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Chapter 6 

2D and 3D Object Recognition and Positioning 
with Algebraic Invariants and Covariants 

Gabriel Taubin 

IBM T.J. Watson Research Center 

P.O.Box 104, Yorktown Heights, NY 10598 

David B. Cooper 

Laboratory For Engineering Man/Machine Systems 

Division of Engineering, Brown University, Providence, RI 02912 

We describe part of our model-based approach to 3D rigid object recognition and po­
sitioning from range data: methods for fast classification and positioning of algebraic 
surfaces. Since we are primarily interested in recognizing and positioning rigid objects, 
we focus on methods invariant under Euclidean coordinate transformations, but we also 
include some extensions to the affine and projective cases. These cases are related to 
other recognition and positioning problems involving 2D or 3D curves. Our approach 
to model-based object recognition and positioning can be divided in four stages. In the 
first stage algebraic surfaces are fitted to regions of the data set. Then, in the second 
stage, a data base is searched for regions of known objects with algebraic surface ap­
proximations similar to those fitted to the data regions. In the third stage, a matching 
coordinate transformation is computed for each matching candidate extracted from the 
data base. These coordinate transformations are computed using explicit formulas, and 
constitute the estimated positions for the initially recognized object. These matches 
constitute initial hypotheses for the presence of the associated objects in the data re­
gions. Finally, the hypotheses are globally tested to sort out inconsistencies. We start by 
reviewing some of our previous work on computationally attractive fitting of algebraic 
curves and surfaces. Then we introduce methods to solve the classification and position­
ing problems, the second and third stages of our approach. We base the fast data base 
search for similar algebraic surfaces, the classification problem, on comparing algebraic 
invariants. We compute the matching coordinate transformation between two surfaces 
with approximately the same invariants by associating an intrinsic frame of reference 
to every algebraic surface. This frame of reference, an object-based coordinate system, 
is a covariant function of the coefficients of the polynomial which defines the surface, 
and its relative location with respect to the surface is independent of the viewpoint. 
For a nonsingular quadratic surface, the eigenvalues of the matrix associated with the 
second degree terms of the defining polynomial are Euclidean invariants. The center of 
symmetry of the surface, and the eigenvectors of the same matrix define an intrinsic 
frame of reference. The methods introduced in this paper generalize these constructions 
to algebraic curves and surfaces of higher degree. 
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Figure 1. Global structure of the object recognition and positioning system. 

1. Introduction 

We describe part of our model-based approach to 3D rigid object recognition and 
positioning from range data: methods for fast classification and positioning of algebraic 
surfaces. Since we are primarily interested in recognizing and positioning rigid objects 
whose boundary surfaces can be well approximated by piecewise algebraic surfaces, sets 
of zeros of polynomials in three variables, we will focus on Euclidean invariant methods in i ' 

3D. However, we also include some extensions to affine and projective invariant methods, 
which are related to other recognition and positioning problems involving 2D or 3D 
curves. 

Figure 1 describes the global structure of our approach. Due to the problems of oc­
clusion, known solid objects are represented in a database as hierarchical collections of 
regions of boundary surfaces, of different sizes. Models, in our case algebraic surfaces, are 
fitted to small regions of the data set. These regions are small enough so that most of 
them correspond to a single object, but big enough to contain sufficient information to 
uniquely determine the location and orientation of an object. Alternatively, models are 
fitted to smaller regions, and symbolic methods are used to compute the parameters of 
the model which fits a group of these small regions. Since the parameters of these models 
are coordinate system dependent, a vector of invariants is computed for each model. An 
invariant is a function of the parameters which yields the same values independently of 
the viewer coordinate system. This vector of invariants is used to index into the database 
of regions of known models. Using these invariants, the database can be organized for 
an efficient search. The database search produces a list of triples. Each of these triples 
consists of a region of a known object, the object that the region corresponds to, and the 
coordinate transformation from the object coordinate system to the region coordinate 
system. If one or more matches are found in the database, the intrinsic coordinate system 
of the data set region is -computed and, for every match found, the coordinate transfor­
mation which best aligns the data region with the model region is computed using the 
intrinsic coordinate systems of the two matching regions. This coordinate transforma­
tion constitutes a hypothesis corresponding to the presence of the associated object in 
the computed position and orientation. The hypotheses generated in this way are then 
globally tested, and the final interpretation of the data set is produced. 
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With the notation to be introduced later in the paper, if F[l,l] and G[l,l] are nonsin­
gular symmetric 3 X 3 matrices, F[l] and G[l] are three dimensional vectors, and F[o] 

and G[o] are constants, the second degree polynomials 

f(x) !xt F[l,l]X + F[t11 x + F[o] 

g(x) !xtG[1,1]X + G(t1x + G[o] 

in three variables x = (x1 , x2 , x3 )t define two quadric surfaces. It is well known that a 
necessary condition (not sufficient) for these two quadric surfaces to be congruent, i.e. 
for the existence of an Euclidean transformation x1 = T(x) such that /(T(x)) = g(x), 
is that the three eigenvalues of the two matrices coincide, except for a common multi­
plicative factor. These eigenvalues are Euclidean invariants of the surfaces. If that is the 
case, we can obtain the best matching coordinate transformation from the corresponding 
intrinsic frames of reference. The center of a nonsingular quadric surface, the origin of its 
intrinsic frame of reference, is the unique point in space which, if taken as the origin of the 
coordinate system, makes the polynomial defining the surface have zero linear part. That 
is, the center of the quadric surface defined by the polynomial f(x) is y = -F[1.~JF[l], 
because the linear part of 

is zero. The translation part of the matching Euclidean transformation is obtained as 
the difference between the two centers, i.e. the best matching coordinate transformation 
should make the two centers coincide. The coordinate axes of the intrinsic frame of ref­
erence of a nonsingular quadric surface are the eigenvectors of the associated symmetric 
matrix. The best matching rotation makes the eigenvectors corresponding to the same 
eigenvalues coincide. If the eigenvalues are not repeated there is essentially a single solu­
tion, but in fact there are four solutions due to the symmetries of the quadratic surfaces 
(eight solutions if we also consider reflections). This construction not only applies to 3D 
surfaces, but also to 2D curves and quadric hypersurfaces of higher dimension. As we 
mentioned above, the equality condition on the eigenvalues is just a necessary condition 
for congruence. A sufficient condition is the equality (except for a multiplicative factor) of 
the defining polynomials recomputed with respect to the corresponding intrinsic frames 
of reference. However, computing the invariants, i.e. the eigenvalues, is computation­
ally much less expensive than computing the full intrinsic coordinate system and then 
recomputing the coefficients of the defining polynomials in this new coordinate system. 

