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Chapter 3 

On the Solutions of a Set of Polynomial Equations 

Philip S. Milne 

School of Mathematical Sciences 

University of Bath 

Claverton Down, Bath BA2 7A Y, UI< 

psmGmaths.bath.ac.uk 

Given n polynomials in n variables the paper suggests an algoritlun for locating their 
zero-dimensional or "point-like" solutions. The technique differs from projection-based 
techniques by using the isolation strategy which is often used in the one dimensional case. 
Around each of the solutions the algoritlun computes an arbitrarily small n-dimensional 
rectangle or box in which numerical techniques may be used to approximate the solution, 
The Crulf of the algoritlun is a multivariate generalization of Sturm's theorem which may 
be computed without explicit generation of the symmetric functions of the system. To 
generate this sequence, a new construction, the volume function, is introduced and it is 
noted that standard elimination techniques may be used to compute it. 

1. Introduction 

What follows is a description of a technique for locating the real zero-dimensional or 
"point-like" solutions of systems of simultaneous polynomial equations. 

In one dimension it is common to implement this procedure in two phases: an isolation 
phase and an approximation phase. The isolation phase produces a set of intervals suffi­
ciently small for there to exist a single solution in each of them and is often implemented 
by recursively dividing a bounding interval given some strategy for counting the number 
of solutions inside an arbitrary interval. The second phase takes each of the intervals and 
uses numerical techniques to approximate the solution to some given tolerance. 

It is possible to use this strategy in many dimensions as well, provided that an anal­
ogous technique for counting the number of solutions that lie within an n-dimensional 
rectangle or box is available. The initial bounding box may be computed by using any of 
the classical root bounds ~n each of the n univariate e/iminants or projections onto the 
axes. This strategy differs from those of CAD and Grobner Bases, firstly in that it is not 
projection-based and secondly in that it is only suitable for answering zero-dimensional 
or "point-like" problems. 
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This paper describes an extension of Sturm's theorem which is, in many ways, suit­
able for this sort of procedure. Hermite (1880) demonstrated the existence of a class of 
sequences which could be used to count roots inside boxes in R 2 and provided a method 
for computing them, in terms of the symmetric functions of the solutions. The construc­
tion described here is less general and allows the computation of just one element of the 
class of sequences that Hermite described. This particular sequence, however, has the 
property that it may be computed using elimination techniques alone. Like Hermite's 
sequences, each solution is counted just once regardless of its multiplicity which is a 
necessary property for an isolation algorithm. 

Paul Pedersen's recent work (Pedersen, 1991b) has demonstrated how sequences sim­
ilar to the construction Hermite (1852) describes may be extended to any number of 
dimensions, as well as providing generalizations to arbitrary shapes as well as boxes. 
Despite the fact that Pedersen's technique is able to generate not just a single sequence 
but a whole class of them, it is a surprising fact that the sequence described here is not 
amongst them. Unlike Pedersen's sequences each term in this sequence is in the ideal gen­
erated by the fitst two terms. The last term cannot therefore be a 1, as it is in Pedersen's 
construction, but is instead a perfect square. Pedersen (1991a) outlines the differences 
between these two techniques. 

This algorithm is provided without complexity estimates. The crucial step of this algo­
rithm is the computation of the volume function. A number of technologies are available 
for computing the volume function, amongst them: Buchberger's Algor'ithm, Macaulay 
Determinants, other results in Elimination Theory and, currently in two dimensions 
alone, the Subresultant Algorithm. Recent advances in the above techniques leave a 
choice of the most suitable technology unclear and hence appropriate complexity bounds 
difficult to state at the time of writing. j 

