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Solving Polynomial Constraints 



Chapter 1 

Polynomial Continuation and its Relationship to the 
Symbolic Reduction of Polynomial Systems 

Alexander P. Morgan 

Matlaematics Department 

Generol Motor. Ruearch Laborotorie1 

Warren, Michigan 48090 

•organ41gar.coa 

Polynomial continualion ia an approach to cone&rocllng numerical methods for comput
ing the fullllst of geometrically isolated aoludoJU to a system of polynomial equatioJl8. 
These methods have a solid theoretical basis (in algebraic geometry and numerical anal· 
yeis) and a high degree of compulational reliability (if properly implemented). They 
a1ao require a significant amount of computatio11al work, limiti11g the collection of solv· 
able systems to those that are "small". A given polynomial system can o£ten he made 
,.IJllaller" via symbolic transformations, but this kind of 1'reduction'' can ~ genel'
ate numerical difficulties. T his complicates th~ development of symbolic redu.ction al
gorithms. This paper outlines basic and advanced forms of polynomial continuation. 
Included Is a definition of the size oC a aystem. (from the point of view of polynomial 
continualion) and a discussion of the kinds of symbolic reduction which might be most 
uaefuJ to realize in comput.aLional algorithms. Examples from geometric n1odeling, chem
ical engineering, and mechanical engineering are used for illustration. 

1. Introduction 

Polynomial continuation is concerned with computing the complete list of geometrically 
isolatedt solutions to polynomial systems. It can be made more efficient if augmented by a 
symbolic "reduction" of the systems Lobe solved . Although the theoretical and numerical 
aspects of polynomial c.ontinuation have been considerably developed, little has been done 
to create systematic reduction methods as an adjunct t.o it. In this expository paper we 
shall give an outline of some basic facts about polynomial continuation and then present 
some ideas on how effective tools for symbolic reduction might be structured for use with 
it. Readers whose main interest is symbolic methods may wish to read section 5 first. 

t Deiined at the beginning of section 3. 
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By way of introduction to polynomial continuation, let us consider a simple example. 
Suppose we wish to find all solutions to the system 

.:r:: 2 +.:r::y-1 = 0 
!P+z-5 =0 

The key "trick" of the method is to note that the related simplified system 

.:r::2 -1 = 0 
y2

- 5 = 0 

(1.1) 

(1.2) 

is easy to solve. The four solutions to {1..2) are {.:r::, y) = (±1, ±..;5). By defining the 
"homotopy" 

[ 
.:r::2+ t.:r::y -1 ] 

l&(.:r::, y, t) = y2+ t.:r::- 5 

the following strategy is developed: We can solve 

h{.:r::,y,O) = [ ::! o;;.=-51] = [ ~]. 
This is, in fact, (1.2). Beginning with a solution to h(:t, y, 0) = 0, we can modify it to 
be a solution to h(.:r::,y,t1) = 0, where t1 is a small positive number, using some local 
solution method. Then we can modify the solution to h(x, y, t 1) = 0 to become a solution 
to h(.:r::, y, t2) = 0 where t2 > t1, and by proceeding in this way, finally derive a solution 
to h(z:, y, 1} = 0, which is (1.1). Such a sequence of solutions is called a "continuation 
path". The idea is that each solution to (1.2) yields a solution to (1.1) via continuation. 

Certain technical issues not made explicit in the example must be overcome in general. 
Thus, we must recast the problem in complex arithmetic, because in general a polynomial 
system will have complex solutions, even if its coefficients are real. We must take steps 
to assure that the continuation paths are well defined and do not bifurcate, turn back in 
t, "go singular", or get bogged down in some other way. We must devise fast and reliable 
numerical methods for path tracking. 

Basically, we can distinguish two main steps: 

1 Define a homotopy, h(z, t). 
2 Choose a numerical method for tracking the paths defined by h(z, t) = 0. 

Step 1 is guided by results from algebraic geometry, while step 2 is based on methods 
for the numerical solution of ordinary differential equations and local methods for the 
solution of nonlinear systems. Both parts are nontrivial and important. 

In the next section, we overview basic polynomial continuation, in which the number 
of paths to be tracked is equal to the total degree of the system, and we consider the 
theoretical and numerical issues that arise. Then, in sections 3 and 4, we touch on sev
eral advanced topics, defining multi-homogeneous systems and their Bezo-ut numbers and 
coefficient-parameter polynomial continuation and side conditions. Much of this exposi
tion is drawn from Morgan (1989) and Morgan and Sommese (1990). The book (Morgan, 
1987) and the paper (Wampler et al. , 1990a) are recommended for further expository 
material. Section 5 puts forward some proposals for symbolic reduction tools that would 
complement polynomial continuation. The standard Grabner basis algorithms typically 
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reduce a polynomial system to triangular form, which is often useless for fixed-precision 
floating point computations because of issues of numerical stability. However, less ex
treme reductions, which might be accomplished by the same basic algebra, could be very 
useful. 

The idea of polynomial continuation was first suggested in Drexler (1977) and Gar
cia and Zangwill (1977). A number of papers have followed and there have also been 
significant physical applications of (see the references). 

It is worth noting that polynomial continuation is especially efficient on parallel com
puters; see Morgan and Watson (1986, 1987, 1989). ln Wampler et a/. (1990b), better 
than mainframe speeds are obtained on an inexpensive parallel workstation. This feature 
of the approach greatly extends the range of solvable problems. 

We generally say that only "smaJI" problems are solvable in practice via polynomial 
continuation. However, small is not a precise concept. It depends in part on run-time 
expectations. Thus, a minute of run time might be acceptable for many applications, 
while others require run times in milliseconds. Most systems of two or three equations 
of low degree {less than six) can be solved in a minute or so on most workstations; in 
this sense, such systems are '1small11

• On the other band, a system of ten second-degree 
equations might take an hour on a typical mainframe, ten hours on a workstation, and 
five minutes on a 100-node parallel network. This still might be viewed as small. We have 
solved systems requiring the tracking of over balf a million paths, involving hundreds of 
hours of mainframe time. Such systems seem unlikely candidates for the designation 
"small". However, parallel workstations are becoming available on which such a system 
would be solvable in a day. In any case, we will always be interested in making systems 
smaller, the observation which has inspired this paper. 

2. Basic Polynomial Continuation 

In this section we sketch the theory of polynomial continuation in the simplest and 
most straightforward case: the number of continuation paths is equal to the total degree 
of the system. The results in this section are stated more precisely and are generalized in 
section 3. The simple approach given here can be applied to any polynomial system, but 
the refinements can sometimes be much more efficient. The comments in this section on 
the numerical aspects of path tracking remain valid in the more sophisticated contexts 
presente·d in later sections. 

