
Symbolic and Numerical
Computation for

Artificial Intelligence
edited by

Bruce Randall Donald
Department of Computer Science

Cornell University, USA

Deepak Kapur
Department of Computer Science

State University of New York, USA

Joseph L. Mundy
AI Laboratory

GE Corporate R&D, Schenectady, USA

Academic Press
Harcourt Brace Jovanovich, Publishers

London San Diego New York
Boston Sydney Tokyo Toronto

ACADEMIC PRESS LIMITED
24--28 Oval Road

London NW1

US edition published by
ACADEMIC PRESS INC.

San Diego, CA 92101

Copyright © 1992 by
ACADEMIC PRESS LIMITED

This book is printed on acid-free paper

All Rights Reserved
No part of this book may be reproduced in any form, by photostat, microfilm or any other

means, without written permission from the publishers

A catalogue record for this book is available from the British Library

ISBN 0-12-220535-9

Printed and Bound in Great Britain by
The University Press, Cambridge

Chapter 4

Quantifier Elimination for Conjunctions of Linear
Constraints via a Convex Hull Algorithm

Catherine Lassez

Jean-Louis Lassez

IBM T.J. Watson Research Center

P.O.Box 104, Yorktown Heights, NY 10598

We propose a new algorithm for quantifier (variable) elimination for systems of linear
constraints using a generalized linear program formulation and an on-line convex hull
construction. The algorithm provides an exact solution when the dimension of the out­
put is small and an approximation in the general case when the size of the output is
unmanageable. Apart from trivial cases, existing algorithms fail in both respect.

1. Introduction

Tarski (see Van De Vries, 1988) proved that most problems in elementary algebra
and Euclidean geometry can be solved by a single algorithm: quantifier elimination. The'
enormous potential for applications to robotics, graphics, constructive solid geometry and
to new constraint-based languages, such as CLP(R), PROLOG III, CHIP and systems
like MATHEMATICA, has not, however, been realized. Few of the existing algorithms
have been implemented. They are of great theoretical interest but, apart from theorem
proving (Arnon, 1989), do not have yet real practical significance. A main reason is that
the size of the output may be doubly exponential and even simple problems cannot yet be
solved (Davenport, 1988; Davenport and Heintz, 1988). It has been remarked (Schwartz
and Sharir, 1989; Van De Vries, 1988) that really practical solutions will come only by
concentrating on special cases.

We address this problem in the restricted case of conjunctions of linear arithmetic
constraints. This restriction still allows us to solve, in principle, a wide range of inter­
esting problems (Huynh et al., 1991; Huynh et al., 1990; Helm et al., 1991) and is an
important case in the Constraint Logic Programming languages CLP(R), PROLOG III,
CHIP and Constraint Query Languages (Kanellakis et al., 1990) where auxiliary variables
introduced during execution of a program have to be eliminated.

At the theoretical level we still have, despite the simplicity of the constraints, that the

104 C. Lassez and J-L. Lassez

size of the output may be exponential and we face, in practice, very serious problems of
redundancy and degeneracy. Existing algorithms, in general, fail to produce any output
(not even partial information) because of the size or the amount of intermediate compu­
tations. As a consequence, existing implementations use simple heuristics that work only
for trivial input or when very few variables are to be eliminated (Duffin, 1974; Huynh
and Lassez, 1990).

Many of the shortcomings of the existing algorithms are due to the fact that they
perform algebraic manipulations and are based on the syntax of the constraints rather
than on their semantics. However, it is known that quantifier elimination can be viewed
geometrically as an operation of projection. The algorithm we propose exploits this ob­
servation systematically. A main feature of our approach is to transform the unbounded
case so that it reduces to the conceptually simple bounded case (Taylor and Raj an, 1988).
Then, the projection is computed by successive approximations using linear programming
techniques to find extreme points in the projection space. At each step, the convex hull
of these points provides the approximation. The complexity is essentially based on the
dimension of the output. When the size of the projection is too large, the algorithm still
provides an approximation which can be an upper or lower bound or both and whose
size is user-defined.

Our main concern is to provide an algorithm which is as practical as possible. Con­
sequently, we do not make any assumptions concerning redundancy, full dimensionality,
degeneracy, general position, etc. Some of these problems are addressed by the nature of
the approach, others by substantial preprocessing. In particular, we emphasize shortcuts
that may be found when the output is simple, regardless of the complexity of the input.
Even though these may appear as side issues as compared to the main ideas behind
the algorithm, they are of considerable importance for a feasible implementation and
therefore we will spend some time addressing them.

The rest of the paper is organized as follows. In the next section, we briefly discuss
variable elimination as a general technique for symbolic computation problems and review
some preliminary results. In section 3, we address the problem of unbounded input and
discuss the transformation that leads to the bounded case. Section 4 contains an informal
description of the main steps of the algorithm. In section 5, we present the general outline
of the algorithm. In section 6, we discuss in more details the major parts of the algorithm
as well as some possible variations and optimizations. In section 7, we present some initial
empirical results to illustrate the feasibility of this approach. Finally we conclude with
some remarks on implementation issues as well as future research directions.

2. Preliminaries

In this section we review hriefly the basic tools from quantifier (variable) elimination
that we need to motivate this study. The material is taken from Huynh et a/. (1990)
and Lassez (1990) which should be consulted for full details. We also explain the simple
extensions or applications that are needed for the understanding of the algorithm we
propose.

