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Chapter 5 

Elimination Theory and Computer Vision: 
Recognition and Positioning of Curved 3D Objects 

from Range, Intensity, or Contours 

Jean Poncet 

Department of Computer Science and Beckman Institute 

University of fllinois 

Urbana, IL 6.1801 

David J. Kriegman 

Department of Electrical Engineering and Center for Systems Science 

Yale University 

New Haven, CT 06520 

An approach is presented for explicitly relating image observables to models of curved 
three-dimensional objects. This relationship is used for object recognition and posi­
tioning. Object models consist of collections of parametric surface patches. The image 
observables considered are raw range data, surface normals and Gaussian curvature, raw 
image contours, contour orientation and curvature, raw image intensity, and intensity 
gradient. Elimination theory provides a method for constructing an implicit equation 
that relates these observables to the three-dimensional position and orientation of ob­
ject models. Determining the unknown pose parameters is reduced to a fitting problem 
between the implicit equation and the observed data points. Once the pose of candidate 
object models has been determined, recognition is achieved by computing the distance 
between the actual data points and the surface defined by the observables' equation. 
The proposed approach has been implemented and successfully tested on real images. 

1. Introduction 

Much progress has been made recently in three-dimensional object recognition from 
range (Bolles et al., 1984; Besl and Jain, 1985; Hebert and Kanade, 1985; Faugeras and 
Hebert, 1986; Grimson and Lozano-Perez, 1987; Fan et al., 1988; Ikeuchi and Kanade, 

f This research was funded in part by the UIUC Campus Research Board and by the National Science 
Foundation under Grants IRI-9015749 and DDM-9112458. 
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(a) 

Figure 1. An example of recognition and positioning: (a) A real image of three plastic rings, with its 
Canny edges overlaid. (b) The recognized models arc overlaid in the 3D position and orientation found 

by the algorithm described in section 3. 

1988) and intensity (Horaud, 1987; Huttenlocher and Ullman, 1987; Lowe, 1987; Thomp­
son and Mundy, 1987; Basri and Ullman, 1988) images. Typically, recognition is based 
on matching model and image features which have the same dimensionality: volumes are 
matched with volumes, surfaces with surfaces, curves with curves, and points with points. 
However, 3D model line segments may also be matched with 2D image segments (Ho­
raud, 1987; Huttenlocher and Ullman, 1987; Lowe, 1987). The complexity of matching is 
at worst exponential in the number of features, but it is usually kept manageable by the 
use of so-called "rigidity constraints" (Faugeras and Hebert, 1986; Grimson, 1990), or 
"viewpoint consistency constraints" (Lowe, 1987), that simply express the fact that all 
model features are mapped into scene features through a single geometric transformation. 

This approach has been quite successful when the objects to be recognized are polyhe­
dra, but much less so when these objects have curved surfaces. In the latter case, most 
research has focused on segmenting images into surface or volume elements that can 
be directly compared to the surface and volume descriptions that comprise the object 
models. This includes recovery of quadrics (Faugeras and Hebert, 1986; Taubin, 1990), 
superquadrics (Pentland, 1986; Bajcsy and Solina, 1987; Gross and Boult, 1988), and 
generalized cylinders (Binford, 1971; Brooks, 1981; Ponce et al., 1989) from range or 
intensity data. Little emphasis has been put on actual recognition, with the notable 
exception of Acronym (Brooks, 1981); see also promising new work based on invariant 
theory (Forsyth et al., 1990; Taubin and Cooper, 1990). 

-This type of segmentation is expensive. For example, fitting a superquadric surface 
to a range image requires a non-linear minimization with respect to fourteen parameters 
(Bajcsy and Solina, 1987). Worse, in intensity images of curved objects, observable image 
features may not be the projection of model features. For example, the image contours of 
a polyhedron are the projection of polyhedral edges, but the contours of a smooth sur­
face are the projection of perfectly regular points where the viewing direction happens 
to be tangent to the surface. In this paper, we propose to bypass the construction of 
an intermediate curve, surface, or volume representation from the im~ge before match­
ing. Instead, we match directly pointwise image observables to three-dimensional surface 
models. 
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Our models consist of collections of rational parametric surface patches. The reason for 
the choice of this representation is twofold. First and foremost, it allows us to represent 
geometric constraints by polynomial equations which, as shown below, are the key to 
our approach. Second, from a more pragmatic point of view,> this is how objects are 
represented in most computer-aided design (CAD) systems. Databases of CAD models 
are now available for a wide range of manufactured objects; opportunities are better than 
ever for computer vision systems to exploit these models. As shown in Kriegman and 
Ponce (1990b), rational parametric patches also subsume nearly all representations used 
in computer vision, such as planes, quadrics, superquadrics, and generalized cylinders. 

We consider a variety of pointwise observables, namely raw range data, surface nor­
mal orientation and Gaussian curvature, raw intensity data and intensity gradient, raw 
contour data and contour orientation and curvature. Elimination theory (Salmon, 1966; 
Dixon, 1908; Macaulay, 1916) provides an off-line method for constructing an implicit 
equation for each object model that relates these observables to the position and orien­
tation of the object. Determining the pose parameters is reduced to a fitting problem 
between the observables' equation and the observed data points. Once the pose of can­
didate object models has been determined, recognition is achieved by computing the 
distance between the actual data points and the surface defined by the observables' 
equation. 

The pose determination method has been implemented for the simple case of solids of 
revolution and experiments have been performed with synthetic and real range, intensity, 
and contour data (see figures 2 to 8 and Hoogs, 1991; Ponce et al., 1991). Recognition 
from raw contour data has also been implemented (see figures 1,10,11 and Kriegman and 
Ponce, 1990b; Kriegman, 1989). 