2. The Volume Function 

We begin with a little motivation for the volume function which, like the u-resultant 
(van der Waerden, 1950), uniquely characterizes the point-like solutions of a system of n 
equations in n variables. A na'ive analogue of the univariate factorization: 

f(x) ex: IT(x- a) 

might, in two dimensions, be 

f(xt, x2) ex: IT ((x1 - a1)(x2- a2)) 
0: 

where ex: is used to mean "has the same zero set as". But this, of course, suffers from the 
problem that the solutions (at, a 2), ({31, {32 ), etc. are not distinguished from the spurious 
intersections of the fac,tors of J, so that the points, (at, {32), ('n, a2), etc. appear to be 
solutions as well. One way of including this information in the construction is to add 
another variable, u, to this product, so as to bind algebraically the components of the 
factors into their associated pairs. 
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DEFINITION 2.1. In Rn we definet the volume function, V(u,x; /), of a system of n 
rational polynomials, /;(x) E Q[x], where x = (x1, x2, ... , Xn), in terms of the solutions, 
a= (o:1, o:2, ... , o:n), to the equation f(a) = o, 

V(u, x; /) oc II ( u +II (xi - o:i)). ' 
0: i 

When the number of solutions is not finite, the volume function is defined to be zero. 

When the last argument is dropped, as in: V( u, x), we assume that f is given by the 
context. 

Returning to the two dimensional case we note that, when u = 0, the volume function 
specializes to the "factorization" above. It also satisfies 

Vu(O,x1,x2) ~ 1 
V(O, x1, x2) - a (x1 - o:1)(x2 - o:2)' 

the numerator of which is 0 at the spurious intersection points mentioned above. 

The function ';(~·: is, in many ways, a good analog of the function IJ in one di­
mension. It is trivial to show (Milne, 1990) that there is an analogue of Cauchy's "root 
counting" integral in en involving the above quotient and a volume integral. In C 2 we 
have, 

!1 Vu(O,Zl,Z2)d d _ 4 2 
( ) 

Zl Z2 - - 1r n, 
Cl XC2 V 0, Zl, Z2 

where n is the number of roots inside both of the Jordan curves C1 and 0 2 but this is, 
of course, just, a special case of the general theory of residues in many complex variables. 
It is also easy to show, by way of analogy with the Newton relations, that the symmetric 
functions of the system may be written in terms of the volume function, 

Vu{O, :c) = ~ ~ ~ o:i-1 
1 

V(O, :c) . Nn x" a 
ZE 

where xi = x~1 x;2 
• • • x~n and N is the set of all strictly positive integers. 

3. Computation of the Volume Function 

In essence, the volume function is computed by eliminating n new variables, ai, from 
then+ 1 equations: fi(a) and u + (x1- ai)(x2- a2) · · · (xn- an)· We define an associate 
of the volume function to be any polynomial with the same zero set and note that for the 
algorithms which follow it suffices to be able to compute any of the volume function's 
associates. 

Buchberger's algorithm may be used to compute a reduced Grobner basis for this 
system. If the solution set is zero-dimensional and a purely lexicographic ordering, ai > 
ai+l > u, is used then a single polynomial of degree zero in all of the elimination variables 
will be contained in the Grobner basis (Buchberger, 1985b). Since this basis generates 

t Currently, just up to a constant. 
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the same ideal as the input, this element must be an associate of the volume function and 
when there are not finitely many solutions there will be no such term. This statement 
follows trivially from the theory of ideals. 

Denoting by G(p, :r:) the reduced Grabner basis of the elements p; with respect to the 
purely lexicographic ordering x1 > x 2 > x 3 • • • we may write the volume function in 
terms of the Grabner basis. 

V( u, x; /) <X R[u, x] n G((!l (a), h(a), ... , fn(a), fn+l ( u, x, a)), (ab a2, ... , an, u)), 

where fn+l(u, x, a)= u + (x1- a1)(x2- a2) · · · (xn- an)· 

Since it is only the final eliminant which is required, computation of the full Grabner 
basis seems very wasteful. By contrast, the techniques used in elimination theory (van 
der Waerden, 1950) may be used to generate the volume function on its own. In par­
ticular, Macaulay's construction allows any eliminant to be written as the quotient of 
two determinants containing the coefficients of f (Macaulay, 1903). If x is specialized 
before the elimination is computed, then techniques similar to those of Canny (1990) and 
Renegar (1989)' allow the eliminant to be computed in singly exponential time even in 
the case when the determinants vanish identically. 

