1 Graph Problems

- You should already know about graphs
 - Today we will quickly review basic definitions and a few fundamental graph algorithms.

1.1 Definitions

- A graph $G = (V, E)$ consists of a finite set of vertices V and a finite set of edges E.
 - Directed graphs: E is a set of ordered pairs of vertices (u, v) where $u, v \in V$
 -
 \[V = \{1, 2, 3, 4, 5, 6\} \]
 \[E = \{(1,2), (2,2), (2,4), (2,5), (4,1), (4,5), (5,4), (6,3)\} \]
 - Undirected graph: E is a set of unordered pairs of vertices $\{u, v\}$ where $u, v \in V$
 -
 \[V = \{1, 2, 3, 4, 5, 6\} \]
 \[E = \{\{1,2\}, \{1,5\}, \{2,5\}, \{3,6\}\} \]

- Edge (u, v) is incident to u and v
- Degree of vertex in undirected graph is the number of edges incident to it.
- In (out) degree of a vertex in directed graph is the number of edges entering (leaving) it.
- A path from u_1 to u_2 is a sequence of vertices $< u_1 = v_0, v_1, v_2, \ldots, v_k = u_2 >$ such that $(v_i, v_{i+1}) \in E$ (or $\{v_i, v_{i+1}\} \in E$)
 - We say that u_2 is reachable from u_1
 - The length of the path is k
 - It is a cycle if $v_0 = v_k$
• An undirected graph is *connected* if every pair of vertices are connected by a path
 – The *connected components* are the equivalence classes of the vertices under the “reachability” relation. (All connected pair of vertices are in the same connected component).

• A directed graph is *strongly connected* if every pair of vertices are reachable from each other
 – The *strongly connected components* are the equivalence classes of the vertices under the “mutual reachability” relation.

• Graphs appear all over the place in all kinds of applications, e.g:
 – Trees (|E| = |V| − 1)
 – Connectivity/dependencies (house building plans, WWW-page connections, …)

• Often the edges (u, v) in a graph have weights w(u, v), e.g.
 – Road networks (distances)
 – Cable networks (capacity)

1.2 Representation

• *Adjacency-list* representation:
 – Array of |V| list of edges incident to each vertex.

Examples:

– Note: For undirected graphs, every edge is stored twice.
– If graph is weighted, a weight is stored with each edge.
- **Adjacency-matrix** representation:
 - $|V| \times |V|$ matrix A where

 \[
 a_{ij} = \begin{cases}
 1 & \text{if } (i, j) \in E \\
 0 & \text{otherwise}
 \end{cases}
 \]

 Examples:

 \[
 \begin{array}{c|cccccc}
 \hline
 & 1 & 2 & 3 & 4 & 5 & 6 \\
 \hline
 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
 2 & 1 & 1 & 1 & 0 & 0 & 1 \\
 3 & 0 & 0 & 1 & 1 & 0 & 0 \\
 4 & 1 & 0 & 0 & 0 & 0 & 0 \\
 5 & 0 & 0 & 1 & 0 & 0 & 0 \\
 6 & 0 & 0 & 0 & 0 & 0 & 0 \\
 \hline
 \end{array}
 \]

 – Note: For undirected graphs, the adjacency matrix is symmetric along the main diagonal ($A^T = A$).

 – If graph is weighted, weights are stored instead of one’s.

- Comparison of matrix and list representation:

<table>
<thead>
<tr>
<th>Adjacency list</th>
<th>Adjacency matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>Good if graph sparse ($</td>
<td>E</td>
</tr>
<tr>
<td>No quick access to (u, v)</td>
<td>$O(1)$ access to (u, v)</td>
</tr>
</tbody>
</table>

- We will use adjacency list representation unless stated otherwise ($O(|V| + |E|)$ space).

2 Graph traversal

- There are two standard (and simple) ways of traversing all vertices/edges in a graph in a systematic way

 - Breadth-first
 - Depth-first

- We can use them in many fundamental algorithms, e.g. finding cycles, connected components, …
2.1 Breadth-first search (BFS)

- Main idea:
 - Start at some source vertex \(s \) and visit,
 - All vertices at distance 1,
 - Followed by all vertices at distance 2,
 - Followed by all vertices at distance 3,

- BFS corresponds to computing shortest path distance (number of edges) from \(s \) to all other vertices.

- To control progress of our BFS algorithm, we think about coloring each vertex
 - \textit{White} before we start,
 - \textit{Gray} after we visit the vertex but before we have visited all its adjacent vertices,
 - \textit{Black} after we have visited the vertex and all its adjacent vertices (all adjacent vertices are gray).

- We use a queue \(Q \) to hold all gray vertices—vertices we have seen but are still not done with.

- We remember from which vertex a given vertex \(v \) is colored gray (\textit{visit}[v]).