The main contributions of this paper are the extension of these results to algebraic 
curves and surfaces of higher degree. In the first place we develop efficient techniques for 
computing Euclidean invariants of algebraic curves and surfaces as eigenvalues of certain 
matrices constructed from the coefficients of the defining polynomials, and show how to 
extend these methods to the affine and projective cases as well. The second contribution 
is how to extend the computation of the intrinsic Euclidean frame of reference, center 
and orientation, from quadratic surfaces to algebraic curves and surfaces of higher de­
gree. This intrinsic coordinate system is independent of the viewer coordinate system, 
in the sense that the polynomial equations of the same curve or surface in its intrinsic 
coordinate system are independent of the viewer coordinate system, i.e. they are Eu­
clidean invariants. As in the case of quadric surfaces, it is a necessary condition for two 
surfaces of the same degree to be congruent to have the same invariants, but a sufficient 
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condition is to have the same equations in their intrinsic coordinate systems. So, this is 
the ultimate test for matching. However, when trying to find a match for one surface 
within a large data base of surfaces of the same degree, we start by reducing the number 
of candidates by comparing the invariants. Then, if matching candidates are found by 
comparing the invariants, the intrinsic frame of reference is computed and the coefficients 
evaluated in the new coordinate system. After this step, all the coefficients of the defining 
polynomials are compared with the candidates, and only those with similar coefficients 
are kept as valid hypotheses. Finally, we emphasize the computational aspect of these 
processes, which are based on both symbolic computations and well-known efficient, and 
numerically stable matrix algorithms. 

With the methods introduced in this paper, a system that involves indexing into a data 
base of objects represented by features consisting of groups of moderately high degree 
algebraic surfaces can be developed, and the performance of many related recognition 
algorithms (Bolles et a/., 1983; Faugeras et a/., 1983; Grimson and Lozano-Perez, 1984; 
Bolles and Horaud, 1986; Faugeras and Hebert, 1986; Grimson and Lozano-Perez, 1987; 
Kishon and Wolfson, 1987; Schwartz and Sharir, 1987; Hong and Wolfson, 1988; Lamdan 
et a/., 1988; Lamdan and Wolfson, 1988; Bolle et a/., 1989a, 1989b; Chen and Kak, 1989; 
Grimson, 1989; Wolfson, 1990) can be improved. 

The paper is organized as follows. In section 2 we review some basic concepts about 
implicit curves and surfaces, in particular about algebraic curves and surfaces. In section 
3 we briefly describe how regions can be chosen. In section 4 we describe our previous 
work on implicit curve and surface fitting. In section 5 we describe in more detail our 
approach to classification and positioning based on the computation of invariants and 
co variants, and describe in detail our methods for fast evaluation of invariants. In section 
6 we give a short recount of the history of invariant theory. In section 7 we describe how 
to compute the intrinsic Euclidean center of an algebraic 2D curve or 3D surface, while 
in section 8 we do the same for the intrinsic Euclidean orientation. In section 9 we extend 
these results to 3D curves. In section 10 we relate some of these invariants to previous 
results on algebraic curve and surface fitting. In section 11 we present some experimental 
results. Finally, in the appendix we include the longer proofs of the lemmas from the 
body of the paper. 

2. Implicit curves and surfaces 

An implicit surface is the set of zeros of a smooth function f : R 3 -+ n of three 
variables 

Z(f) = {(x1. x2, x3) : J(x1, x2, x3) = 0} . 

For example, figure 2 shows an implicit surface which is the set of zeros of the fourth 
degree polynomial f(xl, x2, x3) = x1 - ~xi(x~ + x~) + (x~ + x~)2 - 1. Similarly, 
an implicit 2D curve is ~he set Z(f) = {(x1. x2) : f(x 1 , x2) = 0} of zeros of a smooth 
function f : R 2 -+ n of two variables, and an implicit 3D curve is the intersection of two 
surfaces, the set Z(f) = {(x1. x2, x3) : f(x1, x2, x3) = 0} of zeros of a two dimensional 
vector function f: R 3 -+ R 2 of three variables. 

The representation of curves and surfaces in implicit form, as opposed to parametric 
form, has many advantages. In the first place, an implicit curve or surface maintains its 
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Figure 2. Implicit surface defined by the fourth degree polynomial 
f(x1,x2,x3) = xf- txi(x~ + x5) + (x~ + x5)2 -1. 

Figure 3. Two cylinders as a single fourth degree surface, and their non planar intersection curve. 

implicit form after a change of coordinates, that is, if a set of points can be represented as 
a subset of an implicit curve or surface in one coordinate system, so can it be in any other 
coordinate system. That is not the case with data sets represented as graphs of functions 
of two variables, i.e. as depth maps, the patch descriptors produced by many well-known 
segmentation algorithms. In the second place, the union of two or more implicit curves 
or surfaces can be represented as a single implicit curve or surface, the set of zeros of the 
product of the functions which define the individual curves or surfaces 

Z(!l) U Z(h) U .. · U Z(fn) = Z(fl ·h .. · fn) , 

so that groups of curve or surface patches, or eventually a whole object, can be represented 
as a subset of a single implicit curve or surface. For example, the union of tw? cylinders 

{x: x~ + (x3 - 1)2 - 4 = 0} U {x: x~ + (x3 + 1)2 - 4 = 0} 

shown in figure 3, is the surface defined by the set of zeros of the product 

{x : (xi+ (x3- 1)2 - 4)(x~ + (x3 + 1)2 - 4) = 0} . (2.1) 

Hence, a single fourth degree polynomial can represent a pair of cylinders, and this is 
true for arbitrary cylinders, e.g. a pair that do not intersect. This property relaxes the 
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Figure 4. Two matching cubic 2D curves, unions of the three straight lines, fitted.to the data points 

in the dark regions. 

requirements on a segmentation algorithm, and it is very important in regard to the 
matching problem, allowing the matching of groups of patches at once. 

3. Choosing regions 

The high degree algebraic surfaces have much more discriminating power than does an 
individual low degree algebraic surface such as a plane or a quadric surface. Two types of 
representations are presently under consideration. One is the representation of a collection 
of a few low degree algebraic surfaces by a single algebraic surface of higher degree. For 
example, representing three planes by the set of zeros of a single third degree polynomial, 
the product of the three first degree polynomials, each representing one plane, or a quadric 
and a cubic surface by a single fifth degree algebraic surface. The simple low degree 
primitive surfaces used are those that can be found with modest computation. Exact 
segmentation is not necessary. Partial occlusion is not a problem; a primitive surface can 
be estimated from a portion of the primitive surface data. Once the primitives are found 
in the data, groups are then represented by single higher degree algebraic surfaces. Figure 
4 shows two examples of this method. The other type of representation are the interest 
regions. These are spherical regions in which the data is not well represented by a low 
degree algebraic surface, such as first or second degree, but is well approximated by an 
algebraic surface of one degree higher. For example, a region occupied by a portion of two 
intersecting cylinders would be represented exactly by a fourth degree surface and poorly 
by a lower degree surface if enough of the surfaces were sensed. More generally, a fourth 
degree surface might capture a chunk of information useful for recognition purposes on a 
natural irregular surface such as a face, whereas a lower degree surface might not. Useful 
interest regions are those having the stability that the polynomial does not depend on 
the exact placement of the sphere specifying the region of data to be used. For this 
approach, sphere sizes should be chosen such that most spheres will contain data well 
approximated by low degree surfaces, and only a few will require representation by higher 
degree surfaces. These higher degree surfaces then contain considerable discriminatory 
power for object recognition. Figure 5 shows an example of a planar interest region. In 
this way we can deal with the occlusion problem. Note that the members of a group of 



Figure 5. Interest regions, matching quartic 20 curves fitted to·the data points inside the grey circles. 

detected patches do not even have to be connected, so that hypotheses of objects and 
their positions can be generated from more global information, and this procedure can be 
implemented using a voting scheme, such as a generalized Hough transform or geometric 
hashing (Ballard, 1981; Lamdan and Wolfson, 1988; Bolle et al., 1989a; Taubin, 1989). 

