Easy and Hard Problems

• Working definition of easy:
 an algorithm is **efficient** if it runs in **polynomial** time;
 easy \equiv efficient.
• Polynomial time means worst case performance of $O(n^k)$ for input of size n.
• We also use the term **tractable** to refer to easy problems.

• Alternative: hard \equiv exponential (or worse)
 - E.g. $O(2^n)$, $O(n!)$

Growth of Various Functions

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>1000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log(n)$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>1</td>
<td>3.16</td>
<td>10</td>
<td>31.62</td>
<td>1000</td>
</tr>
<tr>
<td>$n\log(n)$</td>
<td>1</td>
<td>10</td>
<td>200</td>
<td>3000</td>
<td>6×10^6</td>
</tr>
<tr>
<td>n^2</td>
<td>1</td>
<td>100</td>
<td>10^6</td>
<td>10^{12}</td>
<td>10^{24}</td>
</tr>
<tr>
<td>2^n</td>
<td>2</td>
<td>1024</td>
<td>$\approx 10^{10}$</td>
<td>$\approx 10^{20}$</td>
<td>Forget it!</td>
</tr>
</tbody>
</table>

Computation Time

Assuming 2×10^{10} operations/second
(approximately the FP performance of a modern Intel desktop chip)

<table>
<thead>
<tr>
<th>n</th>
<th>10</th>
<th>50</th>
<th>100</th>
<th>1000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>< 1 ns</td>
<td>< 1 ns</td>
<td>< 1 ns</td>
<td>50 μs</td>
<td>50 ms</td>
</tr>
<tr>
<td>$n\log(n)$</td>
<td>< 1 ms</td>
<td>< 1 ms</td>
<td>< 1 ms</td>
<td>1 ms</td>
<td>300 ms</td>
</tr>
<tr>
<td>n^2</td>
<td>< 1 s</td>
<td>125 ms</td>
<td>500 ms</td>
<td>50 s</td>
<td>1.6 years</td>
</tr>
<tr>
<td>2^n</td>
<td>50 ms</td>
<td>16 hours</td>
<td>1.5 trillion years</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datasets of size 10^9 and above are now commonplace!

of unique URLs seen by Google indexer

Exponential Solution Spaces

• Some problems we’ve looked at:
 - Shortest paths
 - Minimum spanning trees
 - Max flows

Common denominator: find one valid solution from exponentially many possibilities.

Example

• Shortest path from s to t in a graph:
 - Worst case: s has $|V| - 1$ neighbors
 - Neighbors have $|V| - 2$ neighbors (excluding s), etc.
 - Roughly $(|V|)!$ Possibilities!

• Solvable in $O(|V|\log |V| + |E|)$ using Dijkstra’s algorithm with Fibonacci heap
Another Example

- Traveling salesman problem (TSP)
 - Weighted, undirected graph
 - Find shortest path visiting every vertex once returning to start city (tour)

Define Search Problems

- Define in terms of checking algorithm \(C \)
 \(C(I,S) \rightarrow true \) if \(S \) is a valid solution for instance \(I \)
 \(C \) runs in time polynomial in size of \(I \).

Search problem: given \(C, I \):
 - find a solution \(S \) such that \(C(I,S) \rightarrow true \)
 - or -
 state (correctly) that no solution exists.

Search vs. Optimization

- TSP doesn’t match our framework: cannot verify optimality in polynomial time.
- Search problem formulation:
 - Find a tour with distance less than \(k \)
 - \(C(I,S) \) checks in poly time distance and validity of \(S \)

Search = Optimization

- Transform optimization problem to search:
 - Find max/min at least/no more than \(k \)
 - Recover optimal solution using binary search on \(k \)
- Transform search problem to optimization:
 - Find optimal solution
 - Check if optimal solution is bounded by \(k \)

Solving TSP

- No known polynomial time algorithms
- Naive approach: try all \((n-1)!\) tours
- \(O(n^2n) \) solution via dynamic programming
- Can we do better?
 Nobody knows (or they aren’t telling)

Complexity Classes

- \(NP \) ("hard" problems)
 - Includes search problems as we’ve defined them
 - Solutions can be verified in polynomial time
 - Solutions can be found in exponential time*
- \(P \) ("easy" problems)
 - Includes all search problems with a known polynomial time algorithm
 - Most of the problems we’ve looked at

* Technically, solutions must be findable by a non-deterministic Turing machine in polynomial time. This is a topic in CompSci 140.
P vs. NP

- \(P \subseteq NP \)
- Most famous open problem in computer science: is \(P = NP? \)
 - Believed false by most theorists
 - No proof has been revealed either way

Reductions

- Problems \(P, Q \)
 - \(P \) can be reduced to \(Q \) if:
 - We can transform an instance of \(P \) into an instance of \(Q \) in polynomial time
 - We can transform solutions of \(Q \) into (correct) solutions for \(P \) in polynomial time
 - Result: we can build an algorithm which solves \(P \) via transformation to \(Q \) and back

NP-Hard/NP-Complete

- A problem \(Q \) is \textit{NP-Hard} if every problem in NP can be reduced to \(Q \)
 - NP-Hard includes problems not in NP – there are harder problems!

- A problem is \textit{NP-Complete} if it is in NP and is NP-Hard

Easy and Hard Problems

<table>
<thead>
<tr>
<th>Easy (in P)</th>
<th>Hard (NP-hard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Spanning Tree</td>
<td>Traveling Salesman</td>
</tr>
<tr>
<td>Shortest Path</td>
<td>Longest Path</td>
</tr>
<tr>
<td>Bipartite Matching</td>
<td>3D Matching</td>
</tr>
<tr>
<td>Linear Programming</td>
<td>Integer Linear Programming</td>
</tr>
<tr>
<td>Euler Path</td>
<td>Rudrata (or Hamiltonian) Path</td>
</tr>
<tr>
<td>Horn SAT</td>
<td>SAT</td>
</tr>
</tbody>
</table>