- Algorithm:

```
BFS(s)
  color[s] = gray
  d[s] = 0
  ENQUEUE(Q, s)
  WHILE Q not empty DO
    DEQUEUE(Q, u)
    FOR (u, v) \( \in \) E DO
      IF color[v] = white THEN
        color[v] = gray
        d[v] = d[u] + 1
        visit[v] = u
        ENQUEUE(Q, v)
      FI
    OD
  color[u] = black
```

- Algorithm runs in \(O(|V| + |E|) \) time
• Example (for directed graph):
 a) ![Diagram a]
 b) ![Diagram b]
 c) ![Diagram c]
 d) ![Diagram d]
 e) ![Diagram e]
 f) ![Diagram f]
 g) ![Diagram g]
 h) ![Diagram h]
 i) ![Diagram i]

• Note:
 - visit[v] forms a tree; *BFS-tree*.
 - d[v] contains length of shortest path from s to v.
 - We can use visit[v] to find the shortest path from s to a given vertex.

• If graph is not connected we have to try to start the traversal at all nodes.

```
FOR each vertex u ∈ V DO
   IF color[u] = white THEN BFS(u)
OD
```

- Note: We can use algorithm to compute connected components in O(|V| + |E|) time.
2.2 Depth-first search (DFS)

- If we use stack instead of queue \(Q \) we get another traversal order; depth-first
 - We go “as deep as possible”,
 - Go back until we find unexplored adjacent vertex,
 - Go as deep as possible,

- Often we are interested in “start time” and “finish time” of vertex \(u \)
 - Start time \((d[u]) \): indicates at what “time” vertex is first visited.
 - Finish time \((f[u]) \): indicates at what “time” all adjacent vertices have been visited.

- Instead of using a stack in a DFS algorithms, we can write a recursive procedure
 - We will color a vertex gray when we first meet it and black when we finish processing all adjacent vertices.

- Algorithm:

\[
\text{DFS}(u) \\
\text{color}[u] = \text{gray} \\
d[u] = \text{time} \\
\text{time} = \text{time} + 1 \\
\text{FOR}\ (u, v) \in E\ \text{DO} \\
\hspace{1cm} \text{IF color}[v] = \text{white}\ \text{THEN} \\
\hspace{2cm} \text{visit}[v] = u \\
\hspace{2cm} \text{DFS}(v) \\
\hspace{1cm} \text{FI} \\
\text{OD} \\
\text{color}[u] = \text{black} \\
f[u] = \text{time} \\
\text{time} = \text{time} + 1
\]

- Algorithm runs in \(O(|V| + |E|) \) time
 - As before we can extend algorithm to unconnected graphs and we can use it to detect cycles in \(O(|V| + |E|) \) time.
• Example:

a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

k)

l)
• As previously visit[v] forms a tree; DFS-tree
 – Note: If \(u \) is descendent of \(v \) in DFS-tree then \(d[v] < d[u] < f[u] < f[v] \)

3 Topological sorting

• Definition: Topological sorting of directed acyclic graph \(G = (V, E) \) is a linear ordering of vertices \(V \) such that \((u, v) \in E \Rightarrow u \) appear before \(v \) in ordering.

• Topological ordering can be used in scheduling:
 – Example: Dressing (arrow implies “must come before”)

![Diagram of dressing order]

We want to compute order in which to get dressed. One possibility:

![Diagram of dressing order]

The given order is one possible topological order.

• Algorithm: Topological order just reverse DFS finish time (\(\Rightarrow O(|V| + |E|) \) running time).
• Correctness: \((u, v) \in E \Rightarrow f(v) < f(u)\)

 - Proof: When \((u, v)\) is explored by DFS algorithm, \(v\) must be white or black (gray ⇒ cycle).
 * \(v\) white: \(v\) visited and finished before \(u\) is finished \(\Rightarrow f(v) < f(u)\)
 * \(v\) black: \(v\) already finished \(\Rightarrow f(v) < f(u)\)

• Alternative algorithm: Count in-degree of each vertex and repeatedly number and remove in-degree 0 vertex and its outgoing edges:

```plaintext
FOR all vertices \(v\) DO
    degree\([v]\) = 0
OD
FOR all edges \((u, v) \in E\) DO
    degree\([v]\) = degree\([v]\) + 1
    IF degree\([v]\) = 0 THEN ENQUEUE\((Q, v)\)
OD
\(i = 0\)
WHILE \(Q \neq \emptyset\) DO
    DEQUEUE\((Q, u)\)
    Topsort\((u) = i\)
    \(i = i + 1\)
    FOR all edges \((u, v) \in E\) DO
        degree\([v]\) = degree\([v]\) - 1
        IF degree\([v]\) = 0 THEN ENQUEUE\((Q, v)\)
    OD
OD
```