4. Implicit curve and surface fitting 

Toward building a recognition and positioning system based on implicit curves and 
surfaces, the first problem to deal with is how to fit implicit curves and surfaces to data. 
Several methods are well-known for extracting straight line segments (Duda and Hart, 
1973), planar patches (Faugeras et al., 1983), quadratic arcs (Paton, 1970a, 1970b; Bigger­
staff, 1972; Albano, 1974; Turner, 1974; Cooper and Yalabik, 1975, 1976; Gnanadesikan, 
1977; Bookstein, 1979; Sampson, 1982; Forsyth et al., 1990) and quadric surface patches 
(Gennery, 1980; Hallet al., 1982; Faugeras et al., 1983; Cernuschi-Frias,.1984; Bolle and 
Cooper, 1984, 1986) from 2D edge maps and 3D range images. Some researchers have 
also developed methods for fitting algebraic· curve and surface patches of arbitrary degree 
(Pratt, 1987; Chen, 1989; Taubin, 1988a, 1988b, 1990a). In this section we review some 
of Tau bin's results. 

The first step is to restrict the functions which define the curves or surfaces to a 
family parameterized by a finite number of parameters. Let cjJ : nr+n ---+ nk be a smooth 
function, and let us consider the maps f : nn ---+ nk which can be written as 

f(x) = cfJ(u, x), 

for certain u = ( Ut, •.• , Ur )t , in which case we will also write f = cPu . We will refer to 
U1, ••• , Ur as the parameters and to X1, ••• , Xn as the variables. The family of all such 
maps will be denoted 

:F = {f: 3u f =cPu} , 
and we will say that c/J is the parameterization of the family :F . The set of zeros Z(f) 
of a member f of :F is a 2D curve when n = 2 and k = 1, it is a surface when n = 3 
and k = 1, and it is a 3D curve when n = 3 and k = 2. 
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Given a finite set of n-dimensional ( n = 2 or n = 3) data points V = {p1 , ... , Pq} , 
we would ideally fit an implicit curve or surface Z(f) to the data set V by computing 
the minimizer f E :F of the mean square distance 

1 q -L dist(pi, Z(£))2 

q i=l 
(4.1) 

from the data points to the curve or surface Z(f). 

Unfortunately, there is no closed form expression for the distance from a point to a 
generic implicit curve or surface, not even for algebraic curves or surfaces, and iterative 
methods are required to compute it. This makes the minimization of (4.1) computation­
ally impractical. In order to solve this problem we replace the real distance from a point 
to an implicit curve or surface by a first order approximation. The mean value of this 
function on a fixed set of data points is a smooth nonlinear function of the parameters, 
and can be locally minimized using well established non-linear least squares techniques. 

The distance from a point X E nn to the set of zeros Z(f) can be computed by direct 
methods only if the function f is linear, i.e. a first degree polynomial. In this case the 
Jacobian matrix Df( x) is constant, and the following identity is satisfied 

f(y) = f(x) + Df(x) · (y- x). 

Note that for a 3D surface or 2D curve, Df(x) = 'Vf(x)t , and for a 3D curve, Df(x) 
is a two row matrix where each row is a transposed gradient vector. The unique point 
fJ E Z(f) which minimizes the distance IIY- xll to x , is given by 

fJ = x- [Df(x))tr(x), 

where [Df(x)]t is the pseudoinverse (Duda and Hart, 1973; Golub, 1983) of Df(x), so 
that the square of the distance from x to Z(f) is 

dist(x, Z(f))2 = f(x)t[Df(x) Df(x)1- 1f(x). 

In the general case, where f(x) is not a first degree polynomial, we do not have an 
identity, but an approximation 

dist(x, Z(f))2 ~ f(xnDr(x) Df(x)1-1f(x). (4.2) 

For k = 1 , the case of a 2D curve or 3D surface, the Jacobian has only one row, and 
( 4.2) reduces to 

f(x) 2 

dist(x, Z(/))2 ~ II'Vf(x)ll2 (4.3) 

Note that this approximate distance is the value of the function scaled down by the rate 
of growth at the point. Due to lack of space, we will continue the development for 2D 
curves and 3D surfaces ( k = 1 ), but all the results extend to 3D curves as well. 

Now, we will fit curves or surfaces to data points by minimizing the approximate mean 
square distance from the data set V to the set of zeros of f = rPu E :F 

2 1 q f(Pi) 2 

~v(u) = q {; II'Vf(Pi)ll 2 (4.4) 

This expression can be seen as a sum of squares of smooth functions of the parameters. 
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The local minimization of ( 4.4) is a nonlinear least squares problem, ~hich can be solved 
using iterative methods (Dennis and Shnabel, 1973) such as the Levenberg-Marquardt 
algorithm (Levenberg, 1944; Marquardt, 1963; More et al., 1980). 

In related work, Bajcsy and Solina (1987), Solina (1987), and Gross and Boult (1988) 
fit superquadrics {Barr, 1981) to data using the Levenberg-Marquardt algorithm. Also, 
Ponce and Kriegman {1989) use the Levenberg-Marquardt algorithm for fitting the pro­
jections of the occluding boundaries of algebraic surfaces to 2D. edges. 

Since we are interested in the global minimization of(4.4), and we want to avoid a global 
search, we present a method to choose a good initial estimate. We will only consider the 
linear model here, which corresponds to the case of algebraic curves or surfaces. In the 
linear model the maps can be written as 

f(x) = F1X1(x) + · · · + FhXh(x) = FX(x), 

where F =(Ft. ... , Fh) is a row vector of coefficients, X= (X1 , ••• , Xh)t : nn -+ nh 
is a fixed map, and the parameter vector is just u = pt . In order to find a good 
initial estimate for the linear model, we replace the performance function. Instead of 
the approximate mean square distance ( 4.4) we use a new approximation, turning the 
difficult multimodal optimization problem into a generalized eigenproblem. 

There exist certain families of implicit curves or surfaces, such as those which define 
straight lines, circles, planes, spheres and cylinders, which have the value of IIV/(x )11 2 

constant on Z(f) . In those cases we have 

1 t !(Pi )2 t El=l !(Pi )
2 

q i=l IIV/(Pi)ll2 ~ tELl IIV/(Pi)ll2 
' 

In the linear model, the right hand side of the previous expression reduces to the quotient 
of two quadratic functions of the parameters 

t Er=l t<Pd2 

t E1=1 IIV/(Pi)ll2 
(4.5) 

where the matrices M and N are non-negative definite, symmetric, and only functions 
of the data points: 

q . 
1 

N = - l:[DX(pi)DX(pi)t] . 
q i=l 

The new problem, the minimization of ( 4.5), reduces to a generalized eigenvalue problem, 
with the minimizer being the eigenvector corresponding to the minimum eigenvalue of 
the pencil F(M- >.N) = 0. 