2.1. PATHS IN CoMPLEX EuCLIDEAN SPACE; en 

Let /(z) = 0 denote the system of n polynomial equations in n unknowns that we 
want to solve. Call this the target system. Tbe target system can have real or complex 

coefficients. Let dj = deg(/j ), the degreet of the jlh equation of the target system, for 
j = 1 to n. Let d = d1 · d2 · · · dn, the total degree of/. 

t The degree of a polynomial is the maximum of the degrees of its terms. The degree of a term is 
the aum or the exponents of the variables. Thus, the three terms of the polynomi!U x• + :rl Jll + 1 have 
desreea 4, 5, and 0, respectively, and the degree of the polynomial i• S. 
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We choose a system g(z) = 0 of n polynomial equations in n unknowns, the start 
system. Since g is the start system, we must know what its solutions are. ln addition, g 
must obey the following conditions: 

• deg(gJ) = dj for j = 1 ton. 

• g( z) = 0 bas d different isolated solutions. t 

The system defined by 9i = zfj - 1 for j = 1 to n is an acceptable choice, but if we 
choose g to match more of the structure of/, then the method will generally be more 
efficient. For example, g might equal f with a. few terms deleted. 

Define the homotopy (or continuation system) by 

h(z,t) = (1- t)rg(z) +tf(z) (2.1) 

where r = rei' . Here i = ...;::r, e is the ba.se of the natural logarithms, 8 is a real number 
"chosen at random", and r is a positive real number. The theorem which justifies this 
homotopy {Theorem 3.2 in section 3) states that, for each choice off and g, there are a 
finite number of fJ that lead to singular continuation paths; i.e. paths that cross, bifurcate, 
or explode into higher-dimensional components. We want to avoid these unknown "bad" 
0, because the associated "paths" are more difficult (or impossible) to track effectively. 
Since there are only a finite number of ba.d 0, there is a zero probability of choosing one 
of them at random. 

Geometrically, the solutions u = {(z, t) E en X [0,1) I h(z,t) = 0} form d distinct 
smooth nonintersecting paths in On X (0,1 ), ea.ch ap embedding of ~ copy of (0,1) in 
en X [0,1). These paths (with their righthand endpoints included, as discussed below) 
are called the continuation paths for the homotopy (2.1). 

Let. us consider one of these paths, et(s) = (z(8), t(8)) , parametrized by arc length, 8. 
Thus 8 ~ 0 and, as s increases, t goe!1 from 0 to l. Further, t is strictly increasing as a 
function of s. Call z0 = z{O) the lefthand end point of the path. We have two cases: 

• If the path has finite arc length, s•, then lim,_,. t(s) = 1 and lim._,. z(s) = z1, 

the righthand end point of the path. 
• If the path does not have finite arc length, then Jim, ..... 00 t(s) = 1 and lim,...,00 lz(s)l = 

oo. In this case, /(z) = 0 has a solution at infinity, noted below and discussed in 
the next section. 

The proof that these cases exhaust the possibilities is based on the fact that ~&- 1 (0) is 
a 1-dimensional (real) smooth manifold for t E [0, 1) and on the way complex Euclidean 
space embeds in complex projective space. (See, for example, Morgan, 1986a; Morgan 
and Sommese, 1987a.) 

Now, the d lefthand endpoints of the d paths are the solutions tog= 0. Further, each 
isolated solution of /{z) = 0 shows up as a righthand end point of some path. Thus, if 
we track the paths numerically, beginning with the solutions tog = 0, we can find all the 
isolated solutions of f(z) = 0. (As a part of this process, the diverging paths will have 

t Equivalently, all the solutions of g~z) = 0 are nonling~>l4r, that is, if :rP is a solution to g(x) = 0, 
then dg(x0 ) ia nonsingular, where dg(x ) denotes the n x n Jacobian matrix of partial derivativea of g 
evaluated at a:0 • 
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to be terminated. However, the projective traasformation, described in (2.2), eliminates 
divergent paths.) 

Path tracking is effected by solving a set of "initial value problems with energy func
tion.'' as follows. Let z and i denote dz/ds and dtfds, respectively. Denote by dl&, and 
dh1 the partial derivative matrices of h with respect to z and t, respectively (see Not.e 3 
below). Then continuation paths are solutions to the init ial value problem 

i(s) = - 6[dhzt1dhc i(s) = 6 (2.2) 

where 6 is a positive constant. chosen so that j(.i, t)l = 1, with initial conditions 

z{O) == z0 t(O) = 0 (2.3) 

for some solution z0 to g = 0, having potential energy zero: 

h(z(s),t(s)) == 0. (2.4) 

Notes: 

1 Since l(z, i)l = 1, the paths are parametrized by arc length. 

2 The fact that (2.4) holds as well as (2.2) and (2.3) gives us some options for path 
tracking not available if this path were merely defined by an initial value problem. Thus 
we may augment standard ordinary differential equation solvers with special "pa.tb cor
(ection" devices (as described in Watson, 1979; Watson et al., 1987), or we may use 
"prediction-correction" methods (as described in Allgower and Georg, 1980; Garcia and 
Zangwill1 198lj Morgan1 1987j Rheinboldt and 13urkardt, 1983j Watson et al., 1987) which 
require such additional information. Simplicial path tracking strategies also require it. 
See Allgower and Georg (1980) and Garcia an.d Zangwill (Hl81). 

3 The dhz is a 2n x 2n real matrix, the "rea.lification" of the n x n complex Jacobian 
matrix of partial derivatives of h, evaluated at (z(s), t(s)). If A is a p x q complex matrix, 
its realification is the 2p x 2q matrix defined by replacing the entry ai,i by the 2 x 2 

block [~~::~~ -~~::~n where "Re" and "lm" denote the real and imaginary parts, 

respectively. Similarly, d/&1 is the first column of the realificatioo of the n x 1 column 
matrix of partial derivatives of h with respect tot, evaluated at (z(s), t(s)). Further, for 
consistency with these conventions, we must interpret z and i as column vectors of real 
numbers; thus, z = [Re(zl), Jm{z1), ••. , Re(rn), /m(zn)]T. This conversion of matrices 
via realification acknowledges that, while h is a.lgebraically in complex arithmetic, we 
track continuation paths in real space. Thus, for n polynomials in n unknowns, we end 
up tracking paths in (2n + I)-dimensional real space; see Morgan (1987, appendix 3) 
for more details. Note that t and i are real numbers. [n fact, it is often convenient to 
implement polynomial continuation algorithms in complex computer arithmetic. The real 
space is conceptual. 

4ln most cases, to generate the right hand side of (2.2), we will solve the linear system 

dh, i = -dh1 (2.5) 

and not invert dh~ directly. Actually, (2.5) and (2.2) are derived from the 2n x (2n + 1) 
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linear system 

(2.6) 

Some researchers recommend alternative ways to solve for i and i using (2.6). See, for 
example, Watson (1986). However, we hav-e bad good results with (2.5). 