Quantifier Elimination via Convex Hull Algorithm 105

2.1. VARIABLE ELIMINATION AS A TOOL IN SYMBOLIC COMPUTATION

Fourier's procedure has been used in Linear Programming to prove many fundamental
theorems. However, it is rarely (if at all) mentioned in the area of symbolic computa­
tion. Indeed the operation of Fourier's procedure corresponds to quantifier elimination
in symbolic computation which is a very powerful tool. In geometric terms, eliminating
a variable from S = {Ax ::; b} (A is am by n real matrix, b an m-real vector and x an
n-vector) is equivalent to projecting the polyhedron represented by Son a subspace with
one dimension less. We give here a few examples of the power of variable elimination to
solve problems automatically from their specification (more will be found in the refer­
ences). A typical problem in geometry is to find the convex hull of a given set of points. A
point of coordinates (x1, ... , Xn) is in the convex hull of a set of points {(a1,j, ... , an,j)}
if and only if there exists Aj 's such that the system

{x1 = Ea1,jAj, ... ; Xn = Ean,jAj, E>.j = 1, Aj :2: 0}

is satisfied. The representation of the convex hull is an equivalent set of relations solely
between the Xi's. It is obtained by eliminating all Aj 's in the system.

Another interesting application is to compute the image of a polyhedral set mapped
by a linear function. Suppose the function is given as

{

~1 = a1,1X1 + ... + a1,nXn + fJ1

J(x1, ... , Xn) = ·
Xm = am,1X1 + + am,nXn + f3m

Let S = {Ax ::; b} represent a polyhedral set. We want the image of S by f (or more
formally by /'~extension to the space of polyhedral sets). To obtain the image of S one
simply eliminates all Xi's from the polyhedral set

{X1 = a1,1X1 + ... + a1,nXn + /31, ... , Xm = am,lXl + ... + am,nXn + f3m, Ax::; b}.

The result is a set of constraints in the space of {X1, ... , Xm} defining the image. For
example, if ~

{

X= 2x +Y
f(x, y) = Y = x- y + 3

Z = 3x + 2y- 5

then the image of the triangle defined by

{x+ y::; 1, x :2:0, y :2: 0}

lS

{lOX- 2Y- 6Z = 24, -2Y + 4Z::; -16, -2Y- Z::; -1, 6Y- 2Z::; 28}.

The examples given above illustrate the fact that variable elimination provides a system­
atic way of characterizing interesting sets of constraints directly from a simple existential
specification. Now we show how variable elimination can also deal with more complex
problems.

Given a set of constraints S, we want to extract information from it in the form of

106 C. Lassez and J-L. Lassez

parametric queries:

3al, ... , an, {3 \/x1, ... , Xn : S => (atXl + ... + anXn :<::; {3) 1\ R(a1, ... , an, {3)?

where R(ab ... , an, {3) represents a set of linear relations on the parameters such as,
for instance, a 1 ~ 3{3. The answer to that query is a set of relations solely between the
a's and {3. This can be obtained by eliminating all the other variables. But we cannot
immediately apply the preceding technique. We have an existential specification which
now involves an implication and non-linearity. However, we shall show that the previous
mechanism of variable elimination is still applicable for this class of problems.

We define a constraint C to be a quasi-linear combination of constraints of S = {Ax $
b} if and only if C is obtained by adding a positive number to the right hand side of
a non-negative linear combination of constraints of S. From the Subsumption Theorem
we know that a constraint C is implied by a set of constraints S if and only if C is
a quasi-linear combination of constraints of S. This provides a basis to formulate the
framework for solving the parametric linear query problem. Namely, a constraint

a1X1 + ... + anXn :<::; {3

is implied by S if and only if the system

{aj = A.jTA, {3 = bT.A +q, Ai ~ 0, q ~ 0}

is solvable (where A.j denotes the j column of the matrix A).

Eliminating the Ai 's and q from the above system, we obtain a set of relations on
the aj's and {3 which is satisfied if and only if the query is satisfied. This set forms the
answer to the query. To demonstrate the usefulness of parametric queries let us look at
the following application: how to characterize all hyperplanes that separate two disjoint
polyhedral sets.

Let 81 and 8 2 be the given disjoints polyhedral sets. The problem can be formulated
with the following parametric queries:

3ab ... , an, {3 \/x1, ... , Xn : 81 => a1x1 + ... + anXn :<::; f3?

and

3al, ... , an, {3 \/x1, ... , Xn : 82 => -a1x1 - ... - anXn :<::; -{3?

The intersection of the polyhedral sets that are the answers to these two queries charac­
terizes the separating hyperplanes. For example, given

81 = {x :<::; 5, -x :<::; -1, y :<::; 3, -y :<::; -1}

and

Sz '= {x :<::; 10, -x :<::; -8, y :<::; 6, -y :<::; -2}.