The rest of the paper is organized as follows. In section 2, elementary notions of 
elimination theory are presented, and rational parametric patches are defined. Section 3 
introduces our approach to pose determination. This approach is applied to range data 
in section 4, to intensity data in section 5, and to contour data in section 6. A simple 
recognition algorithm is described in section 7. The current implementation is described 
in section 8 along with experimental results. Section 9 discusses future ~esearch. Bezout 
and Dixon resultants are presented in appendix. 

This chapter is a synthesis of two papers detailing respectively our recognition experi­
ments with contour data (Kriegman and Ponce, 1990b) and our positioning. experiments 
with range, intensity, and contour data (Ponce et al., 1991). The interested reader will 
find many implementation details in Kriegman (1989) and Hoogs (1991). 

2. Elimination Theory and Rational Parametric Patches 

2.1. ELIMINATION THEORY 

Elimination theory (Salmon, 1966; Dixon, 1908; Macaulay, 1916) is a classical branch of 
mathematics which has been "rediscovered" in the context of computer graphics (Kajiya, 
1982), computer-aided geometric design (Seder berg et al., 1984; Goldman and Sederberg, 
1985), robot kinematics (Buchberger, 1987; Raghavan and Roth, 1989), robot motion 
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planning (Schwartz and Sharir, 1987; Canny, 1988) and, recently, computer vision (Cyr­
luk et al., 1988; Jerian and Jain, 1990; Kriegman and Ponce, 1990b). 

The key idea of elimination theory is that a system of polynomials has common roots if 
and only if a single polynomial, called the resultant of the system of polynomials, vanishes. 
The original variables do not appear in the resultant, hence the name of elimination 
theory. The resultant itself is a polynomial in the coefficients of the original polynomials. 

The simplest example of elimination is given by a well-known theorem oflinear algebra: 
a necessary and sufficient condition for a square system of homogeneous linear equations 
to admit a nontrivial solution is that the determinant of this system vanishes. 

The general case can be written as follows. Consider the following system of n poly-
nomial equations in n - 1 unknowns: 

{ 

p . . 1.(X1, ... , Xn-1) = 0, 
(2.1) 

Pn(X1, ... , Xn-1) = 0. 

A necessary and sufficient condition for this system to admit a non-empty set of solu­
tions is that: 

R(P1, ... ,Pn) = 0, (2.2) 
where R is a polynomial in the coefficients of the Pi's. Note that these coefficients need 
not be numerical constants, but may contain further variables. On the other hand, the 
original variables Xi do not appear in R. The polynomial R is called the resultant of the 
P;'s, obtained by eliminating the variables x1 to Xn_ 1 • 

Sylvester and Bezout resultants (Salmon, 1966) are available in most computer algebra 
systems, e.g. MACSYMA, MAPLE, MATHEMATICA, REDUCE. They can be readily used 
to eliminate one variable between two polynomials. Dixon's method (Dixon, 1908) can 
be used for eliminating two variables among three equations. These are sufficient for our 
purposes (see appendix). Elimination of n - 1 variables between n polynomials can be 
achieved by eliminating these variables one by one with Sylvester or Bezout resultants, 
or by using other elimination methods (Salmon, 1966; Dixon, 1908; Macaulay, 1916; 
Buchberger, 1987; Canny, 1988). 

2.2. RATIONAL PARAMETRIC PATCHES 

In the rest of the paper, objects are modeled by rational parametric patches, whose 
Cartesian coordinates are ratios of bivariate polynomials, i.e. 

1 ""' .. x(s,t) = L .. ws't3Xij, (s,t) E I X J, (2.3) 
w· ·s't3 · • - SJ - s,J 

i,j 

where the coefficients Wij are scalars, the coefficients Xij are vectors, and I, J are intervals 
of JR. Bicubic patches are the most prominent type of surfaces in computer-aided design 
(Sederberg et a/., 1984; Farouki, 1987). They are given by the above equation with a 
constant denominator and a maximum total degree of 3 for s and t in the numerator. 

As shown in Sederberg et al. (1984) and Goldman and Sederberg (1985), computing 
the implicit equation of a rational parametric patch is, in theory at least, a simple ex-
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ercise in elimination. Equation (2.3) can be decomposed into three rational equations 
in the Cartesian coordinates x, y, z of the patch and its parametric coordinates 8, t. As 
shown in Sederberg et al. (1984), Goldman and Sederberg (1985) and section 4, the im­
plicit equation F(x, y, z) = 0 is obtained by clearing the denominators and eliminating 8 

and t among the three equations. An implicit polynomial equation defining the intersec­
tion curve of two patches can be constructed by substituting the Cartesian coordinates 
x1(81, t1) of one patch into the implicit equation F2 of the other patch. This equation 
is simply obtained by clearing the denominator of F2(x1 ( 81, i1)) = 0, and it implicitly 
defines the curve in the parameter space of x1. 

3. Relating Image Observables to Object Models 

3.1. PRINCIPLE OF THE METHOD 

For each type of data, we are going to derive a system of three equations of the form: 

{ 

!1(8, t, 0, P) = 0, 
fz(8, t, 0, P) = 0, 
/3(8, t, 0, P) = 0, 

(3.1) 

where !I, h, and /3 are rational functions in the parametric coordinates 8 and t, 0 is a 
vector of image observables, and P is a vector of viewing parameters mapping the world 
coordinate system onto the image coordinate system. 