5 The major computational challenge of the scheme we have outlined above is singular 
righthand endpoints. If all the solutions of f(z) = 0 are nonsingular, all the endpoints are 
nonsingular. This case is relatively routine to compute, but in practice it is the exception. 
Consequently, performance in the presence of singular endpoints is a major consideration 
for choosing a path tracker for polynomjal continuation. Special methods for computing 
singular righthand endpoints are given in Morgan et al. (199la, 1991b, 1991c). 

6 We must also note the issue of scaling. The performance of a numerical method in 
solving a polynomial system is generally influenced by the scaling of the system. For 
example, poor scaling can lead to catastrophic overflows or underflows which degrade the 
performance of the solver. More subtle effects can also occur. Consider that the relative 
scaling off and g will influence the geometry of the continuation paths associated with 
h. Little exact information on bow to scale for polynomial continuation is available. 
The projective transformation generally bas a helpful scaling effect (see the following 
subsection). The SCLGEN polynomial scaling algorithm (Meintjes and Morgan, 1987), 
originally created to tame the extreme scaling of chemical equilibrium systems, uses 
a simple optimization approach to minimize deviations in the coefficients from unity. 
Computational experience suggests that t!te performance of polynomial continuation is 
usually improved by using both of these together. See Morgan (1987) and Morgan et al. 
{1989) for more details. 

2.2. DIVERGENT PATHS AND THE PROJECTIVE TRANSFORMATION 

In the method described in section 2.1 above. paths may diverge. Since lz(s)l- oo as 
t(s) - 1 for these paths, a test must be implemented to terminate the paths when lzl 
gets too large or when too many steps ha.ve been taken. While this can be satisfactory 
[even r-ecommended in some cases (Morgan, 1987, Chapter 10)], usually it is better to 
make a simple change of context to eliminate divergent paths altogether. This eliminates 
the heuristic element in the numerical method resulting from programming the decision 
to terminate paths that appear to be dive:rging. 

The approach we recommend is to repla.ce the continuation system h by the projective 
transformation of h. We will sketch the mechanics of this substitution here. Section 3 
gives more detail. An alternative mechanism for eliminating divergent paths is suggested 
in Wrigbt (1985). 

First, homogenize h via the substitutions z; - Yi /Yo for j = 1 to n. This yields 
a new polynomial system (after we clear the powers of Yo from the denominator): 
h(yo, y1, ... , !In, t) = 0 of n equations in n + 2 unknowns. We can identiry the solu
tions to h(z, t) = 0 with the solutions to h(y, t) = 0 obeying Yo = 1. In addition, there 

may be solutions to h(y, t) = 0 with Yo = y1 = ... = Yk-1 = 0 and Yk = 1 for some 
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b 
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k between 1 and n. These do not correspond to solutions of h(z, t) = 0. (They, in {act, 
correspond to solutions at infinity of h(z, t) = 0. See section 3.) 

Now define H, a system of n polynomials £n n + 1 unknowns, via H(zt, . . . 1 Zn 1 t) = 
h(zo, z1, ••• 1 :t0 , t) where zo = b1z1 + ... + b0 :rn + bn+l for some fixed complex numbers 
b1 1 •• • , bn+l· This H is called the projective transformation of h. 

We have the following facts about H (see Morgan, 1986b; Morgan and Sommese, l987b, 
1989): 

• For random choices of b = (b1, ... , bn+l) E R"+l and 8 E R1 
1 the homotopy H(z, t) 

has no divergent continuation paths. (It also suffices to choose random b E cn+l 
and/or random -y E C 1.) 

• If z• is an isolated solution to /(z) = 0, then there is an isolated solution z• to 
H(z, 1) = 0 with z0 -:F 01 so that z• = 

1111
".. :.:•. 
I) 

Thus, if we track the continuation curves defined by H, then we can recover all the 
isolated solutions of /(z) = 0 from those of H(z, 1) = 0. The advantage is that we do not 
have to decide when to truncate paths that seoem to be diverging, since no paths diverge. 
Note that H bas the same total degree as h, so the number of continuation paths is the 
same. There are additional computational ad vantages to the projective transformation, 
in that it generally improves the scaling of the problem, as noted above. 

3. Multi-homogeneous Polynomial Continuation 

In this section we outline the multi-homogeneous method of constructing polynomial 
homotopies1 introduced in Morgan and Sommese (1987a) as the "m-homogeneous" ap
proach. 

3.1. THE MULTI-HOMOGENEOUS CONTEXT 

First, we need the definitions of a geometr~cally isolated solution and the multiplicity 
of a solution. 

DEFINITION 3.1. A solution to a polynomial system is called geometrically isolated (or 
simply isolated) if there is a ball around tl1e solution tl&at contains tlo other solution. 

A solution that is not geometrically isolated is singular, but an isolated solution can 
be singular also. 

DEFINITION 3.2. Let z• be a geometrically isolated solution to the polynomial system 
/(z) = 0. Let. U be a closed ball about z• coRtaining no other solution. We can perturb 
f by adding arbitrarily small complex numb.ers to each coefficient off {including the 
zero coefficients) in such a way that the perturbed system has only nonsingular solutions. 
For all sufficiently small coefficient perturbations, the perturbed systems have a constant 
number, m, of solutions in U. This m is {by definition} the multiplicity of z•. 

A solution z• to /(z) = 0 has multiplicity greater than one exactly when it is singular; 
that is, wben the Jacobian matrix df(z•) is singular. 
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The algebraically proper context for generating the full solution list of a polynomial 
system is complex projective space rather than real or complex Euclidean space. This is 
because the structure of the solution set to /(z) = 0 is generic in projective space. (See, 
for exa.mple, Bezout's theorem below.) Homotopy continuation methods for generating 
the full solution list to f( z) = 0 have always implicitly acknowledged this by being 
formulated in complex Euclidean space and allowing paths to diverge to infinity.lt is more 
numerically stable, however, to acknowledge projective space directly. We therefore follow 
the classical approach from algebraic geometry of homogenizing J and establishing our 
continuation process in projective space. In many cases il is advantageous to homogenize 
J so that it has an multi-homogeneous structure (m-homogeneous, for short). Then we 
view the solutions to l(z) = 0 as being in a Cartesian product of projective spaces. 
We will present our discussion based on this generality. Since !-homogeneous systems 
are merely homogeneous systems, the m-homogeneous approach includes all polynomial 
systems and does not limit us to special cases. 

Complex projective space, P"', consists of the lines through the origin in ck+l, denoted 
[(zo, ... ,zk)], where {zo, ... ,zk) E Ck+l- {0}; that is, ((zo, ... ,z,~:)] is the line through 
the origin that contains (zo, ... , z~t;). It is natural to view P"' as a disjoint union of 
points [(zo, ... , z.~:)] with zo :/: 0 (identified with Euclidean space via ((zo, ... , z11)] -+ 

(zl/zo, .. . ,z,:fzo)) and the "points at infinity," the [(zo, ... ,zn)] with z0 = 0. 