This generalized eigenvector fit can be extended to 3D curves as well, where the solution 
is given by the eigenvectors corresponding to the two least eigenvalues. Fo~ example, 
figure 6 shows the result of fitting an implicit 3D curve, defined by the intersection of 
two general quadric surfaces, to the data points using the generalized eigenvector fit 
algorithm. 

For fitting at modest computational cost, our approach is to use the generalized eigen­
vector fit method first, also in the general case where IIV/(x)ll2 is not constant on Z(f), 
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(a) (b) (c) 

Figure 6. 3D curve fitted to data using the generalized eigenvector fit algorithm. (a) Original curve. 
(b) Data generated close to the original curve. (c) Superposition of original curve, generalized 

eigenvector fit, and data. 

Figure 7. (a) Fourth degree algebraic curve fitted to edge data inside the circular region using the 
generalized eigenvector fit algorithm. (b) Improvement after using the previous result as initial value in 

the minimization of the approximate mean square distance. 

and subject the result to a statistical test. If the test is satisfied, the fitting process stops 
here, otherwise the result of the generalized eigenvector fit is used as a starting point 
in the local minimization of ( 4.4). Finally, it is important to mention that the curves or 
surfaces computed with the generalized eigenvector fit method are often satisfactory, not 
requiring further improvement, and the required computation is modest and practical. 

5. Invariants of algebraic curves and surfaces 

If x' = T( x) is a nonsingular coordinate transformation, Euclidean, affine, or pro­
jective depending on the application, and f(x) is a polynomial, we will denote by 
f'(x') the unique polynomial which satisfies the polynomial identity f(x) = f'(x')), i.e. 
f(x) = f'(T(x)), or equivalently, f'(x') = f(T- 1(x')) . In this way we can look at both 
Z(f') = {x': f'(x') = 0} and Z(f) = {x: f(x) = 0} as describing the same set of points, 
but in the two different coordinate systems. The coefficients of f'(x') can be computed 
as functions of the coefficients of f( x) and the parameters of the transformation T( x), 
but the applications to object recognition need to solve the inverse problem: the trans-
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formation parameters must be recovered from the two polynomials. Two polynomials f 
and f' of the same degree are called congruent if there exists a coordinate transformation 
x' = T(x) such that f(x) = f'(T(x)). Given two polynomials of the same degree, we 
have to decide, by just looking at the coefficients of both polynomials, whether they are 
congruent or not. In fact, in order to significantly reduce the computation involved in the 
data base search, we only need to be able to check at a low computational cost certain 
necessary conditions for congruence. These necessary conditions for congruence have to 
be such that only a small subset of the data base will satisfy them. Then, we can check 
at a higher computational cost sufficient conditions for congruence on the small subset 
of the data base which satisfies the first set of conditions. Also, due to the finiteness of 
the database and the numerical and measurement errors involved, we seek approximate 
answers. The first step in the classification problem, checking necessary conditions for 
congruence, can be solved using invariants. Broadly speaking, an invariant is a function 
I(f) of the coefficients of f which does not change when a coordinate transformation 
x' = T(x) is applied, i.e. I(f) = I(f'). In our object recognition application, a suffi-

~ I ciently long vector I(f) = ( I1 (f), ... I&(f) )t of invariants will be used. Those elements 
l of the data base whose invariant vectors are close to the invariant vector corresponding 

to the measured polynomial will be considered as candidates to undergo the more ex­
pensive check of sufficient conditions. Also, the invariants can be used to organize the 
data base for an efficient search. A rough quantization of invariant space into uniformly 
occupied cells can be used to define a hash function which reduces the number of compar­
isons needed to classify a given polynomial f. In this section we introduce techniques for 
computing invariants of polynomials at low computational cost. Our methods are based 
on reducing the problem of computing invariants of polynomials to the computation of 
eigenvalues of certain associated matrices, because very efficient and well understood nu­
merical methods are available for this operation (Smith et a/., 1976; Garbow et a/., 1977; 
Golub and Van Loan, 1983). 

f. 

' ~ 

I 
l 
l 

~ ! 

5.1. POLYNOMIALS AND FORMS 

From now on, polynomials will be written expanded in Taylor series at the origin 

l(x) = I:~ Fa xa, (5.1) 
a 

where the vector of nonnegative integers a= (a1, ... , an)t is a multiindex of size Ia I= 
a1 + · · ·+an , a! = a1! · · ·an! is a multiindex factorial, Fa is a coefficient of degree Ia I , 
and xa = xf 1 

• • • x~n is a, monomial of degree Ia I. There are exactly hd = (n!~~·) = 
(n+!- 1

) different multiindices of size d, and so, that many monomials of degree d. A 
polynomial of degree d in n variables has hd + hd-1 + · · · + ho = (n!d) coefficients, 
as many as a form of the same degree but in n+ 1 variables. The coefficients of I are 
equal to the partial derivatives of order d evaluated at the origin · 

8at+"+an I I 
Fa = 8 at 8 an 

X1 • • · Xn x=O 
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and only finitely many coefficients are different from zero. A polynomial is homogeneous, 
or a form, if all its terms are of the same degree 

</J(x) = :L ~!<I> a xa . 
lal=d 

For example, a fourth degree form in three variables is written as 

¢(x1, x2, X3) = 

1 <I> 4 + 1 <I> 3 + 1 <I> 3 
24 ( 4,0,0) X 1 6 (3,1,0) X1X2 6 (3,0,1) xl X3 
1<1> 22 + 1 <I> 2 + 1<1> 22 4 (2,2,0) X1X2 2 (2,1,1) X1X2X3 4 (2,0,2) X1 X3 
1 <I> 3 + 1 <I> 2 + 1 <I> 2 6 (1,3,0) X1X2 2 (1,2,1) X1X2X3 2 (1,1,2) X1X2X3 
1 <I> 3 + 1 <I> 4 + 1 <I> 3 6 (1,0,3) X1X3 24 (0,4,0) X2 6 (0,3,1) X2X3 
1<1> 22 + 1 <I> 3 + 1 <I> X~ • 4 (o,2,2) X2X3 6 (0,1,3) X2X3 24 (0,0,4) 

5.2. INVARIANTS OF POLYNOMIALS AND FORMS 

(5.2) 

+ 
+ (5.3) 
+ 
+ 

A function I(¢) of the coefficients of a form <P of degree d is a relative invariant of 
weight w if for every nonsingular coordinate transformation x' =Ax, we have I(¢')= 
IAI-wi(¢), where <P'(x') = ¢(A- 1x'). An absolute invariant is an invariant of weight 
zero. If I(¢) is a polynomial function of the coefficients of <P we talk about a polynomial 
invariant, and of a rational invariant if the function I is the ratio of two polynomial 
functions. Join invariants of several forms can be defined in a similar way, and in the 
Euclidean case, all the invariants are absolute. 