By clearing the appropriate denominators if necessary, these three equations can be 
transformed into a system of polynomial equations in 8 and t. Finally, by eliminating 
these two variables, we obtain a single equation 

F(O, P) = 0 (3.2) 

that relates the image observables 0 to the viewing parameters P. 

Given a set of measurements Oi, i = 1, .. , n, recovering Pis reduced to the (non-linear) 
least-squares minimization of: 

n 

(3.3) 

with respect to P. 

3.2. NoTATIONS 

Consider a parametric patch x, defined by (2.3) in the coordinate system (o, i,j, k). 
The normal to the patch is n = x. x x,, where x. (resp. x,) is the partial derivative ofx 
with respect to 8 (resp. t), and "x" denotes the cross-product operator. The unit normal 

is N = fnJn. The coefficients of the first (resp. second) fundamental form in the basis 

(x., Xt) are denoted E, F, G (resp. e, J, g). The second fundamental form itself is denoted 
II. 

We consider an image coordinate system (c, v, w, u) where c is the camera origin.t 

t For simplicity, we assume here orthographic projection, but the methods proposed in this paper 
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The unit vector vis the viewing direction, with spherical coordinates (a,/3) in the co­
ordinate system (i,j, k), and (w, u) is an orthonormal basis for the image plane. The 
remaining degree of freedom of the rotation mapping the coordinate system (i,j, k) into 
the coordinate system (w, u, v) can be represented by some rotation angle 'Yin the image 
plane. 

Let :z:, y denote the image coordinates of a point, and z denote its depth. These coor­
dinates are given by: 

{

:z:=(x-c)·w, 
y = (x- c)· u, 
z=(x-c)·v. 

(3.4) 

Let :eo= -c · w, Yo= -c · u, zo = -c · v, so that (:eo, Yo, zo) are the coordinates of o 
in the camera-centered coordinate system (c, w, u, v). The above equations become: 

y =X· u +Yo, (3.5) 
{

:z: = x·w+:z:o, 

Z =X· V + Zo. 

The vector of viewing parameters is in general P = (a,/3,"f,:&o,y0 ,z0 ). 

4. Range Data 

In this section, we suppose that range information is available as a dense range image 
z(:e, y) acquired by a laser rangefinder, for example. The proposed approach readily 
applies to sparse range data obtained, for example, from a tactile sensor (Salisbury, 
1984; Fearing, 1987). For approaches to tactile data interpretation, see Fearing (1987), 
Gunnarsson and Prinz (1987) and Allen and Michelman (1990). 

Figures 2 and 3 show examples of positioning from range data (see section 8 for details). 

4.1. RAW DATA 

The raw data of a range image can be described by (3.5). All three equations are 
rational in the parametric coordinates s and t, and by eliminating these two variables, a 
single equation is obtained: 

F(:e, y, z, a, /3, "f, :eo, Yo, zo) = 0. (4.1) 

Here, the observables are the image coordinates and the range at each point, i.e. 
0 = (:e,y,z). The vectorofviewing parameters is P = (a,/3,"f,:&o,y0 ,zo). 

It should be noted that we have just "rediscovered" the implicitization of a rational 
patch (Sederberg et a/., 1984; Goldman and Sederberg, 1985). F is simply the implicit 
equation of the patch x, parameterized by its position and orientation. It should also be 
noted that the idea of using the implicit equation of algebraic surfaces (namely quadrics) 
for object positioning from tactile data was proposed in Gunnarsson and Prinz (1987). 

readily extend to scaled orthography and perspective projection (Kriegman and Ponce, 1990b; Hoogs, 
1991). 
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(a) (b) --~ ________ _____j 

Figure 2. Range data: (a) A perspective view of a range image. (b) The elliptic (solid discs) and 
hyperbolic (circles) points of the torus in this image. 

(a) (b) 

Figure 3. Positioning from range data: (a) Orientation estimation. (b) Translation estimation. 

4.2. ORIENTATION AND GAUSSIAN CURVATURE 

More interestingly, the translation components of the viewing transformation can be 
bypassed by using translation-independent observables such as surface normal and Gaus­
sian curvature, whose reliable computation has been demonstrated many times in the 
past (see, for example, Besl and Jain, 1985; Brady et al., 1985; Fan et al., 1987; Besl and 
Jain, 1988). 

Let () and <P be the spherical coordinates of the observed unit surface normal N in the 
coordinate system (w, u, v). We have: 

N(O,¢) x n(s,t) = 0, (4.2) 

where the coordinates of n are in the basis ( w, u, v). Also, note that only two of the 
three scalar equations given by ( 4.2) are independent. 

The Gaussian curvature is given by do Carmo (1976, p. 155): 

eg-J2 
I< = EG - F2' ( 4.3) 
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where e, f, g, E, F, and G are also functions of the parametric coordinates sand t. 

Equations (4.2) and (4.3) are rational in s, t, K, and in trigonometric functions of 
(}, ljJ, a, (3, and /· By eliminating s and t, a single equation is obtained: 

F(K,O,IjJ,a,(J,/) = 0. (4.4) 

Here, the vector of observables is 0 = (K, 0, ljJ), and the vector of viewing parameters 
is P = (a,f3,!)· It is worth noting that we have just derived the implicit equation 
(parameterized by orientation) of Extended Gaussian Images (Horn, 1984). Once a, (3, 
and 1 have been found, a second three-parameter minimization can be used to determine 
xo,y0 ,z0 • The optimal values for a,f3,/ are substituted in (4.1); they are kept constant, 
and the minimization is performed with respect to the unknowns x 0 , y0 , z0 only. 