We partition the variables {z1, ... , Zn} into m nonempty collections. It will be no
lationally simpler here if we rename t.he variables with double subscripts. Thus, let 
{zlr· .. 1 zn} = Uj=d z1,j 1 .•• 1 ZA;;.j } 1 where Ej=l lei = n. Now choose homogeneous vari
ables zo,j for j = 1 tom and define Z; = {zo,j, z 1,;, ••• , Zk;.J } for j = 1 tom. Then evoke 
the substitution za,J +- Z&,J/zo,; for i = 1 to ki and j = 1 to m, generating a system 
/ = 0 of n equations in n+m unknowns (after we clear the denominators of powers of the 
zo,J ). Now j = 0 naturally has solutions in P ::: pic, x P"'' x ... x pk ... (see Morgan and 

Sommese, 1987a). We say J is multi-homogeneous because the variables are partitioned 
into m collections, Zt, ... , Zm, so that j is homogeneous as a system in the variables of 
any one of the collections. We let dJ,I denote the ;th degree of the 11

" polynomial; that 

is, with all variables held fixed except those in Z;, j, bas homogeneous degree d; ,l· Note 
that "1-homogeneous" is the same as "homogeneous", so theorems about m-homogeneous 
polynomial systems apply to all polynomial systems. Generally, we abuse the notation 
by not distinguishing f from its m-homogenization j. 

The Bezout number, d, of the m-homogeneous polynomial system I is defined to be 

the coefficient of nJ=l a:1 in the product 

n m 

D = ILL:dj,/Oj. (3.1) 
l=l i=l 

Then we have the classical: 

THEOREM 3.1. (BEZOUT) Let d deno~e the Bezout number of the system I = 0, and 
assume J = 0 does not have an infinite number of solutions in P. Then I = 0 has 
exactly d solutions in P, counting multiplicities. t 

t By ~counting multiplicities" we mean that we count the multiplicities of the solutions rather than 
the 110lutions themselve~~. 
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The numerical significance of the Bezout number is that it is an upper bound on the 
number of homotopy continuation paths we will track in the space P x (01 1] (Theorem 
3.2, below). The smaller d is, the better. Frequently, the m-homogenization off for 
m > 1 has a (much) smaller Bezout number than the !-homogenization. If m = ll 1 then 
d = d1 · · · dn, the total degree of/, where d; = deg(/; ). This is the "traditional" number 
of paths to track in polynomial continuation. 

We acknowledge P = P" and P = pi:1 x ... x pk ... computationally via the projective 
trcn1/ormation, first proposed in Morgan {1986) and extended to the m-homogeneous 
case in Morgan and Sommese {1987b). We sketch what is involved here. Let us first 
consider the !-homogeneous case. Thus his a homogeneous system of n equations in the 
n + 1 variables zo, ... 1 Zn, and h(z) = 0 bas solutions in pn , Let constants bo1 • •• , bn be 
given with b~;;0 ¥ 0. Define a (nonhomogeneous) system h'(z) of n + 1 equations inn+ 1 
unknowns by 

for I = 1 to n, and 

116(zo, ... , Zn) = L(zo 1 •• • , Zn)- 1 

where 
"' 

L(z) = L b;z;. 
j:O 

Then ~he solutioi}S to h(z) = Q in flL = {[z] ~ P" I L(z) :f 0} are in one-to-one 
correspondence with solutions to h'(z) = 0 im C"+l. The multiplicity of solutions (and 
all other local properties) are preserved under this correspondence. Further, we may view 
hHz) = 01 ••• 1 h~(z) = 0 as a system in then variables Zo 1 ••• 1 Zko-1 1 Zl:o+lo .. . 1 Zn with 

1- (bozo+ ... + bk0 -t%.1:0 -t + bk0 +JZko+1 + ... + b~;;zt) 
Zl:o = b . 

A:o 

(t. is this system of n equations inn unknowns that we call uthe projective transformation 
of h" . We want to use this system for computations. Its solutions in C" are in one-to
one correspondence with the solutions to h'(z) = 0 in C"+1 • In Theorem 3 of Morgan 
and Sommese (1987b) it is proven that the continuation paths are contained in UL with 
probability one if the parameters are chosen at random. This theOl'em establishes the 
validity of the projective transformation. 

In creating a computer code to implement the projective transformation, our usual 
procedure is to let ko = 0 a.nd write a subroutine for h as a system of n equations in the 
n + 1 variables zo, ... , Zn but include the formula 

n 

zo = 2: /3; z; + /3o, 
j=l 

which makes zo an implicitly defined function of the other variables. The partial deriva
tives of the projective transformation with respect to zt, ... 1 zn are then generated from 
those of h with respect to zo 1 ••• , Zn using the chain rule. To make use of Theorem 3 from 
Mc.rgan and Sommese (1987b )1 the fJo, ... 1 f3n are chosen at random. 
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If h is m-homogeneous, we may evoke the projective transformation on each component I 
of P. Thus, with m-homogeneous h in the variables Zi,j fori= 0 ton and j = 1 to m, 1 

we define 
lcj 

zo,j = L /Ji,J Zi,J + /Jo,; 
1=1 

for j = 1 tom. [Theorem 3 of Morgan and Sommese (1987b) is proven in this generality.] 
The finite solutions of /(z) = 0 are recovered via z; ,; - ZsJ/ZoJ for i = 1 to ki and 
j = 1 to m. If any ZoJ = 0, then the solution is at infinity. 

Example 1. Consider the system: 

z~ + z~- 25 = 0 
z~ + z~- l6z2 + 39 = 0 

(3.2) 

This is the intersection of two circles of radius 5 with centers at the origin and at (0, 8). 
We homogenize (that is, !-homogenize) via the substitutions Zt - ztfzo and z2- z2/zo, 
yielding 

z~ + z~ - 25z~ = 0 
z? + zl - l6z2zo + 39z~ = 0 

(3.3) 

We obtain the solutions at infinity by solving the system with zo = 0 and z1 = 1. This 
reduces (3.3) to 1 + z~ = 0. Thus, z2 = ±i, with i = ..;::T. (In finding solutions in projec
tive space, we always set one of the variables equal to 1.) The projective transformation 
of (3.2) is (3.3) with zo = /J1 z1 + /J2z2 + /Jo, where the /3; are chosen at random. 

Example 2. Consider the following system: 

ZJZ2Z3Z4 + 1 = 0 
ZtZS + Z2Z4 + ZtZ4 = 0 

4zt zsz,. - 2zaz3Z4 + 1 = 0 
Zi + Z2 = 0 

{3.4) 

By grouping the variables of (3.4) into different sets, we create different m-homogeneous 
structures and Bezout numbers. Normally. we would want to solve such a system with 
them-homogeneous structure that gives the smallest Bezout number. For each grouping 
of variables, we will form the combinatorial product, D, defined in (3.1) above, and then 
pick out the distinguished coefficient that gives the Bezout number, d. Thus: 

Example 2.1. Group variables as: {zt, r2} U {za, z4}. Then, D = (2n't + 2o2)(o1 + 
o2)(o1 + 2o2)(o1 + o 2), and d = Coef[D,aro~] (i.e. the coefficient of the ora~ term of 
D). Thus, d = 10. 