The answers to the two queries are obtained by eliminating the Ai 's and q from

{at= .A1- .Az, a2 = .A3- .A4, {3 = 5.Al- .Az + 3.A3- .A4 + q, Ai ~ 0, q ~ 0}

and the Jl.i 's and p from

{ -a1 = P.1 - p.z, -az = P.3 - J1.4, -{3 = 10p.l - 8p.z + 6p.3- 2p.4 + p, P.i ~ 0, p ~ 0}

Quantifier Elimination via Convex Hull Algorithm 107

The intersection of the two answer sets is:

H=

a1 + a2 - (3- :$ 0
5al + a2 - (3- :$ 0
a1 + 3a2 - (3- :$ 0
5al + 3a2 - (3 :$ 0
-8a1 - 2a2 + (3 :$ 0
-lOa1- 2a2 + (3 :$ 0
-8a1 - 6a2 + (3 :$ 0
-lOa1-6a2+f3$0

An hyperplane a1x + a2y = (3 separates S1 and S2 if and only if a1, a 2 and (3 satisfy H.

2.2. GENERALIZED LINEAR PROGRAM

A method for eliminating variables, called the extreme points method, was derived
from the formalism of parametric queries. This method is interesting as it shows that
variable elimination can be viewed as a straightforward generalization of a linear program
in its specification and as a generalization of the simplex in its execution.

LetS= Ax:$ band let V = {xk+l· ... xm} be the set of variables to be eliminated,
the associated generalized linear program is then defined as:

DEFINITION 2.1. Generalized Linear Program (GLP)

extr(<I>(6.))

6.= :Z::::: A;a;m = 0
:Z::::: Ai = 1
A; 2:: 0

where extr denotes the set of extreme points. Each equation in 6. represents the linear
combination of the constraints of S that eliminate a variable of V. The normalization of
the A's ensures that .6. is a polytope.

THEOREM 2.1. extr(<I>(6.)), solutions of GLP, determine a finite set of constraints which
defines the projection of S.

This means that the coordinates of each extreme point of <1>(6.) are the coefficients of
one of the constraints that define the projection. The objective function in the usual
linear program can be viewed as a mapping from Rn to R, the image of the polyhedron
defined by the constraints being an interval in R. The optimization consists in finding a

108 C. Lassez and J-L. Lassez

maximum or a minimum, that is one of the extreme points of the interval. In a G LP, the
objective function represents a mapping from Rn to Rm and instead of looking for one
extreme point, we look for the set of all extreme points. At the operational level, we can
execute this GLP by generalizing the simplex method. The extreme points of <fl(Ll) are
images of extreme points of Ll. So we compute the set of extreme points of Ll, map them
by <I> and eliminate the images which are not extreme points. It is important to note that
although the extreme points method is better that Fourier in general because it eliminates
the costly intermediate steps, there are still two main problems: the computation of the
extreme points of Ll can be extremely costly even when the size of the projection is small
and also the method produces a highly redundant output. See Huynh and Lassez (1990),
for a comparison between this method and Fourier's and the last section for empirical
results.

3. Handling the unbounded case

In the case when the projection is bounded, there exists a conceptually simple method
for computing it based on the fact that a polytope is completely determined by its
extreme points. A natural generalization of this method to the unbounded case leads to
a far more complex algorithm (see Golan, 1991). This is due to the fact that, in general,
an unbounded polyhedral set cannot be fully described as the convex hull of its low­
dimension faces such as extreme points and extreme rays whose projections are easy to
compute. This is the prevalent case in the CLP situation where the output typically has
more variables than constraints, and consequently, there are no extreme points and no
extreme directions.

Therefore we propose here a different approach based on what has been presented
in the previous section. Its aim is to transform via duality the unbounded case into a
bounded one in order to use a simple projection method.

The algorithm we present in the next section uses a convex hull construction which
assumes that the projection is bounded. An important feature of this algorithm is that,
even though its aim is to produce the constraints that define the projection, it does so
by also computing the set of extreme points of the projection. When the projection is
not bounded, the problem is reformulated as a generalized linear program. In this case,
instead of computing the extreme poirlts of <fl(Ll), we give as input to the algorithm
the set of constraints that define <I> and Ll, requesting the computation by projection of
<fl(il), as we saw in the first subsection. This is possible as the input is now bounded.
The output will contain the convex hull of <fl(Ll) but also the set of its extreme points,
from which we can derive the constraints which define the projection we request. The
advantage over the previous method is that we compute directly the extreme points of
the projection. We do not need to compute the extreme points of Ll, this being the source
of enormous intermediate computation and high redundancy in the output. As we will
see later, this passage to -a generalized linear program formulation can also be done if the
input is bounded to obtain an alternative approximation when the size of the output is
unmanageable.

The extreme point method as applied to the generalized linear program has the incon­
venience of going through the computation of the extreme points of Ll. But there is one

r r
'

Quantifier Elimination via Convex Hull Algorithm 109

case where it is very advantageous. When the extreme point method does not generate
any extreme points, the generalized linear program has no solutions. It implies that the
output is trivial, that is, the projection is the whole subspace. This can be easily tested
as it corresponds to a single run of phase I of the simplex. We will use this fact in the
next section to optimize parts of the algorithm.