The techniques and algorithms presented below provide methods to compute invari­
ants of a form, or join invariants of several forms, with respect to either orthogonal or 
homogeneous linear transformations, i.e. coordinate transformations that can he written 
as x' =Ax, with the matrix A being either orthogonal, or just nonsingular. Although 
projective coordinate transformations are defined by linear transformations, affine and 
Euclidean coordinate transformations are non-homogeneous. In this section we discuss 
methods to reduce the problem of computing affine and Euclidean invariants of polyno­
mials to the computation of orthogonal and linear invariants of certain forms. There are 
basically three approaches to this. The first one is to introduce homogeneous coordinates, 
and look at the groups of affine and Euclidean transformations as subgroups of the pro­
jective group. Every invariant with respect to the projective group is also invariant with 
respect to the affine and Euclidean subgroups. However, these are not all. The second 
approach is based on the observation that when an affine coordinate transformation is 
applied, the terms of higher degree of a polynomial, the leading form, are independent 
of the translation part. The third approach is to use a covariant vector, a vector whose 
coordinates are known in every coordinate system, as the coordinate system origin, to 
reduce the problem of computing affine or Euclidean invariants of a polynomial to the 
computation of join linear or orthogonal invariants of a finite number of forms. 

By introducing homogeneous coordinates, every curve or surface described in Euclidean 
space by a polynomial in n variables, can be described in projective space by an asso­
ciated homogeneous polynomial in n + 1 variables. If ¢(x0 , .•• , xn) is a form of degree 
d in n + 1 variables, arid · f( v1, , .. , Vn) is a regular polynomial of degree :S d in n 
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variables, the one-to-one correspondence is given by 

t/J(xo, ... , xn) xg f(xdxo, ... , Xnfxo) 
f(vl, ... ,vn) ¢(1,v1, ... ,vn)· 

In other words, every polynomial in n variables is the restriction of a form in n + 1 
variables to the hyperplane { x : x 0 = 1} , and every form in n + 1 variables is totally 
determined by its restriction to this hyperplane. A projective transformation can be writ­
ten as a homogeneous linear transformation x' = Ax on the homogeneous coordinates 
of a point. Every nonsingular matrix A defines a projective transformation, but the 
correspondence is not one-to-one. Two nonsingular matrices A and I;J define the same 
projective transformation if A = A.B for certain constant A f= 0 . If v' = Av + b is an 
affine coordinate transformation, the corresponding projective transformation is given by 

1 (1 0) 
X = b A X. 

Given a point y E nn, every polynomial f of degree d can be written as a sum of 
forms 

d 

f(x) = L fk(x + y) , 
k=O 

where fk(x) is a form of degree k, and /d is not identically zero. This representation is 
unique, provided that y is kept fixed. Using a counting argument on the degrees of the 
terms, it is not difficult to see that the form of degree d, the leading form, is independent 
of y, so that every invariant of !d with respect to linear or orthogonal transformations 
x' = Ax is an invariant of f with respect to affine or Euclidean transformations. 

Also, if x' = Ax+ b is an affine or Euclidean coordinate transformation, and y' = 
Ay + b, we can rewrite the coordinate transformation as x'- y' = A(x- y). That is, if 
we know beforehand the coordinates of a point in both coordinates systems, we can just 
consider homogeneous linear transformations, by restricting the coordinate systems to 
those with the origin at the known point. In this way the problem of computing affine or 
Euclidean invariants of the polynomial f can be reduced to computing join invariants 
of the forms fo, ... , /d with respect to linear or orthogonal transformations x 1 = Ax. 
We just need to find a vector function YJ = y(f) of the coefficients of f such that 
if x' = Ax + b is an affine or Euclidean transformation, and f' ( x') = f( A -l ( x' - b)) 
is the polynomial which describes the zeros of f in the new coordinate system, then 
YJ' = A (YJ +b). Such a function is a particular case of what is classically called a 
covariant vector of weight zero. We will show how to compute such a covariant vector in 
the Euclidean case. 

In the affine case, an alternative is to compute the vectors y and y' from the data sets 
used to estimate the coefficients of the polynomials, and estimate the coefficients with 
the origin at that point. In this way we do not have to recompute the coefficients with 
respect to the center. For example, the centroids are good candidates. Other features 
such as high curvature points, or intersections points of lower degree curves or surfaces, 
can also be used, depending on the application. 
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5.3. COEFFICIENTS AND LINEAR TRANSFORMATIONS 

Let ¢>( x) be a quadratic form in three variables 

If we denote the 3x3 square matrix <1>[1,11, we can write it just as <f>(x) = !xt<I>[1,11x. If 
x' =Ax is a linear transformation, and <f>'(x') = ¢>(A-1x') = !x't<I>(t,11x', the two ma­
trices of coefficients are related by the formula <1>(1,11 =A-t <1>[1,11 A - 1 , which reduces to 
<I>(t, 11 =A <1>[1,11 At if the matrix A is orthogonal. In general, for A nonsingular we have 

I<I>[1,11I = IAI- 2I<I>(t, 11 1, and for A orthogonal it is well-known that the coefficients of the 
characteristic polynomial x(..\) = det(,\/- <1>[1,11) are orthogonal invariants of the form 
</>. Equivalently, the three eigenvalues of the matrix, the roots of x(..\) are orthogonal 
invariants. Let .<f>(x) = !xt<I>[1,11x and ,P(x) = ~xt"ili[1 , 11x be two nonsingular quadratic 
forms in three variables. They describe planar conics in homogeneous coordinates. It is 
also well- known that trace(<I>[1,11"ili~\1 ) and det(<I>[1, 11\ll~~11 ) are join rational (ratio of 
two polynomials) projective invariants of the two forms. In fact, these invariants are just 
two of the coefficients of the characteristic polynomial x(..\) = det(,\l - <I>[1, 11"ili[t~11 ), 
and all the coefficients of x(..\) are join linear invariants of the two forms. Equiva­
lently, the three eigenvalues of the matrix <1>[1 , 11\ll~\1 are join invariants of the two 
forms. Finally, this construction can be extended to all the pairs of quadratic forms, not 
only the nonsingular ones; instead of considering the eigenvalues of <I>[1 , 11\ll~~11 , consider 
the generalized eigenvalues of the pair of matrices, the values of (..\, v) f= 0 such that 
det(..\<1>[1,11 ~ VW[1_,l1) = 0. 

We will show how to generalize the preceding constructions to higher degrees. That 
is, we will show how to compute orthogonal and linear invariants of one or more forms 
by reducing the problem to the computation of eigenvalues or generalized eigenvalues 
of certain matrices of coefficients. But in order to do so, we first have to introduce the 
proper terminology and establish certain basic properties. 