Example 2.2. Group variables as: {z1, z2} U{za}U{z4). Then, D = (2o1 +o2+oa)(o1 + 
02 + as)2(ot + Oa2 + Ooa), and d = Coef[D, o~a2aa] = 8. 

Example2.3. Group variables as: {zi}U{z2}U{za, z4}. Then, D = (ot+a2+2oa)2(o•+ 
02 +as)( at+ oa + Ooa), and d = Coef[D, o1o2o5] = 16. 

We ~ that 2.2 gives the smallest Bezout number. Thus, while the !-homogeneous 
(traditional) polynomial continuation yields a 24 palh homotopy (i.e. lhe number of the 
total degree), we can (easily) find a 3-homogeneous 8 path homotopy. Such a savings 
in computer work (i.e. by a factor of 1/3) can be significant in some applications. The 
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projective transformation for 2.2 is easy to construct: first, we 3-homogenize (3.4) via 
ZJ- zJ/z5, z2- z2/z5, za- za/za, and Z4- z4/z1, where we take zs, zs, and Z7 to be 
the three homogeneous variables. This yields 

ZtZ2ZaZ4 + Z~Z6Z7 = 0 
ZtZ3 + Z2Z4 + ZtZ.oi = 0 

4ZtZ3Z4- 2z2Z3Z4 + Z5Z5Z7 = 0 
(3.5) 

Z1 + Z2 = 0 

with zs = fJ1 z1 + fJ2z2 + /3s, zs = fJaza + f3s, and Z7 = {34 Z4 + {37, where the fJ; are chosen 
at random. 

3.2. A BASIC THEOREM 

Consider the homotopy (2.1), where now we: take g to be an m-homogeneous system 
of n polynomials in n + m variables having exactly the Bezout number of nonsingular 
solutions, where g is chosen so that its m-homo,geneous structure matches that of/; that 
is, Zt, .. . , Zm are specified and the dj,l for g are exactly the same as those for/. Many 
such g will exist. In Wampler et al. (1990a, section 4.1, p. 63), a scheme for generating 
such a g for any f is given. 

Then the following holds. 

THEOREM 3.2. For any positive r and for all but a finite number of angles, 8, if"'( = rei8
, 

then Ja- 1(0) consists of smooth paths over [0,1) and every geometrically isolated solution 
of f(z) = 0 has a path converging to it. In fact, i/mo is the multiplicity of a geometrically 
isolated solution, z0, then z0 has exactly m 0 pa1hs converging to it. Further, the paths 
art strictly increasing in t, and dtfds > 0, where 8 denotes arc length. 

This theorem is stated and proven in Morgan and Sommese (1987a). 

4. Parameter Continuation and Side Conditions 

4.1. THE CONTEXT OF COEFFICIENT-PARAMETER POLYNOMIAL CONTINUATION 

Let us expand the context of our considerations somewhat, as follows. Let 

ri 

I (c ) ~ c 11" 6;,1.~ 
j t Z = L..J J .k 1: I Zt 

k=l 

( 4.1) 

denote a polynomial system in the n variables z1 , ... , Zn with the j-th equation having 
ri terms, where the k-th term has (complex mumber) coefficient CJ,Iil and in which z, 
i$ raised to the 6;,1,•-th power. Here C = (CJ,A:). We will generally consider systems of 
n + N equations where N ~ 0. That is, we let j = 1, ... , n + N. Sometimes we call the 
equations indexed by j = n + 1, ... , N sid( conditions. 

Traditionally, polynomial continuation has not considered side conditions, focusing on 
systems of n equations in n unknowns. Further, the traditional goal of polynomial con
tinuation has been to compute all geometrically isolated solutions to /(z) = 0. However, 
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we wish to refine and make more flexible the goal of polynomial continuation, allow 
more equations than unknowns and compute a distinguished subset of the solutions to 
/(z) = 0. 

In polynomial continuation, homotopies are typically constructed by letting the C;,k 
in (4.1) vary via a homotopy parameter t. Thus Cj,t(t): [0, 1]- cr where r = E~=l rs, 
so that (4.1) with coefficients Cj,t(O) defines the start system and (4.1) with coefflcients 
Cs,~:(1) defines the target system. 

However, when polynomial systems arise in engineering, the coefficients are usually not 
the physical parameters. To mirror this reality in the mathematics, we assume the coeffi
cients are functions on a space Q, and the continuation will be genera.ted in "parameter 
space," Q, rather than "coefficient. space," C". Thus 

{4.2) 

where we call ( 4.2) the coejJicie11t parameter formulas. The homotopy will be defined by 
the composition 

(4.3) 

where q(t) : [0, 1] - Q and Cj,k : Q - C 1
• Generally, the dimension of the parameter 

space will be much less than that of the coefficient space. The special structure of the 
solutions of (4.1) induced by (4.2) is naturally acknowledged with a homotopy like (4.3). 
The result, we will see, is that fewer paths have to be tracked to solve the system, 
significantly reducing in some cases the total numerical cost. We further allow c;,~:[q] to 
be a general analytic function of q, rather than merely a polynomial in q. The need for 
this generality arises, for example, in mechanical engineering, where it is common for 
trigonometric functions to arise. 

Consider the following simple example: 

ZJZ2 + q2z1 + q1z2 + q1q2 : 0 
z~ + (9t + qs)zt + 91qa = 0 

{4.4) 

Here Zt and z2 are the variables and ql, 92, q3 are the coefficient parameters. Thus ( 4.4) 
can be written 

CJtZJZ2+Ct2Zt+CJ3Z2+Ct4 =0 
' c2,1z? + c2,2Z1 + c2,3 ' = 0 

where 

CJ,l : 1 Ct,2: q2 Ct,S = 91 Ct,4 = q1q2 C2,1 = 1 C2,2 = q1 +qa C2,3 = q1q3. 

Now, construct a parameter homotopy so that: when t = 0, q1 = 0, 92 = 1, and q8 = 1, 
and when t = 1, q1 = 1, q2 = 2, and qs = 3; for example, q(t) = [(I-t), (1 + t), (1 + 2t)]. 
Then, the coefficients will continue via the formulas: 

c[q(t)] = [1, 1 + t, 1- t, (1- t)(l + t), 1, (1- t) + (1 + 2t), {1- t)(l- t){l + 2t)]. 

Thus the coefficient parameter continuation is not an affine transformation with respect 
to the homotopy parameter t. 
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The polynomial equations f defined by (4.1) naturally can be viewed as a map 

f : Q X C" - cn+N 

with the solution set 

However, X+ accounts only for the finite solutions off = 0, whereas it is convenient 
to expand the context of the system in such a way that additional solutions at infinity 
are defined. It is further convenient to be able to do this in a variety of ways. What we 
have in mind is to find algebraic compactifications P of C"and extensions <P off with 
~: Q x P- E, for appropriately defined E. It will follow that X+ ~ ¢-1(0) =X, where 
X therefore depends on the choice of compactification and the extension off, but X+ 
does not. See Morgan and Sommese (1989, 1990) for details. 