Even though minor, another interesting application of the parametric queries is the
derivation of a simple test for boundedness of the polyhedral set. It requires only one
run of the phase I of the simplex (albeit on a possibly larger set). We remark that a
polyhedral set P associated with a set of constraints S is bounded if and only if, given
any hyperplane H, it is always possible to translate H so that all points of P are on
the same side of H. This means that for every set of coefficients of the variables in the
equation that defines H one can always find an appropriate constant. Consider now the
parametric query:

Its answer obtained by eliminating the x;'s will give us a characterization of all the
constraints implied by S. If we go one step further and also eliminate (3, we will find the
relations that the coefficients of the variables must satisfy so that there exists a constant
such that the query is satisfied. These relations will form the empty set if and only
if P is bounded. Consequently, if we start running the extreme point method over the
appropriate formulation, if it fails, P is bounded, and if a first extreme point is produced,
P is unbounded. This can be accomplished with one run of phase I of the simplex.

The "projection proper" part of the algorithm will take as input a set of constraints
whose associated polyhedral set is not empty and is full-dimensional. The tests for both
solvability and full-dimensionality can be done with a single linear program, called the
quasi-dual and described below. In fact this single linear program will also tell us in
some cases that the polyhedral set is not bounded. It is derived from the formulation of
parametric queries in a very natural way, and is a variant of the dual of S considered
as a linear program with objective function set to zero. It is of intere~t because of its
very strong relation with Fourier's algorithm, and its many properties described in more
details in the references:

minimize <I>(~)

<I>= L A;b;

{
2:; ;\;a;i = 0 Vj

~ = 2:; ;\; = 1
A;~ 0 Vi.

If ~ is not solvable then s is solvable and its associated polyhedral set is unbounded.
Now assume that ~is solvable. If the minimum is strictly positive then Sis solvable and
full-dimensional. If the minimum of <I>(~) is 0 then Sis solvable and not full-dimensional.
Furthermore one can derive the set of implicit equalities that are the cause of reduced
dimension. (This information is necessary in order to simplify the system). If during
minimization a negative value is reached then S is unsolvable.

110 C. Lassez and J-L. Lassez

4. Informal description of the algorithm

The input is an arbitrary polyhedral set: bounded or not, full-dimensional or not,
redundant or not, empty or not. In a first step, the solvability of the input set is tested.
If solvable but not full-dimensional, it is simplified by standard linear programming
techniques into a set of equations that defines its affine hull and a set of inequalities which
defines a full-dimensional polyhedral set in a smaller space. A straightforward variable
elimination in the set of equations gives the affine hull of the projection. This will be
part of the final output. This simplification allows us to eliminate as many variables as
possible by using only linear programming and Gaussian elimination before getting into
the costly convex hull construction. The details of this simplification are only marginally
relevant to the main point of the paper, so we refer the reader to Lassez and McAloon
(1989) for further information.

Now we consider two cases depending on whether the polyhedral set defined by the
input set of constraints is bounded or not.

' In the bounded case, the algorithm works directly on the input constraints. It is a vari-
ant and refinement of a method proposed in Taylor and Rajan (1988). The projection
is computed by successive refinements of an initial approximation. The initial approxi­
mation is obtained by computing enough extreme points of the projection so that their
convex hull is full-dimensional. The points are obtained by running lin~ar programs on
the initial set of constraints. Next, successive refinements consist in adding new extreme
points and updating the convex hull: if a constraint in the convex hull does not belong
to the projection then a new extreme point is determined and the convex hull is up­
dated. The costly convex hull construction is done in the projection space, thus the main
complexity of the algorithm is linked to the dimension of the output. The process stops
when either the projection has been found or the size of the approximation has reached
a user-supplied bound.

In the unbounded case, the problem is reformulated using the generalized linear pro­
gram representation which is bounded by definition. The algorithm proceeds then as
in the bounded case. This leads to a dual interpretation of the results as it is the set
of extreme points and not their convex hull that now represents the constraints of the
projection. Consequently the algorithm incrementally generates constraints whose asso­
ciated polyhedral set contains the projection as opposed to the bounded case where it is
a subpolytope of the projection which is incrementally generated.

In summary, in the bounded case we obtain a lower bound approximation and in the
unbounded case 'an upper bound approximation. Note that in the bounded case both
approximations can be computed if desired and the number of constraints which belong
to the projection gives some measure of the accuracy of the approximation.

5. General outline

The algorithm is in three parts. Part 1 deals with the testing for solvability, full­
dimensionality and boundedness. Part 2 computes an initial set of extreme points whose
convex hull is a full-dimensional approximation of the projection. Part 3 incrementally
refines the initial approximation by adding new extreme points and updating the convex

! ..-

Quantifier Elimination via Convex Hull Algorithm 111

hull until the projection is fully computed or the size of the current approximation exceeds
the input bound.

5.1. TEST FOR SOLVABILITY, FULL-DIMENSIONALITY AND BOUNDEDNESS

1. Input = set of constraints S
2. Test the solvability and full-dimensionality of S with the quasi-dual

2.1. If Sis not solvable then STOP else
2.2. If S contains implicit equalities then

2.2.1. Compute all implicit equalities
1 : 2.2.2. Simplify to S={Eq U Ineq} where Eq=set of equations and Ineq=set of

inequalities defining a full-dimensional polyhedral set
3. If Ineq does not contain any of the variables to be eliminated then output lneq U

projection(Eq) and STOP
4. Test the boundedness of the projection of Ineq

4.1. If unbounded then
4.1.1. Formulate the GLP Q oflneq
4.1.2. If Q is not solvable then output projection(Eq) and STOP
4.1.3. else if Q is not full-dimensional then

4.1.3.1. Compute implicit equalities
4.1.3.2. Simplify to Q={Eq' U lneq'} where Eq'=set of equations and

lneq'=set of inequalities defining a full-dimensional polytope

I , In the bounded case, the output of this first phase is a solvable set of constraints consisting
of a set of inequalities in standardized form, which defines a full-dimensional polytope,
and a set of equalities defining the affine hull of S.

i:

In the unbounded case, the output is a set of equations defining the affine hull of S
plus a set of inequalities in the dual space that defines a full-dimensional polytope plus
a set of equalities defining the affine hull of Q.

