NOTE: \(n_a(w) \) means the number of a’s in the string \(w \).
(h) \(L = \{a^n b^m \mid m > 10, n > 20\} \). \(L \) is regular. (TRUE or FALSE?)

(i) Consider the proof showing that if \(M \) is an NPDA, then there exists a CFG \(G \) such that \(L(M) = L(G) \). In this proof \((q_j, Aq_k)\) means that there is a transition from state \(q_j \) to state \(q_k \) in which the stack is exactly the same except \(A \) is popped off the stack. (TRUE or FALSE?)

(j) In the DFA to minimal state DFA algorithm, if two states are “distinguishable on \(a^* \)”, then one of those states has an \(a \) transition to a final state and the other such state has an \(a \) transition to a nonfinal state. (TRUE or FALSE?)

5. (8 pts) Draw a DFA for the following language. Do not show trap states. (show the transition diagram, indicate the start state by a short arrow, and final states by double circles.)

\(L = \{w \in \Sigma^* \mid n_a(w) \mod 3 = 2 \text{ and the number of } b\text{'s is odd} \} \Sigma = \{a, b\} \).

For example, \(bbaba, aba \) and \(abbabbababab \) are in \(L \).

6. (3 pts) What is the language of the following regular grammar?

\[
\begin{align*}
S & \rightarrow aaA \mid bB \\
A & \rightarrow aaS \mid bB \\
B & \rightarrow bC \mid \lambda \\
C & \rightarrow bB
\end{align*}
\]

7. (6 pts) Write a context-free grammar for the following language.

\(L = \{a^n b^m c^n \mid n > 0, m > 0 \text{ and the number of } b\text{'s are even} \} \)

8. (6 pts) Consider the two labeled finite automaton below. Using the algorithm from class, build a new finite automaton that represents the intersection of the two finite automaton.

![Diagram of two finite automata](image-url)
9. (10 pts) Consider \(L = \{ b^n a^m \mid 0 < n \leq m \leq 2n \} \). Draw the transition diagram for a nondeterministic pushdown automaton \(M \) that accepts \(L \) by final state. (Remember to identify the start state by an arrow and final states by double circles. Format of labels are \(a, b; cd \) where \(a \) is the symbol on the tape, \(b \) is the symbol on top of the stack that is popped, and \(cd \) are pushed onto the stack (with \(c \) on top of \(d \)). \(Z \) is on top of the stack when \(M \) starts.)

(a) First list 3 strings in \(L \).

(b) Now draw the transition diagram.

10. (6 pts) **Pumping Lemma:** Let \(L \) be an infinite regular language. \(\exists \) a constant \(m > 0 \) such that any \(w \in L \) with \(|w| \geq m \) can be decomposed into three parts as \(w = xyz \) with

\[
|xy| \leq m \\
|y| \geq 1 \\
xy^iz \in L \text{ for all } i \geq 0
\]

Use the Pumping Lemma to prove

\(L = \{ w \in \Sigma^* \mid n_a(w) \geq 3 \cdot n_b(w) \} \) is not regular. \(\Sigma = \{a, b\} \).

Proof: (SHOW ALL STEPS! Some have been started for you.)

Assume ________________________________

Choose \(w = ________________________________ \)

11. (8 pts) Consider the following property, Replace Every Second a With b (Re2awb). If \(L \) is a regular language, then show that Re2awb(L) is a regular language.

For example, if \(aabbabaa \) is in \(L \), then \(abbbabba \) (every second \(a \) is replaced with \(b \)) is in Re2awb(L). If \(bbb \) is in \(L \), then \(bbb \) is in Re2awb(L) (no \(a \)'s to replace).