The two most common ways of defining P and¢ are: 

• P = pn, n-dimensional complex projective space; ¢ the "homogenization of !" 
• P = P"1 x ... x pk .. ; ¢ the "m-homogenization off'. 

4.2. A COEFFICIENT-PARAMETER THEOREM 

Now we state Theorem 4.1, a corollary to the very general theorem cited in Morgan 
and Sommese (1989). We focus on this special case because: 

• It highlights an important practical result. 
• It illustrates the more general theory without requiring a background in algebraic 

geometry. 

Recall that we are considering the system f(c[q), z) = 0 of n + N equations in n 
unknowns with q E Q and z E P. We make the following assumptions: 

• Q = C', for some s 
• c : Q - cr is polynomial 
e p = pkt X ••• X pkm 

We emphasize that thP.Se assumptions are not necessary, but are merely taken to allow a 
more elementary presentation. We need the following definition. 

DEFINITION 4.1. The solution z to f(c[q],z) = 0 is genericaffy nonsingufar if there is a 
dense open Q0 ~ Q such that for every neighborhood B about z in P there is a neigh
borhood B' about q in Q so that if q' E B' n Qo, then f(c[q'], z) = 0 has a nonsingular 
solution z' with z' E B. 

Thus a solution z is generically nonsingular if almost all nearby systems have a nonsin
gular solution near z. Now we have: 

THEOREM 4.1. Given q1 E Q, there is a dense open full measure Qo ~ Q such that if 
q0 E Qo and S is the (finite) set of nonsingular solutions to f(c[q0], z) = 0 in P, then 
the homotopy 

h(z, t) = f(c[(l- t)q0 + tq1
], z) 
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with &tart points inS and (z, t) E P x [0, 1) wirl have well defined homotopy paths in P that 
are smooth and strictly increasing in t as a function of arc length1 and the endpoints will 
include all the geometrically isolated generically nonsingular solutions of f(c{q1 ], z) = 0. 

The proof of this theorem is given in Morgan and Sommese (1989). 

We sketch the idea of the proof here. Define X = {(q, z) E Q x P I f(c[q], z) = 0}. 
Consider the natural map 1r : X --+ Q defined by w( q, z) = q. We then can prove that 
there is an open dense Qo ~ Q and a smootfu manifold Xo ~ X such that ?ro :: 1r I Xo : 
Xo--+ Qo is a finite-to-one covering space, and Xo can be identified with the geometrically 
isolated solutions of f = 0 when q E Qo. further, X o = X n• U X,, where Xn, and X, 
denote the nonsingular and singular solutio:ns, respectively, and 1r I Xn, : Xn, --+ Qo 
and 1r I X, : X, --+ Qo are both covering spaces. In addition we show that if /( ~ Q 
is a polynomial (complex) curve and Ko =I< n Qo, then J(- Ko is finite. This means 
that all but a finite number of points in/( are in Q0 • For example, K might be taken to 
be { (1 - t)q0 + tq1 I 1 E C 1}. To define a standard homotopy, we choose K a complex 
curve, and then choose a : [0, 1] --+ J( such that a : [0, 1) --+ Ko, which is easy to do 
because all but a finite number of points in K are in K0 . (Note that the image of a is 
one-real-dimensional in the two-real-dimensional/(.) Now consider the diagram: 

1 1 
a[O, 1] J( 

The image of a, which is a path in the parameter space Q, is lifted via 1r to Q x P. This 
lifted path is a collection of paths in the "parameter-solution" space Q x P. These paths 
are the continuation paths that. we will track numerically. 

What this theorem says is that if we choos-e almost any system (given by q0 E Q0) and 
solve it somehow (say, by a traditional m-homogeneous continuation) and pick out the 
oonsingular solutions (the set S), then we will find the generically nonsingular solutions 
that are geometrically isolated of any other system (given by q1 ), via a path tracking 
approach with fewer paths (because we can restrict the choice of start points to S). There 
are three key observations about the "real" world that make this theorem important: 

• In engineering and scientific practice, smalJ polynomial systems tend to arise in 
families (as indexed by Q). It makes sense to solve one (given by q0) at some 
expense, if the re.'it can then be solved cheaply. 

• The number of points in the set S is often much less than the full Bezout number 
for a general system. 

• The physically meaningful solutions tend to be included among the generically 
oonsingular solutions. 

In our experience, polynomial models with physically meaningful solutions that are not 
generically nonsingular are degenerate, often because a special singular case has arisen 
in a general model. We note also that when physically meaningful solutions are not 
geometrically isolated, a similar type of model degeneracy has usually arisen. If such 
degeneracies are unavoidable, then using "random real" parameters as noted in section 
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4.3 can help, because then polynomial continuation will tend to find some real solutions, 
which is usually what is being sought. We cannot "prove" these observations about reality. 
We cite the examples given in Morgan and Sommese (1989}, Morgan et al. (1990}, Morgan 
and Wampler (1990), Wampler and Morgan (1991) and Wampler et al. (1990a, 1990b) 
for supporting evidence. 

4.3. IMPLEMENTATION CONSIDERATIONS 

Let us continue with the special assumption that Q = C', but remind the reader that 
the theory developed in Morgan and Sommes.e (1989) allows a more general context. 

We take the implementation problem to be: Given the coefficient parameter polynomial 
system f(c[q], z), we want to solve a sequence of systems /(c[q•], z) = 0 fork= 1, 2, 3, .... 
We recognize two steps: 

1 Choose q0 E Q, solve /(c[q0), z) = 0, pick out the set of nonsingular solutions, S. 
2 Track the solution paths of h(z, t) = /(c[(l - t)q0 + tq•], z) = 0, beginning at the 

points inS. 

There are two ways to choose q0 : 

• Choose q0 "at random" from Q. 
• Choose q00 "at random" from Q n R', choose 1 "at random" from C1

, and take 
q0 = 1q00 • (This "random-real" a! tern ative has advantages for certain physical 
problems.) 

The coefficient parameter formulas for a particular problem may be complicated and 
involve many transcendental functions. This makes the function and Jacobian matrix 
evaluations expensive, and typically polynomial continuation involves thousands if not 
millions of these evaluations. Sometimes variants of the coefficient parameter polynomial 
bomotopies have a similar small number of :paths and are much more efficient in im
plementation. We sketch some of these variants here. We have found particularly useful 
the seC4nt homotopy. What these variants amount to is that from the given coefficient 
parameter formulas we can define corollary c:oefficient parameter formulas that have a 
simpler form but admit a larger class of systems. Generally, this means that there wi.ll be 
more generically nonsingular solutions; tbererore, "weaken1ng" the coefficient parameter 
formulas in this way would generally seem to be a bad idea. However, often the trade-off 
between efficiencies makes a variant preferabl-e. 