5. Image Intensity 

We now cons~der a matte surface patch observed under orthographic projection. We 
assume unit surface albedo and a single distant light source with direction 1, and denote 
by 0, ljJ the (unknown) spherical coordinates of the light source in the camera-centered 
coordinate system (w, u, v). 

Figure 4 shows examples of positioning from intensity data (see section 8 for details). 

5.1. RAW DATA 

As shown by (3.5), under orthography, the image coordinates x, y of a point are given 
by: 

The intensity is given by: 

{
x = x·w+xo, 
y=x·u+yo. 

I=N·l. 

(5.1) 

(5.2) 

The system of three equations formed by (5.1) and squaring (5.2) is rational in s and 
t. Eliminating these two variables, a single equation is obtained: 

F(x,y,I,a,(J,/,xo,Yo,O,IjJ) = 0. (5.3) 

Here, there are three observables, 0 = (x, y, I), and seven viewing parameters (includ­
ing light source direction), P =(a, (3, /, x 0 , y0 , B, ljJ). It should be noted that F is simply 
the implicit equation of the image intensity surface I(x, y), parameterized by the position 
and orientation of the patch x and the direction of the light source I. Note that any im­
plementation of this approach will have to incorporate at least one additional parameter 
accounting for albedo and light source intensity (i.e. the parameter a in I= aN ·1). 

5.2. GRADIENT 

The implicit equation of the image intensity surface depends on the translation param­
eters of the viewing transformation. By measuring intensity gradient as well as intensity, 
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(a) 

Figure 4. Positioning from intensity data: (a) A simple case without occlusion. The data points are 
shown as white dots. (b) Another example with occlusion. 

an alternative translation-independent relationship is obtained. The gradient of the in­
tensity with respect to the parametric coordinates is given by: 

{
I& = N& ·I, (5.4) 
It= Nt ·I. 

The image coordinates are given as before by (5.1). Differentiating these equations 
with respect to s and t, we obtain: 

{E =x,·w, 

{)s = x& · u, 

fJx 
{)t = Xt • W, 

{)y 
{)t = Xt. U. 

The image gradient can now be written as: 

{ 

Ix = I& ~: + It z:, 
fJs fJt 

Iy = Is {)y + It {)y . 

So finally, the following system of equations is obtained: 

!
I=N~!·.I Nt·l 
Ix=---+--, 

X 3 • W Xt •W 

Ns·l Nt·l 
Iy = --+--. 

X&· U Xt • U 

(5.5) 

(5.6) 

(5.7) 

These three equations are (after squaring) rational ins and t, and a single equation is 
obtained upon eliminating these variables: 

F(I,Ix,ly,a,{3,-y,(),tjJ) = 0. (5.8) 

Here, the observables are 0 = (I, Ix, Iy). Once again, the vector of viewing parameters 
P = (a, {3, -y, (), t/J) includes the light source direction but, this time, it does not depend 
on the translation parameters x 0 , y0 • As before, these parameters can be computed after 
a second minimization. 
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Figure 5. Positioning from raw contour data. 

6. Image Contours 

For matte surfaces, image contours are zero order intensity discontinuities, formed by 
surface normal discontinuities (creases, edges, or corners), depth discontinuities (occlud­
ing contours, or limbs), reflectivity discontinuities (pigmentation or material changes), or 
lighting discontinuities (shadows). Below, we show how to obtain implicit equations for 
the image contours formed by the projection of occluding contours, where the viewing 
direction is tangent to the surface. Implicit equations for the contours corresponding to 
surface normal and reflectivity discontinuities can be obtained in a similar way (Kriegman 
and Ponce, 1990b ). The extension to shadows requires the introduction of parameters 
describing the light source direction as in the previous section. 

Figures 5,7 and 8 show examples of positioning from contour data (see section 8 for 
details). 

6.1. RAW DATA 

Occluding contours are characterized by the viewing direction being tangent to the 
surface, or: 

ll·V =0. (6.1) 

As seen before, (5.1) gives the image coordinates x, y of a point under orthographic 
projection. Equations (5.1) and (6.1) are rational in s and t, and by eliminating these 
two variables, we obtain an expression of the form: 

F(x, y, a, {3, /, xo, Yo) = 0, (6.2) 
which is the implicit equation of the image contours. 

Here, the vector of observables is 0 = (x, y), and the vector of viewing parameters 
is P = (a, {3, /, xo, Yo). It should be noted that F is simply the implicit equation of the 
image contours of the patch x, parameterized by the position and orientation of this 
patch. Details for this case can be found in Kriegman and Ponce (1990b ). 
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Figure 6. The geometry of Koenderink's theorem. The radial curve is the intersection of the patch 
and the plane that contains n and v. The radial curvature is its curvature at x. 

