A Case for Online Mixed Workload Processing

Jens Krüger, Christian Tinnefeld, Martin Grund, Alexander Zeier, Hasso Plattner
Introduction

- Data model acted as main guideline for DBMS development
- For a long time: few DBMSs for many different applications
- Recent DBMS discussions: heavily application oriented
 - Two examples:
 - Stonebraker et al– One size fits all
 - Vogels et al- VLDB Keynote 2007 / Amazon Dynamo
- DBMS for Enterprise Applications
 - Beginning of 1990s separation into OLTP and OLAP
 - But, we claim:

 \textit{OLTP-style workloads also require the ability to frequently compute OLAP-style aggregate queries}
1. Company estimates future demand for its products –
 Demand Planning / Supply Chain Management
- Customers contact the company and place orders –
 Sales Order Processing / Enterprise Resource Planning
- The availability of the requested products have to be checked –
 Available-to-Promise / Supply Chain Management
- Customers fall behind on their payments –
 Dunning / Financial Accounting
- The company wants to analyze its sales performance –
 Sales Analytics / Enterprise Resource Planning
Available-to-Promise

Temporary aggregate containing number of products to be produced

Subtracted by

Temporary aggregate containing number of products already promised to customers

Result set containing number of products that still can be promised to customers

Sales Order promised on 05.02.2008

Sales Order promised on 07.02.2008

<table>
<thead>
<tr>
<th>05.02.2008</th>
<th>06.02.2008</th>
<th>07.02.2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>70</td>
<td>90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>05.02.2008</th>
<th>06.02.2008</th>
<th>07.02.2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>140</td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>05.02.2008</th>
<th>06.02.2008</th>
<th>07.02.2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>135</td>
<td>130</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>05.02.2008</th>
<th>06.02.2008</th>
<th>07.02.2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>
Comparison of Application Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Demand Planning</th>
<th>Sales Order Processing</th>
<th>Available to Promise</th>
<th>Dunning</th>
<th>Sales Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granularity of Data</td>
<td>Transactional</td>
<td>Transactional</td>
<td>Transactional</td>
<td>Transactional</td>
<td>Pre-Aggregated</td>
</tr>
<tr>
<td>Operations on Data</td>
<td>Read & Write</td>
<td>Read & Write</td>
<td>Read & Write</td>
<td>Read & Write</td>
<td>Read-Only</td>
</tr>
<tr>
<td>Preprocessing of Data</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Timeframe of Data</td>
<td>Historical & Recent</td>
<td>Recent Only</td>
<td>Historical & Recent</td>
<td>Historical & Recent</td>
<td>Historical & Recent</td>
</tr>
<tr>
<td>Update Cycles of Data</td>
<td>Always Up-to-Date</td>
<td>Always Up-to-Date</td>
<td>Always Up-to-Date</td>
<td>Always Up-to-Date</td>
<td>Cyclic Updates</td>
</tr>
<tr>
<td>Amount of Data per Query</td>
<td>Large</td>
<td>Small</td>
<td>Large</td>
<td>Large</td>
<td>Large</td>
</tr>
<tr>
<td>Complexity of Queries</td>
<td>High</td>
<td>Standard</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Predictability of Queries</td>
<td>Medium</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Response Time of Queries</td>
<td>Seconds</td>
<td>Seconds</td>
<td>Seconds</td>
<td>Seconds to Hours</td>
<td>Seconds to Hours</td>
</tr>
</tbody>
</table>

OLTP Characteristics are colored light grey
OLAP Characteristics are colored dark grey
- Large amount of data is needed to perform transactional query
- Nothing new, mixed workloads are a well established topic
- But: here they are originated by a single application.

<table>
<thead>
<tr>
<th>Granularity of Data Operations on Data</th>
<th>Transactional Read & Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preprocessing of Data</td>
<td>No</td>
</tr>
<tr>
<td>Timeframe of Data</td>
<td>Historical & Recent</td>
</tr>
<tr>
<td>Update Cycles of Data</td>
<td>Always Up-to-Date</td>
</tr>
<tr>
<td>Amount of Data per Query</td>
<td>Large</td>
</tr>
<tr>
<td>Complexity of Queries</td>
<td>High</td>
</tr>
<tr>
<td>Predictability of Queries</td>
<td>Medium</td>
</tr>
<tr>
<td>Response Time of Queries</td>
<td>Seconds</td>
</tr>
</tbody>
</table>
Conclusion

- Not only Web 2.0 companies need application-specific data stores
- Mixed workloads are originated by a single application
- Huge potential for increasing performance and functionality of enterprise applications by supporting mixed workload

Future Work
- Need for a Mixed Workload Benchmark
 - TPC-E and TPC-H claim one part of the process separately
 - But, OLTP-style workloads also require the ability to frequently compute OLAP-style aggregate queries
- DBMS Draft for Mixed Workloads
 - Read-optimized, in-memory columnar store with transactional support
Backup Slides
Application Characteristics at Amazon

Diagram:

- **Object Size**
 - > 1MB: AC Set #1
 - < 1MB
 - Query Model
 - Primary Key Access
 - Strong Consistency
 - yes: AC Set #2
 - no
 - yes: AC Set #6
 - no
 - Relation-Driven Queries
 - yes: RDBMS Features
 - no
 - Low Latency
 - yes: AC Set #5
 - no: AC Set #4
 - no
 - yes: AC Set #3
 - no: AC Set #7
 - Multi-Attribute Queries
 - yes
 - Strong Consistency
 - yes: AC Set #8
 - no: AC Set #9
 - no
 - RDBMS Features
 - yes
 - Low Latency
 - yes: AC Set #9
 - no: AC Set #8
 - no
 - Low Latency
 - yes: AC Set #8
 - no: AC Set #9
 - no
 - Low Latency
 - yes: AC Set #9
 - no: AC Set #8
 - no
 - Low Latency
 - yes: AC Set #9
 - no: AC Set #8
Sales Order Processing Data Logs

Load for all customers

Workload

Fiscal year

January, February, March, April, May, June, July, August, September, October, November, December