In two dimensions the subresultant algorithm appears, in practice, to be the most 
efficient way to compute the volume function. 

V( ) Resa2 (Resa 1 (11 (at, a2), fa), Resa 1 (h(at, a2), fg)) 
U, X!, X2 <X udeg(ft(xt,O))deg(h(xt,O)) 1 

where fa(u, Xt, x2, a1, a2) = u + (x1- at)(x2- a2)t. 

4. Univariate Sturm Sequences 

Throughout this text we make use of two new functions var and pert which respectively 
count the number of variations and permanencies of sign in a sequence of reals. As long 
as the convention is consistent, a zero may be taken as either positive or negative since 
it will be straddled by terms of opposite sign§. We note that: 

per(S(x)) + var(S(x)) = 1- 1, (4.1) 

where 1 is the length of the sequence. For completeness, we now give the following few 
theorems about univariate Sturm sequences. 

Given a square-'free polynomial p( x) we can construct a Sturm sequence of polynomials 
S; = -rem(S;-2(x), S;-l(x)), where St(x) = p(x) and S2(x) = p'(x). 

t The proof of this result is not very enlightening and has not been published. 

l The per operator, which replaces the conventional var operator in these theorems, does nothing 
except introduce a minus sign throughout. This makes the evaluation of these sequences analogous to 
that of definite integration. 

§ Except at the endpoints, where the choice defines closure. 
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THEOREM 4.1. (STURM) The square-free polynomial p, with Sturm sequence S, has 
per(S(b))- per(S(a)) real roots in the interval [a, b). 

PROOF. The property is clearly true when a = b. As we increase b through the roots of 
p( x) we note the following: 

• Through an upward going root, p(x) changes from negative to positive whilst p'(x) 
is positive. 

• Through an downward going root, p(x) changes from positive to negative whilst 
p'(x) is negative. 

We therefore introduce one permanency of sign at the head of the Sturm sequence as 
we pass each root. Of the remaining elements in the list we observe: 

Si(x) = -rem(Si-2(x),Si-l(x)) 

so, 

The sequence cannot contain two consecutive zeros since the last term is a constant. As 
Si-l(x) vanishes, we see from the above relation that the two terms Si(x) and Si-2(x), 
which straddle Si-l(x) in the sequence, are of opposite signs. A sign change in Si-l(b) as 
b passes through the root therefore makes no change to the number of permanencies of 
sign in the sequence and per(S(a)) is incremented when and only when we cross a root 
of p(x). D 

Now we write down exactly what per(S(x)) is, rather than just how it changes. We will 
restrict ourselves to normal sequences: those in which the degree drop between consec­
utive terms is 'unity. We also observe that the (negated) subresultant algorithm (section 
12), may be used to generate the remainder sequence since, in the normal sequence, 
multiplications in the coefficient domain are all by perfect squares and are therefore sign 
preserving. 

LEMMA 4.1. If S(x) is a normal subresultant Sturm sequence for the square-free polyno­
mial, p( x), then per( S( a)) is the number of real roots of p which are less than a plus the 
number of pairs of complex roots of p. 

PROOF. The number of real roots ofp in the interval [a, b) is given by Sturm's theorem 
as per(S(b))- per(S(a)). Consequently, 

per(S(oo))- per(S(-oo)) = r (4.2) 

where r is the total number of real roots. 

Now, because Sis normal, per(S(-oo)) is the number of permanencies of sign in the 
leading coefficients after alternate terms have been negated; this is just the number of 
sign variations in S( oo ), so: 

per(S(-oo)) = var(S(oo)). 

Summing (4.1) evaluated at x = oo and the above we have, 

per(S(oo)) + per(S( -oo )) = 1- 1, 

where 1 is the length of the sequence. But, because the sequence is normal, 1- 1 = deg(p) 
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and from the fundamental theorem of algebra, deg(p) = n, where n is the number of 
roots of p. So, 

per(S(oo)) + per(S(-oo)) = n. 