6.2. ORIENTATION AND CURVATURE 

Under orthographic projection, the normal to the image contour is aligned with the 
surface's normal. It follows that at a contour point, the angle () between the w axis and 
the normal to the contour satisfies the constraint: 

N ·w =cosO. (6.3) 

As shown by Koenderink (1984, 1986), the contour curvature "' and the Gaussian 
curvature K are related by: 

/( = "-"-r 1 (6.4) 
where "-r is the "radial" curvature, i.e. the normal curvature of the surface in the viewing 
direction (figure 6). t 

It is easy to show that the coordinates (ds, dt, dn) of the vector v in the coordinate 
system (x8 , Xt, n) are given by: 

d _(x.·v)G-(xt·v)F 
8

- EG- F 2 ' 

dt _ E(xt · v)- F(x. · v) (6.5) 
- EG- F 2 ' 

d ll·V 
n = EG- F 2 ' 

: • From (6.1), dn = 0 at an occluding contour point. The normal curvature in the direc-
tion of the unit vector v is equal to the value of the second fundamental form in this 
direction (do Carmo, 1976, pp. 142,154), i.e.: 

"-r = II(v) = eds2 + 2fdsdt + gdt 2
• (6.6) 

So finally: 

1 eg - f 2 

"' = eds2 + 2fdsdt + gdt2 EG- F2 · 
(6.7) 

t Similar results still hold under spherical (Koenderink, 1984) and pinhole perspective projection 
(Vaillant, 1990). 
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Figure 7. Orientation estimation from contour orientation and curvature: (a) Orientation estimation 
in image space. (b) Iterations in orientation-curvature space. 

Equations (6.1), (6.3) and (6.7) are rational ins and t, and after eliminating these two 
variables, we obtain: 

F(~,o,a,f3,'Y) = o. (6.8) 

Here, the observables are 0 = (~, 0), and the vector of viewing parameters is once 
again P =(a, {3, 'Y) which no longer includes the translation parameters x0 , y0 • Once the 
optimal rotation parameters have been determined, the translation parameters can then 
be computed through a second minimization. 

7. A Simple Recognition Algorithm 

We now present a simple recognition algorithm: 

0. For the appropriate sensing modality, compute off-line the functions F;, j = 1, .. , m 
corresponding to each element in a database of models as described above. On-line, for 
a set of measured data points Oi, i = 1, .. , n, do: 

1. For each model j, minimize the squared error: 
n 

E; =I: Fl(Oi, P) (7.1) 
i=l 

with respect to the components of P. 

2. For each model j, let Pi be the optimal parameters computed at the previous step, 
compute the cumulative distance D; = 2:?=1 dii between the data points Oi and the 
surface defined by F; and P; as described below. 

3. Label the data points with the model j 0 that minimizes D;. 

Notice that the residual Ej is not used to distinguish between different models because 
it is not a distance measure. Instead, we use the actual distance between the data points 
and the surface defined by Fj. We now present two algorithms for computing this distance. 
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Figure 8. Estimation of translation from contours with fixed orientation. 

7.1. EXACT DISTANCE FUNCTION 

The distance between a data point 0; and the surface described by Fj for parameter 
values Pi is defined as the minimum of the distance between this point and the surface. 
This minimum is reached at a point 0 on the surface where the surface normal and the 
line joining 0 and 0; are aligned. t 

The distance is therefore given by dli = IO- 0;12, where the point 0 is the solution 
of: 

(7.2) 

where "x" denotes the operator that associates the p- 1 vector ( :z:1 Y2- :z:2Y1, .. , Xp-lYp­
XpYp-1) to the two vectors (:z:1, .. , :z:p) and (Yl, .. , Yp)· (An abuse of the cross-product 
notation. Clearly, x1 x x2 = 0 if and only if X1 and x2 are aligned.) 

This is a system of p equations in p unknowns, where pis the number of observables (the 
dimension of 0 ). As seen in the previous sections, each Fj is rational in the observables, so 
by clearing the appropriate denominators, we obtain a system of p polynomial equations 
in p variables. 

To solve this system and compute the distance d;j, we can use one of two methods. 
First, by adding to this system the equation d~ = 10- 0;1 2 , we can eliminate the p 
observables among p + 1 equations to obtain a single equation: 

D(d;j, 0;, Pj) = 0, (7.3) 
where D is a polynomial in the distance dij, parameterized by the components of 0; and 
Pj. For a given set of parameters Pj, the distance d;j is the minimum positive root of 
this polynomial, and it can be found by some numerical root-finding algorithm (Press 
et al., 1986). For a set of points found by an edge detector, figure 9 shows the nearest 
points on the image contours of a torus model. Also, note that since d;j is given by an 
implicit equation, it is possible to compute its derivatives with respect to the viewing 
parameters; this is useful for numerical minimization. 

t Actually, a minimum can also be reached at a singular point of the Fj surface where the gradient 
vanishes, but this case is also captured by (7.2). 
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Figure 9. The exact distance between contour points and some theoretical contour. 

An alternative solution is to solve directly (7.2) by using a global numerical method 
such as homotopy continuation (Morgan, 1987). In principle, the exact distance computed 
by either method can be used instead ofF for pose estimation. In practice, both methods 
may prove too inefficient to be used directly during the minimization since for each 
iteration, the roots of D must be found for all data points. However, D can still be used 
to compute the exact distance between the data points and the optimal surface after 
convergence. 

7 .2. APPROXIMATE DISTANCE FUNCTION 

We now propose a method to compute an approximate value of the distance after 
convergence. As previously noted, the minimum distance between 0; and the surface Fj 
is reached at a surface point 0 where the surface normal is aligned with the line joining 
0; and 0. Suppose that we have an estimate N; of the surface normal at the point 0;. 
The minimum distance is reached at a point 0 = 0; + >.N; such that Fj(O, Pj) = 0. 
This can be rewritten as an equation in >.: 

Fj(O; + >.N;, Pj) = 0. (7.4) 

Since a good initial estimate of>. is available from fitting (i.e.>. = 0), Newton-Raphson 
iterations can be used to find the first zero of this equation, and the distance is readily 
obtained. 