Multiindices can be linearly ordered in many different ways. We will only use the 
(inverse) lexicographical order, but the same results can be obtained using other orders. 
If a and (3 are two multiindices of the same size, we say that a precedes (3, and write 
a < (3 if, for the first index k such that ak differs from f3k , we have ak > f3k . For 
example, for multiindices of size 2 in three variables, the lexicographical order is 

(2,0,0) < (1, 1,0) < (1,0, 1) < (0,2,0)< (0, 1, 1) < (0,0,2). 

If a. and (3 are multiindices of different sizes, and the size of a is less than the size of 
(3' we also say that a precedes (3' and write a < (3. 

The set of monomials { xa j..J(;i. : Ia I = d} of degree d lexicographically ordered, 
define a vector of dimension hd , which we will denote X[d) ( x) . For example, 

( ) ( 
1 3 1 2 1 . 2 1 3)t 

X[31 Xt, x 2 = 76x1 72x1x2 72x1x2 76x2 . 

For every pair of nonnegative integers (j, k), we will denote X[j,k1(x) the hj x hk rna-



d 
:f 

"i 

2D and 3D Object Recognition and Positioning with Algebraic Invariants and Covariants 161 

trix XuJ(x)X{kJ(x). That is, X[j,k](x) is the matrix defined b~ the set of monomials 

{ xa+fJ /var~J! : Ia I = j , IPI = k} of degree d = j + k, lexicographically ordered 
according to two multiindices. For example, 

X[2,2J(xl> x2, x3) = 
14 13 13 12212 122 
2 x 1 72

x 1x2 
72

x 1x3 2 x 1x 2 72x1x2x3 2x1x 3 
1 x3 x x 2

1x 2
2 x2x x 1 x x 3 x x2x 1 x x x2 

7212 123yti 12 12372123 
1 3 2 22 1 2 21 3 

.,j2 X1X3 X1X2X3 X1X3 .,j2 X1X 2X3 X1X2X3 .,j2 X1X3 
1221 31 2 14 13 122 
2 x 1 X 2 72 

X1X 2 72 
X1X2x 3 2 X2 72 

X2X3 2 X2X3 
1 2 2 21 3 22 1 3 

72 
x 1 X2X3 X1X 2 X3 X1X2X3 72 

X 2 X3 X2X3 72 X2X3 

1 x2x2 1 x x x2 1 x x3 1 x2x2 1 x x3 1 x4 
213 721237213 223 7223 23 

Consistently with this notation, the vector { if>a/..;;;i: lal = d} of coefficients of ljJ 
will be denoted if>[d] . In this way, a form ljJ of degree d can be written in vector form 

ifJ(x) = if>(d]X[d](x). (5.4) 

Also, for every pair of integers, (j, k) such that j + k = d, the set of coefficients 

lexicographically ordered in both indices, defines an hj X hk matrix which we will denote 
if>IJ,kj(x). For example, for the fourth degree form in three variables (5.3) we have 

1q, 2 (4,0,0) 1 if> 72 (3,1,0) 1 if> 72 (3,0,1) 
1q, 2 (2,2,0) 1 if> 72 (2,1,1) 

1q, 2 (2,0,2) 

1 if> if>(2,2,0) if>(2,1,1) 1 if> if>(1,2,1) 1 if> 72 (3,1,0) 72 (1,3,0) 72 (1,1,2) 

1 if> if>(2,1,1) if>(2,0,2) 1 if> if>(1,1,2) 1 if> 

if>[2,2] 
7a (3,0,1) 72 (1,2,1) 7a (1,0,3) 

1q, 1 if> 1 if> 1q, 1 if> 1q, 2 (2,2,0) .../2 (1,3,0) .../2 (1,2,1) 2 (0,4,0) .../2 (0,3,1) 2 (0,2,2) 

1 if> if>(1,2,1) if>(1,1,2) 1 if> if>(o,2,2), 1 if> 72 (2,1,1) 72 (0,3,1) 72 (0,1,3) 
1q, 2 (2,0,2) 1 if> 7a (1,1,2) 1 if> 7a (1,0,3) 

1q, 2 (0,2,2) 
1 if> -7a (0,1,3) 

1q, 2 (0,0,4) 

These matrices of coefficients let us rewrite forms as quadratics in the monomials of lower 
degrees, generalizing what we usually do for quadratic forms. Although the result will 
not be used in this paper, for completeness we enunciate Euler's theorem, but we omit 
the proof. For j = 1 the proof can be found in Walker (1950), and general case in Taubin 
(1991). 

LEMMA 5.1. (EULER's THEOREM) For every form ljJ of degree d = j+k, we have 

(1)lfJ(x) = XuJ(x)tif>[j,k]X[k](x). 

If x' =Ax is a nonsingular linear transformation, for every form ,P(x), the polyno­
mial ,P(Ax) is a form of the same degree. In particular, every component of the vector 
X[d] (Ax) can be written in a unique way as a linear combination of the elements of 
X[d] ( x) , or in matrix form 
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where A[d] is a nonsingular hd x hd matrix. We will call the map A ~---+ A[d] the d-th 
degree representation, and the matrix A[d] the k-th degree representation matrix of A. 
Furthermore, 

LEMMA 5.2. The map A 1-+ A[d] satisfies the following properties : 

1 It defines a faithful linear representation (a 1- 1 homomorphism of groups) of the 
group of nonsingular n X n matrices GL( n) into the group of nonsingular hd x hd 
matrices GL(hd). That is, for every pair of nonsingular matrices A, B, we have 
(a): (AB)[d] = A[d]B[d] (preserves products), (b): if A[d] = B[d], then A= B (is 
one to one}, the matrix A[d] is nonsingular, and (c): (A[d])- 1 = (A- 1)[d]. 

2 It preserves transposition, i.e. for every nonsingular matrix A, we have (At)[d] = 
(A[d])t. In particular, if A is symmetric, positive definite, or. orthogonal, so is A[d]. 

3 If A is lower triangular, so is A[d] . In particular, if A is diagonal, so is A[d] . 
4 The determinant of A[d] is equal to IAim, with m = (n~~~ 1) . 

PROOF. This is. a well-known result in the theory of representations of Lie groups (Brock­
ett, 1973), but for completeness, we include an elementary proof in the appendix. 0 

Now we can establish the relations between the vectors and matrices of coefficients 
corresponding to congruent forms. The representation matrices play a central role. 

LEMMA 5.3. If tfo(x) is a form of degree d, x' =Ax a nonsingular coordinate transfor­
mation, tfo'(x') = tfo(A- 1x') is the form which describes the same curve or surface in the 
new coordinate system, and j, k are two nonnegative integers such that j + k = d, then 

In particular, <I>(dJ = A(dj<I>[d]. 

PROOF. In the appendix. 

i'f,' A-t"' A-1 'l"[j,k) = [j) 'l"[j,k) (k) . 

ln the particular case of orthogonal matrices, we have 

0 

CoROLLARY 5.1. With the same hypothesis of lemma 5.3. If the matrix A is orthogonal 

<~>u.kJ = AuJ<~>u,kJArkJ. 

Now we have all the elements to start computing invariants of forms. 

