdot A_n) \cdots)) \) yields the same matrix.
 - Different multiplication orders do not cost the same:
 * Multiplying \(p \times q \) matrix \(A \) and \(q \times r \) matrix \(B \) takes \(p \cdot q \cdot r \) multiplications; result is a \(p \times r \) matrix.
 * Consider multiplying \(10 \times 100 \) matrix \(A_1 \) with \(100 \times 5 \) matrix \(A_2 \) and \(5 \times 50 \) matrix \(A_3 \).
 - \((A_1 \cdot A_2) \cdot A_3 \) takes \(10 \cdot 100 \cdot 5 + 10 \cdot 5 \cdot 50 = 7500 \) multiplications.
 - \(A_1 \cdot (A_2 \cdot A_3) \) takes \(100 \cdot 5 \cdot 50 + 10 \cdot 50 \cdot 100 = 75000 \) multiplications.
- In general, let \(A_i \) be \(p_{i-1} \times p_i \) matrix.
 - \(A_1, A_2, A_3, \ldots, A_n \) can be represented by \(p_0, p_1, p_2, p_3, \ldots, p_n \)
- Let \(m(i, j) \) denote minimal number of multiplications needed to compute \(A_i \cdot A_{i+1} \cdots A_j \)
 - We want to compute \(m(1, n) \).
• Divide-and-conquer solution/recursive algorithm:

 - Divide into \(j - i - 1 \) subproblems by trying to set parenthesis in all \(j - i - 1 \) positions. (e.g. \((A_i \cdot A_{i+1} \cdots A_k) \cdot (A_{k+1} \cdots A_j) \) corresponds to multiplying \(p_{i-1} \times p_k \) and \(p_k \times p_j \) matrices.)

 - Recursively find best way of solving sub-problems. (e.g. best way of computing \(A_i \cdot A_{i+1} \cdots A_k \) and \(A_{k+1} \cdot A_{k+2} \cdots A_j \))

 - Pick best solution.

• Algorithm expressed in terms of \(m(i, j) \):

\[
m(i, j) = \begin{cases}
0 & \text{if } i = j \\
\min_{i < k < j} \{ m(i, k) + m(k+1, j) + p_{i-1} \cdot p_k \cdot p_j \} & \text{if } i < j
\end{cases}
\]

• Program:

```plaintext

MATRIX-CHAIN(i, j)
    IF i = j THEN return 0
    \( m(i, j) = \infty \)
    FOR k = i TO j - 1 DO
        \( q = \text{MATRIX-CHAIN}(i, k) + \text{MATRIX-CHAIN}(k+1, j) + p_{i-1} \cdot p_k \cdot p_j \)
        IF q < m(i, j) THEN m(i, j) = q
    OD
    Return m(i, j)
END MATRIX-CHAIN

Return MATRIX-CHAIN(1, n)
```

• Running time:

\[
T(n) = \sum_{k=1}^{n-1} (T(k) + T(n-k) + O(1)) = 2 \cdot \sum_{k=1}^{n-1} T(k) + O(n) \geq 2 \cdot T(n-1) \geq 2 \cdot 2 \cdot T(n-2) \geq 2 \cdot 2 \cdot 2 \cdots = 2^n
\]

• Problem is that we compute the same result over and over again.

 - Example: Recursion tree for \(\text{MATRIX-CHAIN}(1, 4) \)
We for example compute $\text{Matrix-chain}(3, 4)$ twice

- Solution is to "remember" values we have already computed in a table—*memorization*

\begin{verbatim}
MATRICE-CHAIN(i, j)
 IF i = j THEN return 0
 IF m(i, j) < \infty THEN return m(i, j) /* This line has changed */
 FOR k = i to j - 1 DO
 q = MATRIX-CHAIN(i, k) + MATRIX-CHAIN(k + 1, j) + p_{i-1} \cdot p_k \cdot p_j
 IF q < m(i, j) THEN m(i, j) = q
 OD
 return m(i, j)
END MATRIX-CHAIN

FOR i = 1 to n DO
 FOR j = i to n DO
 m(i, j) = \infty
 OD
OD

return MATRIX-CHAIN(1, n)
\end{verbatim}

- Running time:
 - $\Theta(n^2)$ different calls to $\text{MATRIX-CHAIN}(i, j)$.
 - The first time a call is made it takes $O(n)$ time, *not* counting recursive calls.
 - When a call has been made once it costs $O(1)$ time to make it again.
 - \Downarrow
 - $O(n^3)$ time
 - Another way of thinking about it: $\Theta(n^2)$ total entries to fill, it takes $O(n)$ to fill one.
1.2 Alternative view of Dynamic Programming

- Often (including in the book) dynamic programming is presented in a different way; As filling up a table from the bottom.

- Matrix-chain example: Key is that \(m(i, j) \) only depends on \(m(i, k) \) and \(m(k + 1, j) \) where \(i \leq k < j \Rightarrow \) if we have computed them, we can compute \(m(i, j) \)
 - We can easily compute \(m(i, i) \) for all \(1 \leq i \leq n \) (\(m(i, i) = 0 \))
 - Then we can easily compute \(m(i, i + 1) \) for all \(1 \leq i \leq n - 1 \)
 \[
 m(i, i + 1) = m(i, i) + m(i + 1, i + 1) + p_{i-1} \cdot p_i \cdot p_{i+1}
 \]
 - Then we can compute \(m(i, i + 2) \) for all \(1 \leq i \leq n - 2 \)
 \[
 m(i, i + 2) = \min \{ m(i, i) + m(i + 1, i + 2) + p_{i-1} \cdot p_i \cdot p_{i+2}, m(i, i + 1) + m(i + 2, i + 2) + p_{i-1} \cdot p_{i+1} \cdot p_{i+2} \}
 \]
 - Until we compute \(m(1, n) \)
 - Computation order:

```
  1 2 3 4 5 6 7
  1 1 2 3 4 5 6 7
  2 1 2 3 4 5 6
  3 1 2 3 4 5
  4 1 2 3 4
  5 1 2 3
  6 1 2
  7 1
```

- Program:

```
FOR i = 1 to n DO
    m(i, i) = 0
OD
FOR l = 1 to n - 1 DO
    FOR i = 1 to n - l DO
        j = i + l
        m(i, j) = \infty
        FOR k = 1 to j - 1 DO
            q = m(i, k) + m(k + 1, j) + p_{i-1} \cdot p_k \cdot p_j
            IF q < m(i, j) THEN m(i, j) = q
        OD
    OD
OD
```
• Analysis:

 – $O(n^2)$ entries, $O(n)$ time to compute each $\Rightarrow O(n^3)$.

• Note:

 – I like recursive (divide-and-conquer) thinking.
 – Book seems to like table method better.
 – I like divide-and-conquer because one does not need to get new idea (write new program) — just use table!