Subtracting ( 4.2) from the above gives, 

2per(S(-oo)) = n- r = c 

where c is the number of complex roots. Since, for a polynomial with real coefficients, 
each complex root has a conjugate, per(S( -oo)) counts the number of such conjugate 
pans. 

Using Sturm's theorem we have that: per(S(a))- per(S( -oo)) is the number of real 
roots less than a. per(S(a)) is therefore the number of real roots less than a plus the 
number of pairs of complex roots. D 

CoROLLARY 4.1. Provided the subresultant Sturm sequence, S, of a square-free polyno­
mial p is normal, per(S(O)) is equal to the number of negative real roots of p plus the 
number of pairs of complex roots. 

In all of the above statements about the Sturm sequence, we may replace the restriction 
that the polynomial should be square-free with the restriction that the last term should 
not vanish when the sequence is evaluated. We can do this because the polynomial 
g(x) = gcd(p(x ), p'(x)) divides each element of the sequence to give precisely the sequence 
pertinent to the square-free part of p. Multiplication of each element of the'Sequence by 
a constant does not change the number of permanencies of sign unless that constant 
is zero. In particular, the above corollary transforms to a statement about the distinct 
negative roots of the polynomial p. 

CoROLLARY 4.2. Provided the subresultant Sturm sequence, S, of a polynomial p is nor­
mal and the last term in the sequence, S1(x), is non zero at both a and b, per(S(O)) is the 
number of distinct negative real roots of p plus the number of distinct pairs of complex 
roots. 

5. An Evaluation Function for the Sequence 

We now define an evaluation function E(M, I) which given a sequence of multivariate 
polynomials M and a coordinate aligned box, Ii = [ai, bi], 1 ~ i ~ n, evaluates the 
sequence at the corners of the region and uses the per operator to return a single integer. 

In R, 

E(M, I) = per(M(b))- per(M(a)). 

1 
E(M, I)= 2(per(M(b1, b2)) + per(M(a1, a2))- per(M(b1, a2))- per(M(a1, b2))). 

In R" we define the function recursively, 

E(M, I)= En(M, I), 
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1 
Ei(M, I) = 2(Ei-1 (M(xi t- bi), I)- Ei-t(M(xi t- ai), I)), (5.1) 

where f(x t- a) is used to denote specialization off with the substitution x = a, 

Eo(M, I) = 2per(M). 

6. The Generic Sequence 

Given a system of n polynomials, fi, we may compute the associated volume function, 
which will be non-zero if and only if there are finitely many solutions, and in this case, 

V(u,x; f) ex: IT(u + II(xi- ai)). 
0: 

Treating u as the main variable of V we can now compute a multivariate sequence S( u, x) 
of V( u, x) by using the negated subresultant algorithm on V and Vu t, 

S(u,x) = nprsu(V(u,x), Vu(u,x)). 

Define M to be the value of the sequence at u = 0, 

M(x) = S(O, x). 

THEOREM 6.1. The number of distinct simultaneous real roots of a system of n polyno­
mials, f, with normal sequence M(x; f) in any coordinate aligned box Ii = [ai, b;] in Rn 
is precisely' E(M, I) provided that the last term of the sequence does not vanish at any of 
the vertices of the box. 

' 
PROOF. We have from corollary 4.2 that if S is a normal subresultant sequence then 
per(S(O)) is the number of distinct negative real roots plus the number of distinct pairs 
of complex roots. M(x) is just such a sequence, for the volume function evaluated at 
u = 0. per(M(x)) is therefore the number of distinct roots, o:, of the system for which 
-(x1 - a 1)(x2 - a 2) · · ·(xn- an) is distinct, negative and real plus half the number of 
distinct roots for which this expression is complex. 

First, we note that any complex root, o: (j. Rn, for which -(x1 - a1)(x2 - a2) · · · 
(xn -an) (j. Rat any of the corners of the box, makes the same contribution at each 
corner and, in combination with the evaluation function E(M, I), contributes zero to the 
final root count. 