Let us consider a hierarchy of homotopies: 

• Traditional: h(z, t) = {1- t)g(z) + tf( c[q11], z) where g(z) has d solutions. 
• Coefficient: h(z, t) = j((l - t)Co + tc(qk], z) where Co E cr is a random choice of 

coefficients. 
• Secant: h(z, t) = /((1-t)c(q0]+tc[q"], z) where q0 is a random choice of parameters. 

Note that here the start system is defined by coefficient parameter formulas but 
the intermediate systems (for 0 < t < 1) are not given by coefficient parameters. 

• Parameter: h(z, t) = f(c[(l - t)q0 + tq.l:], z) where q0 is a random choice of pa
rameters. Note that. taking the convex combination of q0 and q.l: is natural when 
Q = C' 1 but a)most any path in Q frorro. q0 tO 9.1: will do. 
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We can easily see that the traditional, coefficient, and secant homotopies are "coefficient 
parameter'' homotopies for appropriately defined coefficient parameter formulas. These 
variant coefficient parameter formulas are derived from the "original" coefficient param· 
eter formulas, which we conceptualize as having been given by physically meaningful 
relations. 

4.4. SIDE CONDITIONS 

Here we explore the surprising and useful fact that algebraic relations persist along 
homotopy paths (generically). This becomes apparent from the fact that the theory is 
developed for n + N equations in n unknowns, where N ~ 0. The theory of polynomial 
continuation until now has taken N = 0, but we can recognize considerable implementa· 
tion advantages from the more general context. 

We have called the equations indexed by j for j = n + 1 to n + N "side conditions", 
although in the structure of the theory they are not distinguished from the other equa· 
tions. Now, however, it will be better for the exposition if we call the side conditions 
and the rest of the system by different names. Thus let f'(c{q), z) denote a system of n 
polynomials inn unknowns, with coefficient parameters q E Q, and let s(c[q), z) denote a 
system of N polynomials in the same n unknowns with the same coefficient parameter set 
Q. The result we want to point out is as follows. Suppose we choose q0 at random from 
Q and suppose z0 is a geomet.rically isolated solution to f'(c[q0), z) = 0 that also satisfies 
.s(c{q0

) 1 z) ;;; 0. Let (q(t), z(t)) denote the homotopy path of h(•, t);;; f'(c((l-t)q0 +q1
], z) 

with sLart point (q0 , z0 ) . Then s(q(t), z(t)) = 0 for 0 ~ t ~ I. 

In other words, if the side conditions hold for a solution to the start system f'(c[q0]. z) = 
0, then the side conditions will hold along the associated path and, in particular, at 
the corresponding solution to the target system f'(c{q 1], z) = 0. Therefore, if the side 
conditions represent conditions that we do not want to hold, we can omit the start points 
that satisfy the side conditions, and only track paths from the resulting smaller set of 
start points. Thus, we can track fewer pat.hs than we would otherwise need to track. 
(Without the side condition result, we might track all the paths whose start points are 
given by solutions to f'(c(q0],z) = 0 and then omit the resulting endpoints that satisfy 
s(c[q1], z) = 0.) For example, solutions at infinity of /'(c[qj, z) = 0 a re distinguished 
by obeying the additional relation s(z) = 0, where s(z) denotes the product of the 
homogeneous coordinates of z. If we are not interested in solutions that are generically 
at infinity, we can omit any start points that are at infinity, since we know that they will 
end up at infinity. 

The converse idea is generally true, but there are some subtleties. That is, if we want 
the side conditions to hold, it is a reasonable approach to omit the paths whose start 
points are solutions to /'(c[q0

), z) = 0 that do not also obey s(c[q0],z) = 0. This will cer
tainly yield only those solutions that obey the side conditions. However, certain types of 
solutions may be missed. In many cases, this is not a difficulty. However, for completeness, 
let us consider exactly what is involved. 

• It might happen, for a choice of q1 ¢ Qo, that s(c[q1), .r) = 0 might be satisfied in 
the limit of a continuation path as t - 1 but not along the path. Generally, we can 
argue that these unstable solutions are nonphysical. 
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• /'(c[q0], z) = 0 could have some positive-dimensional solutions sets that yield iso
lated solutions when the side conditions are included. We will miss such solutions 
if we find merely the isolated solutions of f'(c[q0), z) = 0 and then eliminate those 
not satisfying s(c(q0

], z) = 0. But usually we are not able to find the positive
dimensional solutions sets of f'(c(q0),z) = 0. So, to be absolutely rigorous, we can 
find instead the isolated solutions of 

N 

JJ(c[q0
], z) + L Cj,.1:&.1:(c[q0], z) = 0 for j = 1 ton 

.1::1 

that also satisfy 

for j = 1 toN, 

where the CJ,.I: are random numbers. 

See Morgan and Sommese (1989, section 3.2) for a further discussion of side conditions. 

5. Symbolic Reduction 

Let /(z) = 0 be a system we want to solve. By reduction we mean the process of 
generating a new system j(z) which is "smaller" than /(z) but whose solutions yield 
easily those solutions of /(z) = 0 that are of interest. How should j look compared to 
f? It might have 

1 fewer variables; 
2 fewer paths for the associated polynomial continuation (smaller total degree or 

Bezout number); 
3 a simpler solution set; and 
4 shorter paths and/or better conditioned Jacobian matrices along paths. 

By "a simpler solution set" we have in mind that the reduction will eliminate (extra
neous) solutions cut (out or in) by side conditions. For example, it might eliminate a 
known generic positive--dimensional solution set or eliminate some generic solutions at 
infinity. Item 4 is a bit special and comes more under the category of "scaling" than re
duction. (The SCLGEN scaling algorithm citedl in Note 6 of section 2.1 and the projective 
transformation are examples.) 

However, reduction can have a devastating effect on the numerical characteristics of 
a system which is to be solved in ftXed-precision floating point arithmetic. Consider the 
following example from geometric modeling. 

1.6 X 10-3z~ + 1.6 X 10-3:~:~ - 1 = 0 
5.3 X 10-4z~ + 5.3 X 10-4.r~ + 5.3 X 10-4.r~ + 2.7 X 10-2x 1 - 1 = 0 

-1.4 x l0-4 .r1 + l0- 4 .r2 + xa- 3.4 x 10-3 = 0 

This is the intersection of a cylinder, a sphere, and a plane. It has two real solutions 
of norm about 25, a.nd a complex conjugate pair of norm about 109 . In the original 
geometric context, the two real solutions had physical meaning and the complex pair did 
not. By standard elimination [here effected by a Grobner basis algorithm (Buchberger, 
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1985)] the system is reduced to a 4th degree polynomial equation: 

6.38281970398352z1- 7.12554854545301 x 109zr + 1.89062308408416 x 1019z~ 
+9.36558635415069 X 1020xt - 1.15985845720186 X 1022 = 0, 

where the coefficients have been rounded to 15 digits. Note that in the original system 
there is a range of 4 orders of magnitude in the coefficients, but in the single polynomial 
there are 22. When this polynomial was submitted to a code which implemented the 
quartic formula, an overflow was generated and the system crashed. The point is not that 
these numerical difficulties are insurmountable, but simply that a rather mild problem 
was made much more numerically unstable by reduction. 