For all three of our sensing modalities (range, intensity, contours), the normal to the 
surface corresponding to the raw data can be estimated easily through numerical differ­
entiation: surface normal from range data, intensity gradient from intensity data, contour 
normal from contour data. If the data points are close to the actual surface, the computed 
normal is a good approxjmation of the actual normal. This suggests a refined recognition 
scheme. First, compute the orientation parameters using a translation-free minimization, 
then compute the translation corresponding to the optimal orientation. Finally, compute 
the distance by the above method. 

It should also be noted that Taubin has proposed an alternative approximation to 
the distance function which can be used for either fitting or recognition with the pa-
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rameterized implicit equations given in sections 4 to 6 (Taubin, 1990). However, the 
corresponding equation is of higher degree than the original implicit equation used here. 

8. Implementation and Results 

8.1. IMPLEMENTATION 

To demonstrate the feasibility of our approach, we have implemented the pose deter­
mination algorithm presented in previous sections for a limited world made of various 
solids of revolution observed under weak perspective projection. 

Why such a choice? Solids of revolution are obtained by rotating a planar generating 
curve about a straight line; they are at the same time simple enough (due to their 
symmetry, three-dimensional pose has only five independent parameters in this case, and 
the elimination of two variables can be replaced by the elimination of a single variable) 
and complicated enough (non-convex surfaces with non-planar occluding contours) to 
qualify as initial test objects. See Hoogs (1991) for a detailed account of the solid of 
revolution case. 

Weak perspective (or scaled orthography) has been chosen because, unlike orthography, 
it models accurately most imaging conditions and, unlike perspective, it does not require 
camera calibration. In addition, the current implementation is limited to surface normal 
orientation and Gaussian curvature data, raw contour data, contour curvature and ori­
entation data, and raw intensity data. Note that recognition has also been implemented, 
but only for the case of raw contour data (Kriegman and Ponce, 1990b ). 

Elimination is performed by the Reduce implementation of the resultant of two poly­
nomials. Note that several other computer algebra systems are commercially available 
(e.g. MACSYMA, MAPLE, MATHEMATICA), and they all offer some version of the resul­
tant of two polynomials (Sylvester or Bezout resultant), which is sufficient for the case 
of surfaces of revolution. Elimination of two variables as required in th~ case of general 
parametric patches can be achieved in two passes by using these resultants or directly 
by using some implementation of Dixon's resultant (Dixon, 1908) or general multivariate 
resultants (Canny, 1988). 

Like many others (e.g. Bajcsy and Solina, 1987; Gross and Boult, 1988), we use the 
Levenberg-Marquardt algorithm (Press et a/., 1986) to solve the nonlinear least squares 
minimization of (3.3). Note that this algorithm only finds a local minimum and therefore 
needs a reasonable set of initial parameters. As shown in the examples of the next section, 
this has not been a problem in our case. Note also that when the rotation and translation 
parameters are estimated independently, a post-processing step could be added where 
these estimates are fed as initial parameters to the minimization of the raw data equation, 
and use a couple of iterations to refine these estimates simultaneously. We have not tried 
this refined method so far. 

L Finally, it should be noted that we do not claim to avoid segmentation: the points 
corresponding to a given surface must be identified before the minimization takes place. 
So far, this has been done by hand. As discussed in section 9, better, automated segmen­
tation is left for future work. Our algorithms have been implemented in Common Lisp 
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(a) 

Figure 10. Recognition examples: (a) An isolated torus. (b) Three tori with occlusion. 

and run on Symbolics Lisp Machines, SUN SparcStations, and Silicon Graphics Personal 
Irises. All positioning timings reported here are in user-time seconds on a SUN Spare­
Station 1 running Lucid Common Lisp. All recognition timings are in user-time seconds 
on a Symbolics 3600 Lisp Machine. 

8.2. RESULTS 

Figures 2 to 8 demonstrate the implementation of positioning on a variety of plastic 
rings modeled as tori and different types of real data (see Hoogs, 1991, for more examples, 
including other solids of revolution and synthetic data). In these figures, the silhouette 
of the torus considered is overlaid on the original image. The initial pose is drawn in 
thin solid lines, the successive pose estimates are shown as light, dotted lines, and the 
estimate obtained at convergence is drawn in thick solid lines. In each case, the initial 
parameters of the minimization have been arbitrarily set, relatively far away from the 
nominal parameters. In our examples, convergence toward a global optimum has been 
observed, but such global convergence is not in general guaranteed by local optimization 
procedures like the Levenberg-Marquardt algorithm. 

Figures 2 and 3 show our experiments with real range data, kindly provided by Dr. 
Martial Hebert fr?m Carnegie-Mellon University. A perspective view of a range image 
of a torus is shown in figure 2(a). We have not tried to compute the pose of the torus 
directly from range data since other authors have already reported similar experiments 
(Gunnarsson and Prinz, 1987). Instead, we have concentrated on estimating the orien­
tation parameters from surface orientation and Gaussian curvature. These observables 
were computed using the method described in Brady et al. (1985). Briefly, the range 
data is first smoothed using repeated local averaging (Burt, 1981), then first and second 
image derivatives are estimated through finite differences, and the normal and Gaussian 
curvature are computed using the formulas given earlier. Figure 2(b) gives a qualitative 
idea of the performance of this algorithm by showing points classified as elliptic or hyper­
bolic. Figure 3(a) shows the orientation computed by the prograrirafter 10 Levenberg­
Marquardt iterations. There are 953 data points, and the minimization takes 9.5s. Once 
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(a) 

Figure 11. Breakfast and dinner: (a) A doughnut and a bagel. (b) Wine and Champagne bottles. 

the orientation has been computed, the translation is computed from the raw range data, 
as shown in figure 3(b ). The computing time in this case is 6.3s. 