The input to the next phase of the algorithm is the bounded set of inequalities.

Note: the procedures extreme_point, initiaLhu/1 and update_convex_hull which appear
in the next two subsections are described afterwards.

5.2. INITIAL APPROXIMATION

For simplicity's sake we assume that the projection space is the space of {x1, .•. , xa}.

1. Input
1.1. X = lneq (or lneq')
1.2. P (= 0) =set of extreme points of current approximation.

2. Compute the first two points of P
2.1. Maximize x 1 over X
2.2. Get a corresponding extreme point of the projection

Let Pl = extreme_point(xt, max(xt), max)
2.3. Minimize Xt over X

112 C. Lassez and J-L. Lassez

2.4. Let P2= extreme_point(xlJ min(x1), min)
3. Compute d-1 extreme points

3.1 Let E = {PlJ P2}
3.2. Repeat

3.2.1. Compute L.1=l CXiXi = ao an hyperplane containing the points of E
3.2.2. Minimize h = 'L-1=1 CXiXi over X
3.2.3. If min(h)=ao then

3.2.3.1. Maximize h over X
3.2.3.2. Let p=extreme_point(h, max(h), max)

3.2.4. else let p=extreme_point(h, min(h), min)
3.2.5. Let E=EU{p}

3.3. Until card(E)=d+l
4. Let CH = initial_hull(E)
5. Output:

5.1. E = {p1, ... ,Pd+l}, the set of extreme points of current approximation
5.2. CH ;= {C1, ... , Cd+l}, the convex hull of E, all C's labeled non terminal
5.3. For each Ci, the set Ei = E - {pi} of points of E that belong to the facet

defined by Ci

5.3. INCREMENTAL REFINEMENT

Compute new extreme points and update the convex hull.

1. Input:
1.1. X = set of inequality constraints (initial set lneq or lneq') 1

1.2. E = {Pl, ... ,pd+l} set of extreme points
1.3. CH = {ClJ ... , Cd+l} the convex hull of E
1.4. E1, E2, ... , Ed+l the sets of extreme points in each Ci of CH
1.5. b = user-supplied upper bound for the size of CH

2. Repeatedly compute new extreme points and update convex hull
For each non terminal ci = {hi ~ CXi} in CH and
while card(CH) ~ b do
2.1. Maximize hi over X
2.2. If max(hi)= ai then

2.2.1. Label Ci terminal
2.3. else

2.3.1. Let p = extreme_point(hi,max(hi),max)
2.3.2. Let E = E U {p}
2.3.3. Let CH = update_convex_hull(p)

3. Output
3.1. Bounded case

Output CH U projection(Eq)
3.2. Unbounded case

3.2.1. Compute E'= set of extreme points of Q (from E and Eq')
3.2.2. For each ek E E' compute the corresponding constraint Ck
3.2.3. Output { Ck}U projection(Eq)

,,
l

' ;~

i.
!

Quantifier Elimination via Convex Hull Algorithm 113

5.4. AUXILIARY PROCEDURES

The first procedure computes an extreme point of the projection. The next procedure
computes the convex hull of the initial set of extreme points and the last one performs the
update on the current convex hull with a new extreme point added. Many variations and
optimizations are possible; some will be discussed in the next section. Our objective here
is to present a general method. To give the most appropriate convex hull construction
to the problem of quantifier elimination is an interesting problem in its own right, but
it is beyond the scope of this paper. Consequently we only give here simple procedures
for the sa:ke of completeness. They are in fact used in a prototype implementation briefly
discussed in the conclusion.

5.4.1. PROCEDURE extreme_point(h,h0 ,opt)

Compute an extreme point p of the projection, h= L; a;x;.

1. Let Y = X (input constraints set)
2. Replace Xk by (ho- Li;ik a;xi)/ak in Y
3. For i = 1 to d, i f= k do

3.1. If opt = "max" then maximize x; over Y else minimize x; over Y
3.2. Replace x; by its optimum m; in Y

4. Let mk = (ho- Li;ik a;m;)/ak
5. Return p = {m1, ... , md}

5.4.2. PROCEDURE initiaLhul/(E)

Compute the convex hull of the initial set of extreme points E.

1. Let CH=0
2. For each point p E E do ,

2.1. Compute Ef=l ajXj =a the equation of the hyperplane defined by E-{p}

2.2. Let h = Ef=l aixi
2.3. If h(p) ~a then CH = CH U{-h ~-a} else CH = CH U{h ~a}

3. Return CH

5.4.3. PROCEDURE update_convex_hull(new_pt)

Generate and test potential supporting hyperplanes of new facets of the convex hull
and delete obsolete ones.