5.4: CO.MPUTATION OF LINEAR INVARIANTS 

Our first method involves the computation of determinants. It is not very useful by 
itself, but it will provide the basis to derive more complex invariants. 

LEMMA 5.4. Let t/> be a form of even degree d = 2k. Then, the determinant I<I>[k,kJi is 

a linear invariant of weight w = 2(n+~- 1 ) . In particular, it is an absolute orthogonal 
invariant. 
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PROOF. If x' = Ax is a coordinate transformation, from lemma 5.3 we have <I>[k,k] = 
A~jcf>[k,k]A~j, and taking determinants on both sides lci>[k,k]l = IA[kJI-2Ici>[k,kJI· But 

from lemma 5.2, IA[kJI = IAim, with m = ("+~- 1). D 

The second method is a consequence of the previous one. It 'applies to pairs of forms 
of the same degree under nonsingular linear transformations. 

CoROLLARY 5.2. Let cp and 1/J be two forms of even degree ·d = 2k. Then, the coeffi­
cients of the homogeneous polynomial of two variables {(81, 82) = I 81 cf>[k,k] + 82 W[k,kJI, 
are join rational invariants of the pair of forms. Equivalently, the generalized eigenvalues 
of the pair of square matrices are absolute invariants of the pair of forms. In particular, 
if the matrix W[k,k] is nonsingular, then the eigenvalues of the matrix cf>[k,k]W~~k] are 
absolute invariants of the pair. 

PROOF. Let x' =Ax be a coordinate transformation, and let {'(01 ,02 ) = 
I Otcf>[k,k] + 82\If[k,k]l· For each fixed value of (Ot, 82) # 0, let us consider the new form 

1 Otcfo(x) + 821/J(x) of degree d. If we apply lemma 5.4 to this form, we obtain 

{'(81,82) = IAI-2m{(Ot,02). 

Since this is true for every value of ( 01 , 02 ) # 0, it is a polynomial identity, and so the 
coefficients of IAI-2m{ and e' corresponding to the same powers 0{ 1 0~2 coincide, i.e . 

. , the coefficients of { are relative invariants of weight 2m. The homogeneous polynomial 
{ of degree hk has exactly hk roots in the projective line. These are the generalized 
eigenvalues ofthe pair of matrices cf>[k,k] and W[k,k]· Since e' = IAI-2m{, they are clearly 
independent of coordinate transformations, and so, absolufe invariants of the pair. D 

:! The previous result can be extended, with basically the same proof, to join absolute 
invariants of many forms. We state the results without proofs. 

CoROLLARY 5.3. Let cfot. ... , c/Jr be forms of even degree d = 2k . Then, the coefficients 
of the homogeneous polynomial of r variables {(Ot, ... , Or) = I 81 cf>t[k,k]·+ · · ·+Or W r[k,kJI, 
are join rational invariants of the forms. 

CoROLLARY 5.4. If ¢1, tPl ... , c/Jr, 1/Jr are forms of even degree d = 2k, and the matrices 
Wt[k,k], ... , Wr[k,k] are nonsingular, then the eigenvalues of the matrix 

cf>t[k,kJW1[Z,kJ · · · ci>r[k,k]w~!,kJ 
are absolute join invariants. 

If cp and 1/J are not forms of even degree, we can apply the construction of corollary 
5.2 to their squares ¢2 and tjJ2 . This is particularly interesting, even for forms of even 
degree, because the number of invariants obtained is equal to the number of coefficients. 
More generally, if cp is a form of degree d1 , and cp is a form of degree d2 # d1 , we 
can apply corollary 5.2 to cp(d/dt) and tfJ(d/d2 ), where d is equal to twice the minimum 
common multiple of d1 and d2 • Clearly, this method can also be applied to the cases of 
many forms. However, in these cases we have the extra computational cost of'evaluating 
the powers of the forms using symbolic methods. If the exponents are not too large, then 
this is also a practical way to obtain more invariants. 
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5.5. COVARIANT AND CONTRAVARIANT MATRICES 

Clearly the methods introduced in the previous section are only based on the properties 
of the representation matrices and the relations between matrices of coefficients of forms 
in different coordinate systems. In general a matrix C[j,k] whose components are functions 
of one or more forms ¢, 1/J, ... , not necessarily of the same degrees, and such that 

C[j,kJ(¢1',1/J', ... ) = A[jjCu,k](¢1,1/J, ... )A~j 

will be called a covariant matrix, and will be briefly denoted C[j,k], while the same ma­
trix function evaluated in a different coordinate system C[j,kj( ¢1', 1/J', .. . ) will be denoted 
cU,k]. Note that I C[d,d] I defines a new relative invariant of weight -2m. 

If the matrix C[j,k] satisfies 

CU,kl = AuJ C[j,kJ A(kJ 

instead, it will be called a contravariant matrix, and if it satisfies 

CU,kl = AuJ C[j,kJ A~j 
it will be called left contravariant and right covariant, with a similar definition for matri­
ces which are left covariant and right contravariant. Clearly, the determinant of a square 
covariant matrix C[d,d] is a relative invariant of weight 2m , and the eigenvalues of a 
square left covariant and right contravariant matrix are absolute invariants. 

The simplest example of a square contravariant matrix, is <I>[d:d] , which is generally 
well defined, unless the matrix <I>[d,d] is singular. We have already encountered examples 
of matrices which are left covariant and right contravariant : <I>[d,d] 'l'[d:d] . 

5.6. COMPUTATION OF ORTHOGONAL INVARIANTS 

If the coordinate transformations are restricted to Euclidean transformations, i.e. the 
matrix A is orthogonal, the four kinds of matrices defined above coincide, and we only 
talk about covariant matrices. That is, since A[d] is orthogonal when A is orthogonal, 
a matrix C[j,k] is covariant with respect to orthogonal transformations if it satisfies 

C(;,kl = AuJ C[j,kJ Afkl . 
If C[j,k] is also square, with j = k = d, then its hd eigenvalues are orthogonal invariants, 
because in this cas~ the matrix C[d,d] -OJ is also covariant for every value of 0, and so 
the coefficients, or equivalently the roots, of the characteristic polynomial I C[d,d] -OJ I, 
are invariants. In particular 

CoROLLARY 5.5. Let ¢1 be a form of even degree d = 2k. Then, the coefficients of the 
characteristic polynomial I <I>[k,k] - 0 I I are orthogonal invariants, or equivalently, the 
eigenvalues of the square 'matrix <I>[k,k] are orthogonal invariants. 

Note that, from the computational point of view, computing eigenvalues is much less 
expensive than expanding the determi"uants needed to obtain the coefficients of the char-
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acteristic polynomials, and computing eigenvalues requires in the order of n3 operations, 
where n is the size of the square matrices involved. 

In the orthogonal case we can also define a norm in the vector space of forms of degree 
d which is invariant under orthogonal transformations. This n9rm will be used later to 
define the Euclidean center of a polynomial. 

