Lecture 21: Union-Find
(CLRS 21.1-21.3)

June 19th, 2002

1 Union-Find

• We discussed Kruskal’s minimum spanning tree algorithm

```
KRUSKAL

T = Ø
FOR each vertex v ∈ V DO
    MAKE-SET(v)
OD
Sort edges of E in increasing order by weight
FOR each edge e = (u, v) ∈ E in order DO
    IF FIND-SET(u) ≠ FIND-SET(v) THEN
        T = T ∪ {e}
        UNION-SET(u, v)
    FI
OD
```

• Kruskal’s algorithm uses a Union-Find data structure supporting:

 – MAKE-SET(v): Create set consisting of v
 – UNION-SET(u, v): Unite set containing u and set containing v
 – FIND-SET(u): Return unique representative for set containing u

• In the algorithm we performed |V| MAKE-SET, |V| − 1 UNION-SET, and 2|E| FIND-SET operations.

• Simple solution to Union-Find problem (maintain set system under FIND-SET and UNION-SET)

 – Maintain elements in same set as a linked list with each element having a pointer to the first element in the list (unique representative)
Example:

Sets

Make-Set(v): Make a list with one element ⇒ O(1) time
Find-Set(u): Follow pointer and return unique representative ⇒ O(1) time
Union-Set(u; v): Link first element in list with unique representative Find-Set(u) after last element in list with unique representative Find-set(v) ⇒ O(|V|) time (as we have to update all unique representative pointers in list containing u)

With this simple solution the |V| − 1 Union-Set operations in Kruskal’s algorithm may take O(|V|^2) time.

We can improve the performance of Union-Set with a very simple modification: Always link the smaller list after the longer list (⇒ update the pointers of the smaller list)

One Union-Set operation can still take O(|V|) time, but the |V| − 1 Union-Set operations takes O(|V| log |V|) time altogether (one Union-Set takes O(log |V|) time amortized):

* Total time is proportional to number of unique representative pointer changes
 * Consider element u:
 After pointer for u is updated, u belongs to a list of size at least double the size of the list it was in before
 \[\downarrow \]
 After k pointer changes, u is in list of size at least \(2^k\)
 \[\downarrow \]
 Pointer can be changed at most log |V| times.

With improvement, Kruskal’s algorithm runs in time \(O(|E| \log |E| + |V| \log |V|) = O(|E| + |V| \log |E|) = O(|E| \log |V|)\) like Prim’s algorithm.
1.1 Improved Union-Find

- It turns out that Union-Find can be improved (but without leading to an improvement of Kruskal’s algorithm)
 - Linked list representation can also be viewed as trees of height 1

Example:

```
0 1 10 6
8
4 5 12
```

- Instead of updating root pointers when performing UNION-SET, we could just link one tree below the root of the other

Example: UNION-SET(2,6)

```
0
3 1 2 10 6
8
4 5 12
```

UNION-SET and FIND-SET takes $O(\log|V|)$ time if we always insert small tree below larger tree (trees have height $O(\log|V|)$)

$|E|$ FIND-SET operations takes $O(|E| \log|V|)$ time

- If we furthermore perform path-compression, $|E|$ Find-set operations can be performed even faster

Path-compression: When following path during FIND-SET we link traversed nodes directly to the root:

Example:

```
X
FInd-set(x)
```

Note that a lot of paths are shortened (decreasing time spent on future FIND-SET operations) without using extra time
It can be shown that $O(|E| \log^* |V|)$ is the total time used on the $O(|E|)$ FIND-SET and UNION-SET operations

- $\log^* n$ is an extremely slow growing function

 - Consider $g(n) = \begin{cases} 2^1 & \text{if } i = 0 \\ 2^2 & \text{if } i = 1 \\ 2^{g(n-1)} & \text{if } i \geq 2 \end{cases}$

 \[
 \begin{aligned}
 g(0) &= 2 \\
 g(1) &= 2^2 = 4 \\
 g(2) &= 2^{2^2} = 2^4 = 16 \\
 g(3) &= 2^{2^2^2} = 2^{16} = 65536 \\
 &\vdots \\
 g(i) &= 2^{2^{2^{\cdots^{2}}}} \text{ (2-stack of height } i) \\
 g(n) &= \text{extremely fast growing function.}
 \end{aligned}
 \]

- Define $\log^{(i)} n = \begin{cases} n & \text{if } i = 0 \\ \log \log^{(i-1)} n & \text{otherwise} \end{cases}$

- $\log^* n = \min\{i \geq 0 : \log^{(i)} n \leq 1\}$

 - $\log^* n$ is minimal number of times we need to take log to get below 1

 - $\log^* n$ is inverse of $g(n)$

 - $\log^* n$ extremely slow growing function

- $\log^* n \leq 5$ for all practical values of n

- One can even prove that with path-compression $O(|E| \cdot \alpha(|V|))$ is the total time spent on $|E|$ FIND-SET operations, where $\alpha(n)$ is a function growing even slower than $\log^* n$ (Inverse Ackerman function)

 - $\alpha(n) < 4$ for all practical values of n