Figure 4 shows the results of experiments with real intensity data. Here, we have as­
sumed that the light source is in the same direction as the observer, which reduces the 
number of estimated parameters from eight to six (two orientation parameters, two trans­
lations parameters, plus scale and albedo). In figure 4(a), the object has been separated 
from its background by thresholding. Note that this is the only image processing per­
formed. In this experiment, the total computing time is 21.9s for 645 points (we have only 
used a (random) subset of the points that belong to the torus as data; these are shown 
as white dots in figure 4). We have not experimented with intensity gradient yet. Figure 
4(b) shows another example with occlusion. In this case, the data points corresponding 
to the target torus have been selected by hand (actually by keeping only the data from 
the right half of the image). 

Finally, we have experimented with contour data (figures 5,7 and 8). Figure 5 shows 
the results of an experiment using raw contours. All five pose parameters are estimated 
in this case. Here, the outline of the object (hence, the edge points) has been found by 
thresholding the image. In other experiments (Kriegman and Ponce, 1990b), we have 
used instead the Canny edge detector (Canny, 1986), hand-selecting the subset of edgels 
corresponding to the outline of the target object. Here, this has not been necessary 
because the torus is isolated and the contrast is quite good. The computing time for 
1247 points is 219.8s. In our next set of experiments, we used contour orientation and 
curvature instead of raw contour data. Accurate estimates of these quantities were com­
puted by using a contour approximation program kindly provided by Regis Vaillant from 
INRIA (Vaillant, 1990). Briefly, this program first computes a spline approximation of 
the contour using the Numerical Analysis Group (NAG) library of numerical routines, 
and then computes orientation and curvature analytically from the spline representation. 
Figure 7(a) shows the orientation and scale (three parameters) computed from these es­
timates by our program for the same image as before. Some edgels are rejected by the 
program, so that there are only 1205 data points, and the computing time is 1l.Os. This 
compares favorably with the 219.8s required by the raw contour minimization on the 
same problem. Figure 7(b) shows the iterations in orientation/ curvature space. Once the 
orientation and scale have been computed, these parameters can be substituted in the 
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raw contour equation, and figure 8 shows the corresponding two-parameter estimation of 
translation, which took 8.8 seconds using the same data points. 

Finally, figures 1,10 and 11 show examples of recognition. The models used in our 
first set of experiments are five plastic rings that will be referred to by their colors: red, 
white, blue, orange, and yellow, even though they are really distinguished in our black 
and white images by the fact that the ratios of their major radius over their minor radius 
are all different. Figure 10(a) shows the result of recognition for an isolated torus. All 
five models are fit, and the correct model (white) is recognized. Figures 1 and 10(b) show 
more complicated examples, with three different tori and occlusion. Again, the correct 
tori are recognized. The total computing times on a Symbolics Lisp machine for these 
three examples are respectively 15, 33 and 32 seconds. As shown in Kriegman and Ponce 
(1990b ), the average distance between the theoretical contours and the data points varies 
between 0.57 and 1.08 pixels for the recognized models. 

Figure 11 shows two more examples. In figure 11(a), a bagel and a doughnut are 
recognized and positioned correctly, even though these objects are poorly approximated 
by tori. The computing time is 10 seconds in this case, and the average distance for the 
two objects is about 1.5 pixels. Finally, figure 11(b) shows a bottle of California Pinot 
Nair, with its typical "Bourgogne" shape, and a bottle of Dom Perignon Champagne. In 
both cases, only the doubly curved portion of the surface has been modeled. The scaling 
is modeled by a cubic curve. The recognition time in this case is 20 seconds, and the 
average distance is 0.43 and 0.46 pixels for the two recognized bottles. 

9. Discussion and Future Work 

Elimination theory has been used to relate explicitly pointwise image observables such 
as range, intensity, or contours, to the position and orientation of parametric patches. 
In turn, this relationship has been used in an implemented algorithm for locating solids 
of revolution either from surface orientation and Gaussian curvature, raw intensity, raw 
contours, or contour orientation and curvature. An algorithm for recognizing solids of 
revolution in raw contour data has also been presented. 

Our immediate goal is to experiment with more general objects, using CAD models of 
piecewise-smooth objects made of collections of more general parametric surface patches 
(Kriegman and Ponce, 1991). 

We are also investigating recognition and positioning of curved objects for which CAD 
models are not available. This entails discovering (learning) shape models from a sequence 
of images. Instead of precise object models made of (possibly many) parametric patches, 
we will use simplified shape descriptions in the form of low-degree implicit algebraic 
surfaces. The methods presented in this paper readily extend to these surfaces. Here, 
the equation F(O, P) = 0 has been used to recover the viewing parameters P when the 
shape of the observed object was known. Shape discovery is dual to shape positioning, 
and it can proceed from the same equation by assuming the transformation is known 
through calibration and solving instead for the shape parameters. 

Segmentation is one of the most difficult problems in computer vision. In this chapter, 
we have avoided high-level segmentation of images into curves, surfaces, and volumes, 
but data points corresponding to a single surface have been selected by hand. Clearly, 
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methods will have to be developed for deciding automatically which image points should 
be matched with which model surfaces. 

