COMPSCI 130
Design and Analysis of Algorithms

3 – Divide and Conquer Algorithms
Mergesort
Recurrence Relations

Divide and Conquer

• Split problem into multiple smaller sub-problems
• Solve the sub-problems recursively
• Recombine solutions afterwards
• When splitting/recombination can be done efficiently, this approach is a winner

Example

Search for a value in a sorted list.
Obvious approach:

search(x, k, n) // x is a sorted list with n elements
for i = 1 to n
if x(i) = k return i
else return NOT FOUND

Complexity: O(N)

A Better Way

Search for a value in a sorted list.
Binary Search

binary_search(x, k, n)
if x is empty return NOT FOUND
pivot = [n/2]
if x[pivot] = k return pivot
elseif k < x[pivot] return binary_search(x(1 : pivot-1), k, pivot-1)
else return binary_search(x(pivot+1 : n), k, n-pivot)

Example – Binary Search

Search for a value in a sorted list.
Example: search for 11 in the list 1-15

Analysis of Binary Search

Compare with pivot
Return or choose new pivot
O(1)

Q(N/2) elements

Worst case: element not found
Recurrence: T(N) = T(N/2) + O(1)
Complexity: \log N
Mergesort

- Divide and Conquer algorithm for sorting
 - Split input list in half
 - Sort the halves
 - Merge the sorted lists

```python
def merge_sort(s):
    n = length(s)
    if n == 1:
        return
    left = merge_sort(s[:n//2])
    right = merge_sort(s[n//2+1:n])
    return merge(left, right)

def merge(a, b):
    x = empty list
    if a is empty:
        append b to x
    else if b is empty:
        append a to x
    else:
        if top(a) < top(b):
            append pop(a) to x
        else:
            append pop(b) to x
```

Analysis of Mergesort

Split = O(1)
Merge = O(N)
Recursion = 2 T(N/2)

Recurrence relation is T(N) = 2 T(N/2) + O(N)

Tree Method

T(N) = 2 T(N/2) + O(N)

Now just do the math:
O(log n) levels at O(N) cost each = O(n log n)

Substitution Method

- Guess – a good way to start is to list out values for small n
- Prove – using induction
- E.g., for T(n) = 2T(n/2) + n
 - Guess T(n) = O(n log n)
 - Base cases:
 - T(1) = 1
 - T(1) = 2 T(1) + 2 = 4
 - c ≥ 2 log 2, for c = 2
 - Assume true for n/2, show true for n
 T(n) = 2 T(n/2) + n
 ≤ 2 c(n/2) log (n/2) + n
 ≤ cn log n – cn log 2 + n
 ≤ cn log n
Master Method

- Often the quickest way – if your recurrence fits the pattern.

 If: \(T(n) = aT\left(\frac{n}{b}\right) + O(n^d) \), \(a > 0, b > 1, d \geq 0 \)

 Then:

 \[
 T(n) = O(n^d) \quad \text{if } d > \log_b a
 \]

 \[
 = O(n^d \log n) \quad \text{if } d = \log_b a
 \]

 \[
 = O(n^{\log_2 d}) \quad \text{if } d < \log_b a
 \]

Sample Problems

\[T(n) = T(\sqrt{n}) + 1 \]

- \(O(1) \) cost at each level

 Height of tree is \(k \) such that

 \[\sqrt{n} = n^{(1/2^k)} = 1 \]

 \[\text{Notation: } \sqrt[n]{x} = x^{1/n} \]

 With the floor, this equates to

 \[n^{(1/2^k)} < 2 \]

 \[\log n < 2^{k} \]

 \[\log \log n < k \]

 Complexity: \(O(\log \log n) \)

Sample Problems

\[T(n) = T(\log n) + 1 \]

- \(O(1) \) at each level

 \(\log^* n \) levels [\(\log^* \) is the “iterated logarithm”]

 Effectively constant time:

 \(\log^* 2^{5536} = 5 \)

Sample Problem: \(T(n) = 3T(n/2) + n^2 \)

\[T(n) = 3T(n/2) + n^2 \]

Tree is height \(\log n \);

- Cost at level \(i \) is \((\frac{1}{4})^i n^2 \);

- Summing costs,

 \[T(n) = \sum_{i=0}^{\log n} (\frac{1}{4})^i n^2 \]

Using identity \(\sum_{i=0}^{\infty} x^i = 1/(1-x) \) for \(x < 1 \),

\[T(n) \leq n^2 \sum_{i=0}^{\infty} (\frac{1}{4})^i = 4 n^2 = O(n^2) \]

Sample Problem: \(T(n) = T(n/4) + T(3n/4) + n \)

- \(T(n) = T(n/4) + T(3n/4) + n \)

 - Start by guessing; using the tree method, we note that the height of the tree is \(\log_{4/3} n \);

 - At each level of the tree the maximum cost is \(n \) (less as the \(n/4 \) branches end in leaves sooner than the \(3n/4 \) branches);

 - Guess \(O(n \log n) \)
\[T(n) = T(n/4) + T(3n/4) + n \] (con’t)

\[T(n) = T(n/4) + T(3n/4) + n \]

Check guess of \(O(n \log n) \) using induction:

Assume true for \(1 \ldots n-1 \). Then,

\[T(n) \leq c (n/4) \log (n/4) + c (3n/4) \log (3n/4) + n \]
\[T(n) \leq cn/4 \{ \log n - \log 4 + 3 \log n + 3 \log 3 - 3 \log 4 \} + n \]
\[T(n) \leq cn/4 \{ 4 \log n - 4 \log 4 + 3 \log 3 \} + n \]
\[T(n) < cn \log n - cn [4 \log 4 - 3 \log 3]/4 + n \]

let \(d = [4 \log 4 - 3 \log 3]/4 \), note: \(d > 0 \)

\[T(n) < cn \log n + (1 - c d) n \]
choose \(c > 1/d \)
\[T(n) < cn \log n \]

\[T(n) = T(n/4) + T(3n/4) + n \] (con’t)

\[T(n) = T(n/4) + T(3n/4) + n \]

Still need to check base cases:

- \(T(1) = 1 \)
- \(T(2) = T(1) + T(1) + 2 = 4 \)
- \(T(3) = T(1) + T(2) + 3 = 8 \)
- \(T(4) = T(1) + T(3) + 4 = 13 \)

We can choose \(c \) to ensure \(T(n) < cn \log n \) for \(n = 1 \ldots 4 \), and \(c > 1/d \) from previous step and we’re done.