1 Shortest Paths

- We will now consider a problem related to minimum spanning trees; shortest paths
 - We already discussed how BFS can be used to find shortest paths if the length of a path is defined to be the number of edges on it
 - In general we have weights on edges and we are interested in shortest paths with respect to the sum of the weights of edges on a path

Example: Finding shortest driving distance between two addresses (lots of www-sites with this functionality). Note that weight on an edge (road) can be more than just distance (weight can e.g. be a function of distance, road condition, congestion probability, etc).

- Formal definition of shortest path: \(G = (V, E) \) weighted graph. Weight of path \(P = <v_0, v_1, v_2, \cdots, v_k> \) is \(w(P) = \sum_{i=1}^{k} w(v_{i-1}, v_i) \). Shortest path \(\delta(u, v) \) from \(u \) to \(v \) has weight

\[
\delta(u, v) = \begin{cases}
\min \{w(P) : P \text{ is path from } u \text{ to } v\} & \text{If path exists} \\
\infty & \text{Otherwise}
\end{cases}
\]

Example: Shortest path from \(a \) to \(e \) (of length 21)

- Note:
 - If \(P = <u = v_0, v_1, v_2, \cdots, v_k = v> \) is shortest path from \(u \) to \(v \) then for all \(i < k \)
 \(P' = <u = v_0, v_1, v_2, \cdots, v_i> \) is shortest path from \(u \) to \(v_i \)
 - Shortest path is not necessarily part of minimum spanning tree.

Example: Minimum spanning tree for example graph:
– No (unique) shortest path exists if graph has cycle with negative weight.

Example: If we change weight of edge \((h, i)\) to \(-8\), we have a cycle \((i, h, g)\) with negative weight \((-1)\). Using this we can make the weight of path between \(a\) and \(e\) arbitrarily low by going through the cycle several times.

On the other hand, the problem is well defined if we let edge \((h, i)\) have weight \(-7\) (no negative cycles).

– We will only consider graphs with non-negative weights.

• Different variants of shortest path problem:

 – Single pair shortest path: Find shortest path from \(u\) to \(v\).

 – Single source shortest path (SSSP): Find shortest path from source \(s\) to all vertices \(v \in V\).

 – All pair shortest path (APSP): Find shortest path from \(u\) to \(v\) for all \(u, v \in V\).

• Note:

 – No algorithm is known for computing a single pair shortest path better than solving the (“bigger”) SSSP problem.

 – APSP can be solved by running SSSP \(|V|\) times

 \(\downarrow\)

 We will concentrate on SSSP problem.
2 SSSP for graphs with non-negative weights—Dijkstra’s algorithm

- Recall Prim’s greedy minimum spanning tree algorithm:
 - Grows tree out from source s; repeatedly add minimum edge out of tree
 - Correct by “cut theorem”
 - Implemented using priority queue on vertices not yet in the tree

- Dijkstra’s greedy algorithm for SSSP works almost the same way:
 - Grow set (tree) S of vertices we know the shortest path to; repeatedly add new vertex v that can be reached from S using one edge. v is chosen as the vertex with the minimal path weight among paths $<s = v_0, v_1, \cdots v_i, v>$ with $v_j \in S$ for all $j \leq i$
 - Implemented using priority queue on vertices in $V \setminus S$.

\begin{verbatim}
Dijkstra(s)
 FOR each $v \in V$ DO
 $d[v] = \infty$
 INSERT(Q, v, ∞)
 OD
 $S = \emptyset$
 $d[s] = 0$
 CHANGE(Q, s, 0)
 WHILE Q not empty DO
 $u = \text{DELETEMIN}(Q)$
 $S = S \cup \{u\}$
 FOR each $e = (u, v) \in E$ with $v \in V \setminus S$ DO
 IF $d[v] > d[u] + w(u, v)$ THEN
 $d[v] = d[u] + w(u, v)$
 CHANGE(Q, v, $d[v]$)
 visit[v] = u
 FI
 OD
 OD
\end{verbatim}
• Example:

- While loop runs $|V|$ times ⇒ we perform $|V|$ DELETEMIN operations
- We perform at most one CHANGE operation for each of the $|E|$ edges
 \[O((|E| + |V|) \log |E|) = O(|E| \log |V|) \] running time
• Note:
 – Running time like Prim’s minimal spanning tree algorithm
 – Algorithm computes shortest path tree (stored using visit[v]) which can be used to find actual shortest paths
 – Algorithm works for directed graphs as well
 – Like Prim’s algorithm, Dijkstra’s algorithm can be improved to \(O(|V| \log |V| + |E|)\) using another heap (Fibonacci heap)

• Correctness:
 – We prove correctness by induction on size of \(S\)
 – We will prove that after each iteration of the while-loop the following invariant holds:
 a) \(v \notin S \Rightarrow d[v]\) is length of shortest path from \(s\) to \(v\) among path of the form \(<s, v_0, v_1, \ldots, v_k, v>\) where \(v_1, v_2, \ldots, v_k \in S\)
 b) \(v \in S \Rightarrow d[v] = \delta(s, v)\) (\(\delta(s, v)\) is length of shortest path from \(s\) to \(v\))
 \(\downarrow\)
 When algorithm terminates (\(S = V\)) we have solved SSSP

 – Proof:
 Invariant trivially holds initially (\(S = \emptyset\)). To prove that invariant holds after one iteration of while-loop, given that it holds before the iteration, we need to prove that after adding \(u\) to \(S\):
 a) \(d[v]\) correct for all \((u, v) \in E\) where \(v \notin S\)
 • Easily seen to be true since \(d[v]\) explicitly updated by algorithm (all the new paths to \(v\) of the special type go through \(u\))
 b) \(d[u] = \delta(s, u)\)
 • Assume \(d[u] > \delta(s, u)\), that is, the found path is not the shortest
 • Consider shortest path to \(u\) and edge \((x, y)\) on this path where \(x \in S\) and \(y \notin S\) (such an edge must exist since \(s \in S\) and \(u \notin S\))
 • We chose \(u\) such that \(d[u]\) was minimized \(\Rightarrow d[y] > d[u] \Rightarrow w\) must me \(< 0 \Rightarrow\) contradiction since all weights are non-negative (note that we use that \(d[y]\) is shortest path to \(y\))
3 All pairs shortest path (APSP)—non-negative weights

- In the APSP problem, we want to compute the shortest path between any two vertices \(u, v \in V \)
 - Note that the output is of size \(O(|V|^2) \) so we cannot hope to design a better than \(O(|V|^2) \) time algorithm
- We can solve the problem simply by running Dijkstra’s algorithm \(|V|\) times \(\Rightarrow O(|V| \cdot |E| \log |V|) \) algorithm
 - In the worst case (dense graph) this is \(O(|V|^3 \log |V|) \)
- We can obtain a much simpler \(O(|V|^3) \) algorithm by working on adjacency matrix \(A \):

```plaintext
FOR k = 1 to |V| do
    FOR i = 1 to |V| DO
        FOR j = 1 to |V| DO
        FI
    OD
OD
```

- Correctness:
 - We prove correctness by induction
 - We will prove that after each iteration of the \(k \)-loop the following invariant holds:
 After the \(k \)'th (out of \(|V|\) iterations, \(A[i,j] \) contains the length of shortest path from \(v_i \)
 to \(v_j \) that (apart from \(v_i \) and \(v_j \)) only contains vertices of index at most \(k \)
 \(\Downarrow \)
 When algorithm terminates we have solved APSP
 - Proof:
 * Invariant holds initially (we start with adjacency matrix \(A \)).
 * When “adding” vertex with index \(k \) we explicitly check all new paths between \(v_i \)
 and \(v_j \) through \(v_k \) for all \(|V|^2\) pairs.
- Note:
 - We can easily produce adjacency-matrix from adjacency list in \(O(|V|^2|) \) time
 - Algorithm runs in \(O(|V|^3) \) time, even if the graph is sparse. Using algorithm based on
 Dijkstra’s algorithm we will get much better performance for sparse graphs.
 - Using more efficient heap, algorithm based on Dijkstra’s algorithm can be improved to
 \(O(|V|^2 \log |V| + |V| \cdot |E|) = O(|V|^3) \)