Second, we consider o: (j. Rn and -(x1 - al)(x2 - a2) · · · (xn - an) E R. Since the 
polynomial map has real coefficients, any complex root, o: (j. Rn, has a conjugate o: = 
(a1, at, ... , an) which is also a root of the system. So, for the conjugate -(x1 -at) 
(x2- a2) · · · (xn- an)= -(xt- al)(x2- a2) · · · (xn- an)= -(x1- at)(x2- a2) · · · 
(xn- an) E R. This, therefore, corresponds to a double root of the volume function and 
the last element of M will be zero. 

t Since the leading coefficients of both V and Vu are integers, multiplications in the coefficient domain 
are all by perfect squares of polynomials in R[x) (section 12) unless the sequence is abnormal. It seems 
likely that there is an algorithm similar to the subresultant algorithm which can generate precisely those 
terms of section 8 regardless of anomalies in the performance of the Euclidean algorithm. 
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For the real roots then, o: ERn, we break the case up into two parts: when the roots 
are inside and outside of the box. Firstly, if o: rt I, we may, without loss of generality, 
take a1 rt h. 

The recurrence relation (5.1) gives E1(M, I) in terms of per(M). The sequences given 
to per are the Sturm sequences of the two functions; 

and 

IT ( u + (b1 - a1)(x2 - a2)(xa- eva)··· (xn -an)) 
0: 

IT<u + (a1- a1)(x2- a2)(xa- eva)·· ·(xn- an)), 
0: 

where each Xi is consistently instantiated to either bi or ai. Since sgn(b1 -a1) = sgn(a1-
a1) the contribution o: makes to the number of negative real roots in the first function 
is equal to its contribution to the second. Thus o: contributes 0 to E1(M, I) and hence 0 
to E(M,I). 

' 
Last then, we consider o: E I and observe that such a root contributes to each ver-

tex with which it makes positive volume. Since there are 2n-l of these, this root will 
contribute 1 to E(M, I). 

Thus E(M, I) computes the number of roots which lie in the box. 0 

7. An Example 

As a simple example, let us take the two polynomials P(x, y) = x~ + iP - 2 and 
Q(x, y) = x- y. This we might think of as a circle and a line, intersecting at the points 
(1, 1) and ( -1, -1). To compute the volume function we need to eliminate two variables, 
a and b say, from the following system 

{P(a,b),Q(a,b),u+ (x- a)(y- b)}. 

This is, 

{a2 + b2
- 2, a- b, u + (x- a)(y- b)} 

so we can use the second polynomial to substitute a forb in the other two and this gives, 

{2a2
- 2, u + (x- a)(y- a)} 

or 

{a2
- 1, u + xy- a(x + y) + a2

}. 

Now use the first term to eliminate a2 in the second, 

{a2
- 1, u + xy + 1- a(x + y)}. 

then multiply the first term by (x + y), the second by a and add them, 

{ u + xy + 1- a(x + y), a(u + xy + 1)- (x + y)}. 

Finally multiply the first term by (u + xy + 1), the second by (x + y) and sum to give, 

{(u + xy + 1)2
- (x + y)2

}, 
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the volume function. 

Its derivative with respect to u is: 2( u + xy + 1), and minus the remainder of the 
previous two terms is 4(x + y) 2 • Evaluating at u = 0 and removing numeric contents 
gives the sequence as: 

((x2 -1)(y2 - 1), (xy + 1), (x + y)2). 

We may not evaluate the sequence anywhere along the line -x = y but anywhere else it 
will serve to count the number of roots. 

For example, the region [-3, 3] X [-2, 2] has corners at, ( -3, -2), ( -3, 2), (3, -2) and 
(3, 2) where the sequence evaluates to (24, 7, 25), (24, -5, 1), (24, -5, 1) and (24, 7, 25) 
respectively. The number of permanencies of sign in these sequences are 2, 0, 0 and 2 
respectively so that the number of roots in the region is computed as two. 