1. Let p=new_pt
2. Generate supporting hyperplanes of new facets:

For each C E CH such that p rJ. C do
2.1. Generate all subsets SE of d-1 extreme points in C
2.2. For each SE do

2.2.1. If SE U{p} determines a unique hyperplane Li a; x; = ao

114 C. Lassez and J-L. Lassez

2.2.2. Then let h = 2:::; a;xi
2.2.3. If Vq E E, h(q) ~ ao

2.2.3.1. then C = 2:::; CXiXi ~ ao
2.2.3.2. else if Vq E E, h(q) ~ ao

2.2.3.2.1. then C = -Ei a;x; ~ -ao
2.2.3.2.2. else C=0

2.2.4. Let CH = CH U { C}
3. Remove old facets:

V C E CH if p ¢ C then let CH = CH - { C}
4. Return CH

6. Comments and Precisions

6.1. BouNDEDNEss AND GLP

•
The transformation to a GLP reduces the problem to the bounded case. The difference

is in the interpretation of the results at the end of the computation. Simplifying Ineq by
computing implicit equalities amounts to removing inequalities that do not contribute
to the projection and helps eliminate some variables by a simple Gaussian elimination.
Furthermore, if the GLP is not solvable, Ineq projects on the whole. space which is
described by the empty set of constraints. So Ineq does not contribute any constraints
to the projection of S which reduces to the projection of the affine hull Eq computed in
the previous step.

In both cases, bounded and unbounded, the following steps will apply to a full­
dimensional Ineq or Ineq' whose projection is also full-dimensional, a fact that is used
repeatedly in the later stages of the algorithm.

6.2. INITIAL CONSTRUCTION

By taking the projection of arbitrary points in S and constructing their convex hull we
obtain a sub-polytope that approximates the projection (see Taylor and Rajan, 1988).
The problem is then one of choosing the points in a systematic way that will ensure
efficiency and termination of the process. Many variations are possible on how to choose
the points and how to construct the convex hull. Choosing a point is a linear programming
operation in the .initial space, constructing the convex hull is more costly (even though
it is in the smaller projection space). To minimize that cost, we only compute points
which are extreme points of the projection. The method we propose avoids two pitfalls.
One is the repeated computation of the same point, the other is more subtle. If the
extreme points are chosen arbitrarily, whatever their number, they could still be all in a
cross section of the projection that is of smaller dimension than the projection itself. We
would then have a weaker approximation.

Assume d is the dimension of the bounded set X (Ineq or Ineq'). A first point is
obtained as follows. Let x be an arbitrary variable of the projection space. Maximizing
x over X gives a value x0 and defines a face F of X. The projection ofF is a face of the
projection of X of dimension at most d-1. What we want is a face of X that projects

I

Quantifier Elimination via Convex Hull Algorithm 115

onto an extreme point (if a simplex is used, a test can in some cases decide if we are
in such a situation). We replace x by x 0 in X and we repeat the process by selecting
another variable in the projection space. The process terminates with an extreme point
P1 (face of dimension 0) of the projection.

A second point P2 is found by minimizing x and a similar process. As the projection
is full-dimensional, this new point will necessarily be different from the first. We will not
proceed with this method to generate a next point, as we could repeatedly compute the
same point or compute different points without increasing the dimension of the convex
hull. Instead, we compute hyperplanes and use them to generate new points in such a
way that at each step the dimension of the convex hull increases until it reaches d, the
dimension of the projection space. We compute an arbitrary hyperplane ax+ f3y+ ... = 'Y
containing the two points P1 and P2 • By maximizing and minimizing ax + (3y + ... over
X we are guaranteed to find (because of the full-dimensionality) at least one if not two
extreme points of the projection by the preceding process. We repeat this construction
until we have d+1 extreme points whose convex hull is full-dimensional.

Up to that point there was no need to compute convex hulls. To do it would have
been more expensive and would have slowed us in our construction of a full-dimensional
approximation. Now we compute the convex hull of the d+ 1 points.

6.3. INCREMENTAL REFINEMENT

Let { Ct, ... , Ct} be the constraints that define the convex hull and let Ci = I: aiXi :::; a.

To find a new extreme point we maximize I: aiXi. If the maximum is equal to a, it means
that ci is in fact a constraint of the projection; it is labeled terminal. If the maximum
is not equal to a then we compute a new extreme point and the convex hull is updated.

In principle, any on-line convex hull algorithm (Aggarwal and Wein, 1988; Edelsbrun­
ner, 1987; Preparata and Shamos, 1985) could be used, particularly for dimensions two
and three. However for higher dimensions, the algorithms have been mainly designed for
theoretical complexity studies (Yao, 1990; Seidel, 1986). They are rarely implemented,
because they work under a number of assumptions which conflict with practical use. Also
most of these algorithms do not strictly compute the convex hull but rather an incidence
graph containing all the faces of the convex hull. Storing this information in memory cuts
down on the amount of computation. But the trade-off might not always be desirable
as one could have a small convex hull but an inordinately large incidence graph, due to
the number of faces of intermediate dimensions. We faced a similar situation with an
algorithm to generate extreme points where it was more important to preserve memory
usage than speed (Huynh and Lassez, 1990).

