1 Amortized Analysis

- Until now we have seen a number of data structures and analyzed the worst-case running time of each individual operation.
- Sometimes the cost of an operation vary widely, so that that worst-case running time is not really a good cost measure.
- Similarly, sometimes the cost of every single operation is not so important
 - the total cost of a series of operations are more important (e.g when using priority queue to sort)

\[\Downarrow \]

- We want to analyze running time of one single operation averaged over a sequence of operations
 - Note: We are not interested in an average case analyses that depends on some input distribution or random choices made by algorithm.

- To capture this we define *amortized time*.

\[\text{If any sequence of } n \text{ operations on a data structure takes } \leq T(n) \text{ time,} \]
\[\text{the amortized time per operation is } T(n)/n \]

- Equivalently, if the amortized time of one operation is \(U(n) \), then any sequence of \(n \) operations takes \(n \cdot U(n) \) time.

- Again keep in mind: “Average” is over a sequence of operations for *any* sequence
 - not average for some input distribution (as in quick-sort)
 - not average over random choices made by algorithm (as in skip-lists)
1.1 Example: Stack with MULTIPOP

- As we know, a normal stack is a data structure with operations
 - PUSH: Insert new element at top of stack
 - POP: Delete top element from stack

- A stack can easily be implemented (using linked list) such that PUSH and POP takes \(O(1) \) time.

- Consider the addition of another operation:
 - MULTIPOP\((k)\): POP \(k \) elements off the stack.

- Analysis of a sequence of \(n \) operations:
 - One MULTIPOP can take \(O(n) \) time \(\Rightarrow O(n^2) \) running time.
 - Amortized running time of each operation is \(O(1) \) \(\Rightarrow O(n) \) running time.
 * Each element can be popped at most once each time it is pushed
 * Number of POP operations (including the one done by MULTIPOP) is bounded by \(n \)
 * Total cost of \(n \) operations is \(O(n) \)
 * Amortized cost of one operation is \(O(n)/n = O(1) \).

1.2 Example: Binary counter

- Consider the following (somewhat artificial) data structure problem: Maintain a binary counter under \(n \) INCREMENT operations (assuming that the counter value is initially 0)
 - Data structure consists of an (infinite) array \(A \) of bits such that \(A[i] \) is either 0 or 1.
 - \(A[0] \) is lowest order bit, so value of counter is \(x = \sum_{i \geq 0} A[i] \cdot 2^i \)
 - INCREMENT operation:

 \[
 \begin{align*}
 A[0] &= A[0] + 1 \\
 i &= 0 \\
 \text{WHILE } A[i] &= 2 \text{ DO} \\
 A[i+1] &= A[i+1] + 1 \\
 A[i] &= 0 \\
 i &= i + 1 \\
 \text{OD}
 \end{align*}
 \]

- The running time of INCREMENT is the number of iterations of while loop +1.

Example (Note: Bit furthest to the right is \(A[0] \)):

\[
\begin{align*}
ext &= 47 \Rightarrow A &= <0,\ldots,0,1,1,1,1,1> \\
next &= 48 \Rightarrow A &= <0,\ldots,0,1,1,0,0,0> \\
next &= 49 \Rightarrow A &= <0,\ldots,0,1,1,0,0,1>
\end{align*}
\]

INCREMENT from \(x = 47 \) to \(x = 48 \) has cost 5
INCREMENT from \(x = 48 \) to \(x = 49 \) has cost 1
• Analysis of a sequence of n increments

 – Number of bits in representation of n is $\log n \Rightarrow n$ operations cost $O(n \log n)$.
 – Amortized running time of increment is $O(1) \Rightarrow O(n)$ running time:
 * $A[0]$ flips on each increment (n times in total)
 * $A[1]$ flips on every second increment ($n/2$ times in total)
 * $A[2]$ flips on every fourth increment ($n/4$ times in total)
 :
 * $A[i]$ flips on every 2^ith increment ($n/2^i$ times in total)

 ↓

 Total running time: $T(n) = \sum_{i=0}^{\log n} \frac{n}{2^i}$

 \[\leq n \cdot \sum_{i=0}^{\log n} \left(\frac{1}{2}\right)^i \]

 \[= O(n) \]

2 Potential Method

• In the two previous examples we basically just did a careful analysis to get $O(n)$ bounds leading to $O(1)$ amortized bounds.
 – book calls this aggregate analysis.

• In aggregate analysis, all operations have the same amortized cost (total cost divided by n)
 – other and more sophisticated amortized analysis methods allow different operations to have different amortized costs.

• Potential method:
 – Idea is to overcharge some operations and store the overcharge as credits/potential which can then help pay for later operations (making them cheaper).
 – Leads to equivalent but slightly different definition of amortized time.