8. A Sturm Sequence in Terms of the Roots 

Sylvester (1852) gave each of the I terms of the Sturm sequence in terms of the roots 
of So. We sacrifice the ability to represent the generic term here by using nineteenth 
century notation, with the convention that Lo:{J 8( a, [3) = "£?=1 LJ=i+l 8( a;, <Xj) etc. 

s1 <X II<x- a) 

Sa '""' (a- [3)2 

sl <X L.J (x- a)(x- [3) 
o:{J 

9. This Sequence in Terms of the Roots 

Making substitutions: 

x - 0, a - -(x1 - a1)(x2 - a2), 

into the expressions above yield the expressions for this sequence, in two dimensions, as 
a function of the Cartesian components of roots. 
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M1 <X II (a:1 - a1)(a:2- a2) 
0: 

M2 ~ 1 
M1 <X ~ (a:1 - al)(a:2 - a2) 

M3 <XL ((x1- a1)(a:2- a2)- (a:1- fJ1)(a:2- {32))2 

M1 o:fJ (a:1 - al)(a:2- a2)(a:1 - f31)(x2 - fJ2) 

M1 <X II ((a:1- a1)(a:2- a2)- (a:1- {Jl)(a:2- fJ2))2 

o:fJ 

These terms are readily seen to be a special case of the general formulae Hermite (1853) 
provides. 

' 10. Closure 

The phrase "roots in the box" has been used to describe, rather loosely, how each root 
in Rn contributes to the count, ignoring the possibility of a root on the· boundary of 
the region of interest. First, we note that the evaluation function, E(M, I), is additive so 
that, however per is defined, any two neighboring boxes must join invisibly along their 
common boundary. 

We have already exempted the case of a zero appearing at the end of the sequence. We 
have also mentioned that internal zeros will be straddled by terms of opposite sign so 
that the number of permanencies of sign is not affected by the convention for these zeros. 
There remains the question of how to deal with zeros at the beginning of the sequence. 
We know that if the first two terms of the sequence are zero then the entire sequence 
vanishes identically and that this case has already been exempted. The final case is when 
the first term is zero and the second is non-zero and it is the convention adopted in this 
case which defines the extent to which roots on the boundaries are counted. 

In the following section we adopt the convention that this zero is deleted, i.e. that 
per(O, 1) = per(O, -1) = 0. The statements that follow use the fact that, in one dimension, 
a Sturm sequence which uses this convention is left-closed, right-open. This means that 
zero does not contribute to per(S(O)): the count of the negative real roots of the volume 
function. 

In n dimensions there are 2n vertices. Label the ones that make a positive volume with 
respect to the centroid: ,positive vertices and the others negative vertices. 2n-l E(M, I) 
is the number of roots which show a positive volume to the positive vertices minus the 
number which show a positive volume to the negative vertices. A root on a surface of the 
box, of co-dimension c, c < n, contributes zero volume to all of the positive vertices which 
have a Cartesian component in common with the root. There remain 2n-c-l positive 
vertices which do not have a Cartesian component in common with the root. E(M, I), 
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the computed count, is this number divided by the normalizing factor 2n-l = 2-c. If 
c = n then only the diagonally opposite vertex, which has no Cartesian components in 
common with the root, will contribute to the count. If this is a negative vertex then the 
root contributes zero to E(M, I) otherwise the contribution is 21-n. · 

It is also possible to use the convention that per( 0, 1) = per( 0, -1) = ~. A similar 
argument to the above applies except at the points of co-dimension n (the vertices of 
the box) where the contribution is the same regardless of wh~ther the opposite vertex is 
positive or negative. If the vertex is positive, then it will contribute once to the count, 
but there will be an unmatched negative vertex which contributes -~ to the count. If 
the opposite vertex is negative, then it contributes zero to the count but there will be an 
unmatched positive vertex which will contribute ! . Either way this root contributes ! 
to the count and we have the simple result that roots on the boundaries of co-dimension 
c always contribute 2-c to E(M, I). 