Another possibility is to use a simpler and more direct algorithm computing only the
constraints of the convex hull. As we are guaranteed that all the points generated are
extreme points, it will be considerably more efficient than in the general case and does
not require any particular assumption which makes it more palatable from a practical
point of view. The idea is to compute hyperplanes that contain the new extreme point
and a subset of d-1 previous extreme points. A simple test tells us if they support a facet
of the updated convex hull, otherwise they are discarded. The amount of computation
can be reduced by avoiding the generation of all the possible hyperplanes. For instance,

116 C. Lassez and J-L. Lassez

we need consider only subsets of d-1 points that belong to the same facet. Another
possible reduction is to consider only C;'s such that the new point P does not satisfy the
constraint C;.

7. Empirical Results

We compare the performance of the convex hull method (CHM) presented in this paper
with a variant of Fourier's algorithm (FV) and an extreme points method (EPM). The
three algorithms were implemented in C and the programs executed on an IBM RS/6000
model 530 under AIX version 3.

Table 1 gives the timings of the three methods to eliminate 4 variables from an initial
set of 20 constraints over 7 variables. It is important to note that the output from both
Fourier's variant and the extreme points method is highly redundant. To the timing
for these two methods, one must add approximately 83s to eliminate the redundant
constraints. Th,e times are in virtual CPU seconds.

Method: FV EPM OHM

Output constraints 670 670 61

Runtime 1.4+83 1.4+83 0.3

Table 1.

Because of the doubly exponential complexity of Fourier's method, it is obvious that
it is only reasonably practical in very particular cases. The extreme point method can
be enhanced by a removal of redundancies in parallel. However there is still a price to be
paid for the inherent redundancy and, as for Fourier, this method is applicable only in
particular situations. The convex hull method, on the other hand, avoids this problem
completely in the bounded case by directly computing the facets of the projection. Table
2 gives some running time for larger sets of constraints. For obvious reasons, only the
convex hull method is used as the two other methods flounder on such large inputs. Using
the fact that the method does not generate redundancies in the bounded case, the convex
hull method is used here to compute the canonical form of an input set of constraints.
This particular example is taken from an application to the domain of spatial reasoning
that we are studying (Huynh eta/., 1991). Because the input set is bounded, projecting it
onto itself gives the canonical form: the implicit equalities are detected in the first part of
the algorithm and the o_utput of the projection proper consists only of those constraints
that define the facets so there is no redundancy.

The first two rows contain respectively the number of input inequalities and input
variables. The next two rows contain respectively the number of output equalities and
inequalities and the dimension of the canonical form. The last row gives the running
time.

Quantifier Elimination via Convex Hull Algorithm 117

Input inequalities 116 375 924 1925

Input variables 16 30 48 70

Output equalities 14 27 44 64
Output inequalities 3 4 5 6

Output dimension 2 3 4. 5

Run time 0.2 1.6 8.5 109

Table 2.

8. Conclusion

The main point in this paper is clearly the systematic use of geometric techniques for
quantifier elimination (in the linear case). Our study has made clear the fact that much
of the complexity of the algebraic approach which concentrates on the elimination of
variables is due to the method itself rather than to the nature of the problem. The geo­
metric approach which bypasses this elimination by constructing directly the projection
shows that the essential complexity lies within the projection space not the whole space.
An important consequence is that one can obtain approximations when the final size of
the output is unmanageable. This is important from a theorem proving point of view:
it is better to obtain a subset of solutions rather than no solution at all. On the other
hand, this may not be an interesting feature in the constraint programming languages
setting where, in most cases, an output with auxiliary variables will be preferable to an
approximation.

Here we want to make clear a few points that we learned or that were confirmed by
preliminary results with a prototype implementation. Not surprisingly, we get excellent
runtime performance when the projection space is two-dimensional or "o/hen the output
is small, as most of the time is spent on running linear programs rather than in the
convex hull construction. When the number of variables to eliminate increases, the per­
formance can become arbitrarily better than that of previous methods which in any case
tend to give up rapidly, making the comparison more obvious. Another interesting point
concerns redundancy in the input. The presence of redundancy compounds the main
complexity of algebraic manipulations, as even a small amount can create havoc during
variable elimination. In our approach, redundancy in the input does not create a signif­
icant problem in the bounded case: it affects only the linear programming part not the
convex hull construction, and the output will not be redundant. In the unbounded case,
however, redundancy reduces the efficiency of the algorithm as it leads to an increase in
the number of extreme points, thus increasing the size of the constructed convex hull.
However, we have not enough pragmatic evidence yet to decide whether redundancy in
unbounded inputs should be removed prior to projection.

It seems clear that when there are few variables to eliminate, Fourier elimination or
the extreme point method should be used, and the convex hull method in the other
cases. However, one should note that even with very simple inputs and few variables
to eliminate these methods can produce highly redundant output. If this is a concern

118 C. Lassez and J-L. Lassez

then the removal of redundancy will be more costly (far more costly in our experience)
than the elimination of variables proper. Indeed, it is easy to construct such examples
where the geometric approach is slower than Fourier or the extreme point method, but
is far more efficient than these algorithms plus redundancy removal. For a treatment of
redundancy in linear constraints see Huynh et al. (1989).

The connection that we established between a fundamental algorithm of computational
geometry and (albeit in a particular case) a fundamental problem of symbolic computa­
tion will hopefully be only a first step. A number of interesting and challenging research
problems should follow. We give here some immediate ones.