This phenomenon is quite common. Here is a more extreme example. The following 
polynomial system comes from the study of chemical equilibria. (This is the Model A 
combustion chemistry example from Morgan (1987, Chapter 9), for a temperature of 
3000° .] 

x2 + 2xs + X9 + 2x10 = 10-5 

xs + xa = 3 x 10-5 

Xt + zs + 2zs + 2zs + Z9 + z1o = 5 x 10-5 

Z4 + 2Z7 = 10-5 

0.5140437 X 10-7 X5 = X~ 
0.1006932 X 1Q-6z6 = X~ 
0.7816278 X IQ-lSX7 =X~ 
0.1496236 x 10-6 zs = XtXs 
0.6194411 X 10-7z9 = X1Z2 
0.2089296 X IQ-l4X10 = XtX~ 

The following reduction (as given in the above reference) to a system of two equations 
is not much more extreme than the original problem, in terms of range of coefficients or 
powers of variables: 

0.9572608 X 1015ztZ~ + 0.1614359 X 108xtX2 + 0.1986230 X 108x~ + X2- .3 X 10-4 = 0 
0.5200670 X 1015x~ + 0.1078946 X 1015x~z2 + 0.9118119 X 108x~ 

+0.8245123 X 1015ztz~ + 0.2560374 X 1QSztZ2- 0.1985030 X l03x1- 0.8 X lQ-4 = 0 

This system has total degree 9 and Bezout number 8. Its solutions (including the phys
ical solution) are easy to compute to full double precision via polynomial continuation 
implemented in double precision, in spite of the range in the coefficients (19 orders of 
magnitude). 

However, the reduction of this system to a single polynomial (via a Grobner basis 
algorithm) is 

2.47638543974253 + 173863854.837537z1 + 3.64001686812513 x 1015z~ 
+2.03096667862772 X 1022xf + 2.2580193833473 X 1028x1 
-9.05543678075695 x 1034x~- 1.74762562120847 x l041x1 

+9.44753095267844 x 1046zi + 2.43085098985668 x 1053xY = 0 

Here the coefficients are rounded to 15 digits. There are 53 orders of magnitude in the 
coefficients, and a standard bisection-Newton's method solver did not obtain a single 
solution to a single digit of accuracy. Again the point is not that this polynomial is 
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impossible to solve, but rather than the numerical stability of the two variable system is 
made much worse by the final reduction to triangular form. 

These examples illustrate that often symbolic reduction bas the effect of degrading 
the numerical stability of a system, especially when this reduction is carried beyond a 
certain point. Let us consider the possible bad effects of reduction, which we would like 
to minimize: 

• Numerical instability, signaled by 
o The variables off typically have higher powers than those of f . 
o The coefficients of 1 typically are given by complicated formulas in terms of 

the coefficients of/. The numerical range of the coefficients of 1 is typically 
greater than those of f. 

• Cost, including 
o The cost of the reduction: cpu time and memory requirements. 
o The cost of evaluating the system: extra terms and higher powers. 

We need a concept of a reduction which improves some aspect of a system without 
disturbing the system more than is needed. Let us refer to a small reduction as a reduction 
that accomplishes a limited reduction goal without changing the system any more than it 
has to. Conceptually, a small reduction is less lik.ely to devastate the numerical stability 
of the system than reduction to triangular form. 

We would like software tools which allow us to make specified small reductions to im
prove the characteristics of a system which we will then solve by polynomial continuation. 
What would a good reduction algorithm package look like? 

• It would generate a sequence of intermediate systems, each a small reduction of 
the previous, in contrast to the typical Grabner basis reduction to triangular form. 
(The goal of each of these small reductions would be one or more of the above items 
1-4.) 

• It would offer the option of "one-step" and "two-step" reductions, with human 
guidance. Thus a few small steps would be taken, with the user able to offer sug
gestions on the most fruitful directions. Alternatively, perhaps an AI or expert 
system implementation would be possible. 

• It might offer the option of finding the best conditioned sequence of reductions. 
(Note that pivoting provides a means of doing this in Gaussian elimination.) For 
example, the system 

:z:2 + y2 -l = 0 
x+ey-0.5 =0 

reduces stably to a polynomial in y but not in x as e- 0. 
• It does no~ have to be optimal. A 1/12 reduction in a year-long computation makes 

it take only a month. 

We complete this section with a set of questions, projects, and problems. They are not 
equally difficult. Even par~ial success with some of them would amount to a breakthrough 
(e.g. question 3). Most should be investigated with specific problems in mind; for example, 
the problems discussed in Meintjes and Morgan. (1985, 1987, 1989, 1990), Morgan and 
Wampler (1990), Richter a.nd De Carlo (1984), Sa.fonov (1984), Wampler and Morgan 
(1991), Wampler et al. (1990b) and Wa.tson and Morgan (1991). 
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1 Create an efficient algorithm to find all the partitions of variables that yield the 
minimal Bezout number for a given polynomial system. 

2 Given a polynomial system with Bezout number d, find a small reduction with total 
degree d. (Classical reduction to a single polynomial accomplishes this, but it is not 
small.) 

3 Find a small reduction strategy for the Lagrange multiplier formulation of the con
strained optimization problem with polynomial constraints and objective function. 
(This would yield global minima. See Watson and Morgan (1991).] 

4 Given a known positive-dimensional solution set T for f(z) = 0, find a small reduc
tion j(z) so that Tis not contained in the solution set of j(z) = 0. (T might still 
intersect it.) Consider the case that T is given by linear equations. The systems 
discussed in Morgan and Wampler (1990) and Wampler et al. (1990b) are examples. 

5 Given a polynomial side condition s(z) = 0 so that the solutions of interest of 
f(z) = 0 always obey s(z) ':/; 0, find a small reduction, j(z), so that j(z) = 0 has 
no (or fewer) solutions with s(z) = 0. For example, if s(z) equals the homogeneous 
coordinate, then classical reduction to a single polynomial accomplishes this (by 
eliminating solutions at infinity), but this reduction is not small. 

6 Define and implement a "pivoting" strategy that guides elimination algorithms to 
minimize numerical instability. 

6. Summary 

Polynomial continuation is a well developed numerical method for computing the iso
lated solution to polynomial systems. This method would benefit from flexible tools to 
symbolically reduce systems, to make them smaller with minimum degradation of their 
numerical characteristics. Section 5 sketches some features these tools might possess and 
proposes some related research problems and directions. 
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