• Consider performing n operations on an initial data structure D_0

 – D_i is data structure after ith operation, $i = 1, 2, \ldots, n$.
 – c_i is actual cost (time) of ith operation, $i = 1, 2, \ldots, n$.

 ↓

 Total cost of n operations is $\sum_{i=0}^{n} c_k$.

• We define potential function mapping D_i to R. ($\Phi : D_i \rightarrow R$)
 – $\Phi(D_i)$ is potential associated with D_i

• We define amortized cost \tilde{c}_i of ith operation as $\tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$

 – \tilde{c}_i is sum of real cost and increase in potential

 ↓

 – If potential decreases the amortized cost is lower than actual cost (we use saved potential/credits)
 – If potential increases the amortized cost is larger than actual cost (we overcharge operation to save potential/credits).
Key is that, as previously, we can bound total cost of all the \(n \) operations by the total amortized cost of all \(n \) operations:

\[
\sum_{i=1}^{n} c_k = \sum_{i=1}^{n} (\tilde{c}_i + \Phi(D_{i-1}) - \Phi(D_i)) \\
= \Phi(D_0) - \Phi(D_n) + \sum_{i=1}^{n} \tilde{c}_i \\
\downarrow \\
\sum_{i=1}^{n} c_k \leq \sum_{i=1}^{n} \tilde{c}_i \quad \text{if} \quad \Phi(D_0) = 0 \quad \text{and} \quad \Phi(D_i) \geq 0 \quad \text{for all} \ i \ (\text{or even if just} \ \Phi(D_n) \geq \Phi(D_0))
\]

2.1 Example: Stack with multipop

- Define \(\Phi(D_i) \) to be the size of stack \(D_i \Rightarrow \Phi(D_0) = 0 \) and \(\Phi(D_i) \geq 0 \)
- Amortized costs:
 - Push:
 \[
 \tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \\
 = 1 + 1 \\
 = 2 \\
 = O(1).
 \]
 - Pop:
 \[
 \tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \\
 = 1 + (-1) \\
 = 0 \\
 = O(1).
 \]
 - Multipop(\(k \)):
 \[
 \tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \\
 = k + (-k) \\
 = 0 \\
 = O(1).
 \]
- Total cost of \(n \) operations: \(\sum_{i=1}^{n} c_k \leq \sum_{i=1}^{n} \tilde{c}_i = O(n) \).

2.2 Example: Binary counter

- Define \(\Phi(D_i) = \sum_{i \geq 0} A[i] \Rightarrow \Phi(D_0) = 0 \) and \(\Phi(D_i) \geq 0 \)
 - \(\Phi(D_i) \) is the number of ones in counter.
- Amortized cost of \(i \)th operation: \(\tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \)
 - Consider the case where first \(k \) positions in \(A \) are 1 \(A = <0,0,\cdots,1,1,1,\cdots,1> \)
 - In this case \(c_i = k + 1 \)
 - \(\Phi(D_i) - \Phi(D_{i-1}) \) is \(-k + 1 \) since the first \(k \) positions of \(A \) are 0 after the increment and the \(k + 1 \)th position is changed to 1 (all other positions are unchanged)
 \[
 \downarrow \\
 \tilde{c}_i = k + 1 - k + 1 = 2 = O(1)
 \]
- Total cost of \(n \) increments: \(\sum_{i=1}^{n} c_k \leq \sum_{i=1}^{n} \tilde{c}_i = O(n) \).
2.3 Notes on amortized cost

- Amortized cost depends on choice of Φ
- Different operations can have different amortized costs.
- Often we think about potential/credits as being distributed on certain parts of data structure.

In multipop example:
- Every element holds one credit.
- **Push**: Pay for operation (cost 1) and for placing one credit on new element (cost 1).
- **Pop**: Use credit of removed element to pay for the operation.
- **Multipop**: Use credits on removed elements to pay for the operation.

In counter example:
- Every 1 in A holds one credit.
- Change from $1 \rightarrow 0$ payed using credit.
- Change from $0 \rightarrow 1$ payed by INCREMENT; pay one credit to do the flip and place one credit on new 1.

\[\downarrow \]

INCREMENT cost $O(1)$ amortized (at most one $0 \rightarrow 1$ change).

- Book calls this the *accounting method*

 - Note: Credits only used for analysis and is not part of data structure

- Hard part of amortized analysis is often to come up with potential function Φ

 - Some people prefer using potential function (*potential method*), some prefer thinking about placing credits on data structure (*Accounting method*).
 - Accounting method often good for relatively easy examples.

- Next time we will discuss an elegant "self-adjusting" search tree data structure with amortized $O(\log n)$ bonds for all operations (*splay trees*).