It seems important to design fast and practical on-line convex hull algorithms which
work under the assumption that all points provided are extreme points, or otherwise
optimized for being used in projection/quantifier elimination. Alternati~ely, one could
consider randomized algorithms to generate only the constraints of the 'projection (for
the bounded case) or only the extreme points of the projection (for the unbounded
case), thus avoiding the case where one set is inordinately large while the other is of
a reasonable si·ze and happens to be the one we want. Finally, it seems interesting to
consider a generalization of this approach to the nonlinear case. Retaining convexity, one
could use or adapt tools from non-linear programming. 1

As a last remark, a way to handle the unbounded case is to give arbitrary bounds to
the variables, thus computing a bounded approximation of the projectio~. One can then
test which faces should be extended to infinity and try larger bounds when necessary.
This technique is related to the one proposed in Golan (1991). It is not clear yet how
practical this method is. The choice of the bounds greatly affects its efficiency. Bounds
which are too small lead to useless computations and bounds which are too large lead to
serious numerical instabilities.

Acknowledgment

The authors wish to thank Tien Huynh and Igal Golan for their useful comments.

References

A. Aggarwal and J. Wein (1988), Computational Geometry, Lectures Notes for 18.409, Laboratory for
Comput. Sci., MIT, Cambridge, MA.

D.S. Amon (1989), "Geometric reasoning with logic and algebra", Geometric Reasoning, D. Kapur and
J.L. Mundy, eds., MIT Press, Cambridge, MA.

J.H. Davenport (1988), "Robot motion planning" 1 Geometric Reasoning, J. Woodwark, ed., Oxford
Science Publication.

J.H. Davenport and J. Heint'z (1988), "Real quantifier elimination is doubly exponential", D.S. Arnon
and B. Buchberger, eds., Algorithms in Real Algebraic Geometry, Academic Press, London.

R.J. Duffin (1974), "On Fourier's analysis of linear inequality systems" 1 Math. Prog. Study, 1, 71-95.
H. Edelsbrunner (1987), Algorithms in Combinatorial Geometry, Springer-Verlag, Berlin-Heidelberg.
I. Golan (1991), Direct Polyhedron Projection Algorithm, IBM Research Report RC 16969, IBM T.J.

Watson Research Center, NY.
R. Helm, T. Huynh, C. Lassez and K. Marriott (1991), A Linear Constraint Technology for User Inter·

faces, IBM Research Report RC 16913, IBM T.J. Watson Research Center, NY.
T. Huynh, L. Joskowicz, C. Lassez and J-L. Lassez (1991), "Practical tool for reasoning about linear

constraints" 1 Fondamenta lnformaticae J., special issue on Logics for Artificial Intelligence, to
appear.

Quantifier Elimination via Convex Hull Algorithm 119

Preliminary version "Reasoning about linear constraints using parametric queries" I Foundations
of Software Technology and Theoretical Computer Science, Lecture Notes in Comput, Sci. 472,
Springer-Verlag, NY, 1990.

T. Huynh and J-L. Lassez (1990), Practical Issues on the Projection of Polyhedral Sets, IBM Research
Report RC 15872, IBM T.J. Watson Research Center, NY.

T. Huynh, C. Lassez and J-L. Lassez (1990), "Fourier algorithm revisited", 2nd Int. Conf. Algebraic and
Logic Prog., Lecture Notes in Comput. Sci., Springer-Verlag, NY, 164-173.

T. Huynh, J-L. Lassez and K. McAloon (1989), "Simplification and elimination of redundant linear
arithmetic constraints", Proc. North American Con/. Logic Prog. 89, MIT Press, Cambridge, MA,
37-51.

P.C. Kanellakis, G.M. Kuper and P.Z. Revesz {1990), "Constraint query languages" 1 Proc. ACM Con/.
Principle& of Database Syst., Nashville, TN, 298-313.

J-L. Lassez (1990), "Querying constraints", Proc. ACM Conf. Principles of Databaae Syat., Nashville,
TN, 288-298.

J-L. Lassez and K. McAloon (1989), A Canonical Form for Generalized Linear Constraints, IBM Re­
search Report RC 15004, IBM T.J. Watson Research Center, NY. J. Symbolic Computation, to
appear.

F.P. Preparata and M.I. Shamos (1985), Computational Geometry, An Introduction, Springer-Verlag,
NY.

J.T. Schwartz and M. Sharir (1989), "A survey of motion planning and related geometric reasoning" 1

Geometric Reasoning, D. Kapur and J.L. Mundy, eds., MIT Press, Cambridge, MA.
R. Seidel (1986), "Constructing higher dimensional convex hulls at logarithmic cost per face", Proc. 18th

ACM Symp. Theory of Computation, Berkeley, CA, 404-413.
R.H. Taylor and V.T. Rajan {1988), The Efficient Computation of Uncertainty Spaces for Sensor-Based

Robot Planning, IBM Research Report RC 13998, IBM T.J. Watson Research Center, NY.
L. Van De Vries {1988), "Alfred Tarski's elimination theory for closed fields" 1 J. Symbolic Logic, 53(1),

7-19.
F. Frances Yao {1990), "Computational geometry", Handbook of Theoretical Computer Science, J. van

Leeuven, ed., The MIT Press/Elsevier, Cambridge, MA.

	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119