We have focused on positioning methods rather than recognition strategies. We are 
currently investigating strategies suited to our positioning approach, in the same way as 
interpretation trees have been used in conjunction with so-called "rigidity constraints" 
(Faugeras and Hebert, 1986; Grimson and Lozano-Perez, 1987) or "viewpoint consistency 
constraints" (Lowe, 1987) in the case of polyhedra (see also Horaud, 1987; Huttenlocher 
and Ullman, 1987; Thompson and Mundy, 1987). These strategies are based on using 
aspect graphs (Koenderink and Van Doorn, 1979; Eggert and Bowyer, 1989; Sripradis­
varakul and Jain, 1989; Kriegman and Ponce, 1990a; Ponce and Kriegman, 1990a) to 
represent qualitatively an object's image features such as contours and t-junctions, and 
taking into account the quantitative constraints imposed by these features (Ponce and 
Kriegman, 1990b; Seales and Dyer, 1991). · 
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Appendix: Resultants 

BEZOUT RESULTANTS 

We sketch Bezout's method for eliminating one variable among two equations (see also 
Seder berg et al., 1984, for an elementary introduction). Consider two polynomials P1, P2 

of degree n in x. We seek a necessary and sufficient condition for these two polynomials 
to admit a common root. Consider the determinant: 

Pt(x) P2(x) 
D(x, y) = (9.1) 

This determinant vanishes whenever x is a common root of P11 P2 (the first row van­
ishes) and whenever x = y (the two rows are identical). It follows that the polynomial D 
is divisible by (x- y), and that the polynomial: 

F(x, y) = D(x, y)j(x- y) (9.2) 

vanishes whenever x is a common root of P1, P2. Clearly, F has degree n- 1 in x and y. 
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We can rewrite F as a polynomial in y, so that: 
n-1 

F(x, y) = L F,(x)y', 
i=O 

where F, is a polynomial of degree n - 1 in x. 

(9.3) 

Now consider a common root x of P1, P2. Fo~ any value y, we have F(x, y) = 0, and it 
follows that all F1(x) are equal to zero. Let F/ denote the coefficient of degree j ofF,, 
we obtain the following linear system: 

F0 (x) xo 

F,(x) =M xi = 0, (9.4) 

Fn-1(x) 
xn-1 

where: 
F.o 

0 
F.i 

0 
F.n-1 .•• 0 

M= p.O • pi • 
pn-1 

. . . i (9.5) 

pO pi pn-1 
n-1 · · · n-1 · · · n-1 

Considering the successive powers xi as so many independent variables, it follows that 
this homogeneous linear system admits a non-trivial solution if and only if its determinant 
vanishes, i.e. IMI = 0. This determinant is Bezout's resultant. 

DIXON RESULTANTS 

We now sketch Dixon's method for eliminating two variables among three equations. 
Details on the method can be found in Dixon (1908) (see also Sederberg et al., 1984, for 
an elementary introduction). The method is a generalization of Bezout's resultant. 

Consider three polynomials P1, P2, P3 in two variables x1, x2, with highest degree n in 
x1 and min x2. We seek a necessary and sufficient condition for these three polynomials 
to admit a common root. Consider the determinant: 

P1(x1. x2) P2(x1, x2) P3(x1, x2) 

(9.6) 

Pt(Yt,Y2) P2(y1,Y2) P3(Y1,Y2) 

This determinant vanishes whenever (x1, x2) is a common root of Pt. P2, P3 (the first 
row vanishes), and also whenever Xt = Y1 (the first two rows are identical) or x2 = 
Y2 (the last two rows are identical). It follows that the polynomial D is divisible by 
(x1 - Yt)(x2- Y2), and that the polynomial: 

F(x1,x2,y1,Y2) = D(x1,x2,Yt,Y2)/((x1- x2)(y1- Y2)) (9.7) 

vanishes whenever (x1, x2) is a common root of P1, P2, P3 • Clearly, F has degree n -1 
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in x1, 2m -1 in x2, 2n- 1 in Y1, and m- 1 in Y2· We can rewrite F as a polynomial in 
Y1 and Y2, so that: 

2n-1 
m-1 

F(x1, x2, Y1, Y2) = I: F;,j(x1, x2)Y{1A,- (9.8) 
i=O 
f=O 

where F;,j is a polynomial in x1 and x2, with degree in x1 (resp. x2) less than or equal 
ton- 1 (resp. 2m- 1). 

Now consider a common root (x1,x2) of P1,P2,Pa. For any vall\e Y1,Y2, we have 
F(x1, x2, y1, Y2) = 0, and it follows that all F;,j(x1, i:2) are equal to zero. Let Ff./ denote 
the coefficient of degree k in x1 and I in x2 of F;,j, we obtain the following linear system: 

Fo,o( :&1, x2) ~o ~o 
x1x2 

F;,1(x1, x2) =M ~k ~/ 
x1x2 = 0, (9.9) 

F2n-1,m-1(x1, i:2) 
~n-1 ~2m-1 
xl x2 

where: 
~0,0 

0,0 
F.k,l 

o,o 
~n-1,2m-1 

. . . o,o 

M= F~'.o 
I,J 

F~!l 
I,J 

F!':-1,2m-1 
• • • I,J (9.10) 

Fo,o pk,l pn-1,2m-1 
2n-1,m-1 • • • 2n-1,m-1 · · · 2n-l,m-1 

Considering the successive powers x~ x~ as so many independent variables, it follows 
that this homogeneous linear system admits a non-trivial solution if and only if its deter­
minant vanishes, i.e. IMI = 0. This determinant is Dixon's resultant. ~xplicit formulas 
for the Dixon resultant can be found in Dixon {1908) and Sederberg et al. (1984). More 
general methods, capable of dealing with arbitrary numbers of polynomials and variables, 
can be found in Macaulay (1916), Buchberger {1987) and Canny (1988). 
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