11. Future Work 

11.1. EVALUATION MECHANISMS 

In a practical implementation it is necessary to specify :z: before the volume function 
is computed, jnstead of generating the volume function in its generic form and special­
izing the multivariate sequence, M(x), afterwards. A number of new problems arise in 
this scheme. In particular, it is necessary to know the total number of multiplicities of 
the system. It is easy to show, by analogy with the univariate case that this number 
is precisely: qegu(gcd(V(u, :~:), Vu(u, z))), for generic z, but this is of little use if it is 
impractical to compute the generic volume function in the first place. 

Dealing with the specialized instances of the volume function at each corner is made 
easier, however, by the fact that they become univariate. Conventional Sturm sequence 
technology may be used to compute the number of negative real roots of these functions, 
allowing the restriction to normal sequences to be dropped. In fact, Sturm sequences can 
be dropped altogether, since any scheme which counts the number of negative real roots 
of these functions may be used to implement the evaluation function E(M, I).t 

11.2. DEFINITENESS OF A SINGLE REAL POLYNOMIAL IN A BOX 

Deciding the definiteness of a single polynomial p( z) in a box is the application for 
which this work was undertaken. The volume function, although useful, is not the only 
function which may be used in the elimination phase of this algorithm. More generally, we 
may find the number of solutions to f( a) = o which make an arbitrary query polynomial, 
q(a), negative in the same way; by eliminating the ai from the n + 1 equations: fi(a) 
and u- q(a). 

We may modify a count of the number of simultaneous roots of the partial derivatives 

t This follows from the last half of theorem 6.1 and assumes repeated roots in the function are dealt 
with in the same way that they are by the Sturm sequence. 
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of p to count + 1 or -1 depending on the sign of p at these points. This is done by using 
fi(a) =~(a) and the query polynomial q = -(x1- a1)(x2- a2) · · ·(xn- an)p(a). 

The strategy above detects "bubbles" inside the box. Definiteness follows from a study 
of the definiteness of the function on the surface of the box: a problem in n-1 dimensions. 
Both this question and the problem of finding efficient evaluation mechanisms have been 
given only rather superficial study; the details are currently being considered. 

12. The Algorithm 

First, we give a procedure for producing a negated polynomial remainder sequence 
from two multivariate inputs p and q in a main variable u. It is Collins' subresultant 
algorithm (Collins, 1967) simplified for the special case when the degree drop between 
consecutive terms is unity. There is no check for this condition in the code. 

procedure nprs(p, q); 
if degree( q, u) = 0 then 

if q = 0 then list p else list(p, q) 
else p . nprs(q, - rem(Ic(qr2*p, q) I lc(pr2); 

Second, we give a procedure to generate a multivariate Sturm sequence in terms of a list 
of polynomials f and a list of variables vars. 

procedure M(f: set, vars: list); 
begin local v, s, p, ans; 

end; 

p :=for each var in vars product (var' - var); 
v := last(groebner(union(f, u + p ), append(vars, list(u)))); 
s := nprs(v, differentiate(v, u)); 
ans := substitute(O, u, s); 
substitute(vars, vars', ans); 

13. Historical Note 

It is of little virtue that this sequence was developed quite independently to the inspired 
works of Hermite. The author would like, nevertheless, to mention the paper from which 
this work was actually derived. 

It was a short paper by Pinkert (1976) which deals with the problem of finding the 
number of complex roots of a polynomial inside a rectangle in C. The paper contains 
a wonderful idea which Pinkert attributes to Bobby Caviness in the acknowledgments. 
The simple idea is to produce a new polynomial whose roots are geometrically related 
to those in the original problem. In Pinkert's paper, this is a polynomial whose roots 
are the squares of the ro()tS in the original problem and a count of the number of these 
roots which have positive imaginary parts gives exactly the root counting primitive that 
is produced by the volume function. Indeed, it was within hours of reading this paper 
that the idea of the volume function presented itself and it is with much gratitude that 
Caviness and Pinkert's idea is acknowledged. 
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