LEMMA 5.5. Let ¢(x) = <I>(d]X[d](x) be a form of degree d. Then, 

11¢11 2 <I>[d]<I>[d] = L: ~<I>~ 
a 

is an orthogonal invariant of ¢ . 

PROOF. If x' = Ax is an orthogonal transformation, and ¢' ( x') = ¢( x) is the corre­
sponding form in the new coordinate system, then <I>(~<I>(d] = <I>(d]A(d]A[d]<l>[d] = <I>[d]<I>[d] 
because A[d] is orthogonal. 0 

With respect to join orthogonal invariants of two or more forms, we also have a stronger 
result. 

LEMMA 5.6. Let ¢ and 'if; be two forms of degree d = j + k, then the eigenvalues of the 
square matrix <l>[k,j]W[j,k] are join orthogonal invariants of the pair. 

PROOF. It is sufficient to note that, if x' = Ax is a coordinate transformation, then 
<l>[k,j]W[j,k] is a covariant matrix : 

<~>(k.nw&,k1 = (Ark1 <~>rk.nAt 1) ( Au1wu,k1A[k1) 

because A[j] is orthogonal. 0 

The previous result has the obvious extension to join invariants of three or more forms, 
but we leave it to the reader. Also, we can apply the previous lemma to only one form. 
That is, we take 'if; = ¢, and the eigenvalues of the covariant matrix <l>[k,j]<I>[j,k] are 
orthogonal invariants of the form ¢ . We will use this construction in" the definition of 
the intrinsic Euclidean orientation of a polynomial, in section 8. 

A last technique to compute join invariants is based on combining several matrices 
of coefficients to build block matrices. The idea behind it is basically the same as in 
the previous cases, but with a little twist. Let's explain it for just three forms. The 
construction can be generalized very easily to more forms. 

LEMMA 5. 7. Let ¢(x), 'if;(x) and ~(x) be three forms of degrees 2j;j+k and 2k respec­
tively. Then, the eigenvalues of the block matrix 

( 
<I>[j,i] ![j,k]) 
W[k,j] .=.(k,k] 

are join orthogonal invariants of the three forms. 

PROOF. Just look at the transformation rules of the block matrix 

~y.kJ) = (AuJ 
~[k,k] 0 

0 )t 
A[kl ' 
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note that the block matrix function of the orthogonal matrix A is also orthogonal. D 

Note that, from the computational point of view, computing eigenvalues is much less 
expensive than expanding the determinants needed to obtain the coefficients of the char­
acteristic polynomials, and computing eigenvalues require in the order of n3 operations, 
where n is here the size of the square matrices involved. 

6. Brief historical remarks on invariant theory 

By the middle of the nineteenth century it was known that, if in the quadratic form 

¢(x1, x2) = !<I>(2,o)X~ + <I>(1,1)x1x2 + !<I>(o,2)X~ , 

we make a homogeneous change of variables x' = Ax , where A is a nonsingular 2 x 2 
matrix, we obtain a new quadratic form 

, ,1.1( I I) 1 <f>' I 2 <J>' I I 1 <f>' I 2 
· 'I' X1, X2 = 2 (2,o)x1 + (1,1)x1 X2 + 2 (0,2)x2 , 

and the function 'I(¢)= <I>(2,o)<I>(o,2)- <I>f1,1) of the coefficients of the form ¢ satisfies 

the following identity 'I(¢') = IAI-2 'I(¢) , where IAI is the determinant of the matrix 
A, i.e. 'I(¢) is a relative invariant of weight 2 (see Dieudonne, 1971; Dieudonne and 
Carrell, 1971 ). 

The classical invariant theory of algebraic forms was developed in the nineteenth cen­
tury by Boole (1841, 1842), Cayley (1845, 1889), Clebsh (1872), Gordan (1887), Hilbert 
(1890, 1893), Sylvester (1904), Grace and Young (1903), Elliot (1913) and others (Salmon, 
1866; Dickson, 1914), to solve the problem of classification of projective algebraic vari­
eties, i.e. sets of common zeros of several homogeneous polynomials. In this century, 
the main contributions have been by Weyl (1939), Mumford (1965) and others (Gure­
vich, 1964; Springer, 1977). The projective coordinate transformations define a relation 
of equivalence in the family of algebraic varieties, with two varieties being equivalent 
if one of them can be transformed into the other by a projective transformation. The 
classical approach to the classification problem, as for example the classification of pla­
nar algebraic curves defined by a single form ¢(x) of degree d in three variables, is 
to find a set of relative or absolute invariants, {'I1(¢),'I2(¢), ... } whose values deter­
mine the class that the form belongs to. One naturally tries to find a minimal family, 
and Hilbert (Hilbert, 1890, 1893; Ackerman, 1978) proved that there exist a finite num­
ber of polynomial invariants, a fundamental system of invariants, such that every other 
polynomial invariant is equal to an algebraic combination of the members of the funda­
mental system. But Hilbert's proof is not constructive, and the problem is then, how to 
compute a fundamental system of polynomial invariants. Algorithms exist, such as the 
Straightening Algorithm (Rota and Sturmfels, 1989), which is the implementation of the 
symbolic method of the german school, but they are computationally expensive (White, 
1989). It is important to emphasize that, although the symbolic method reduces the 
computation of all the polynomial invariants of one or more forms to the combinatorial 
problem of listing all the multilinear invariants of many vectors, the evaluation of the 
symbolic expressions is computationally much more expensive than the methods based 
on eigenvalues introduced in this paper. For example, the symbolic expression for the 
characteristic polynomial of a matrix, as a polynomial in the entries of the matrix, has 
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n! terms, but computing the eigenvalues of the same matrix only requires in the order 
of n3 operations. A detailed description of the symbolic method, using current notation 
and terminology, can be found in Weyl (1939) and Dieudonne (1971). For the complexity 
of matrix computations see Golub and Van Loan (1983). For a more detailed article on 
the history of invariant theory, see Parshall (1990). -

7. Intrinsic Euclidean center 

Our definition of the intrinsic Euclidean center, or just the center; of a 2D curve or 
3D surface of degree d ~ 2 is a generalization to d > 2 of the well-known case of a 
nonsingular quadratic curve or surface. We write the polynomial f of degree d as a sum 
of forms 

d 

f(x) = L fk(x), 
k=O 

where fk is a form of degree k , and /d =/: 0 . For example, a quadratic polynomial of 
two variables can be written as 

f(x) = h(x) + !1(x) + fo 
(!F(2,0) xr + F(1,1) X1X2 + !F(o,2) x~] + [F(l,o) X1 + F(o,1)x2] + [F(o,o)l· (

7
·
1
) 

For every fixed space vector y, the polynomial g(x) = f(x + y), as a polynomial in x, 
has exactly the same degree d, and so it can also be written in a unique way as a sum 
of forms 

d 

f(x + y) = g(x) = LYk(x), 
k=O 

where the coefficients of the homogeneous polynomial g k are polynomials of degree d- k 
in y . Particularly, the term of degree d is invariant under translation 

9d = /d' 
and the term of degree d- 1 is given by 

In the example of the quadratic polynomial of two variables (7.1 ), we have 

91 (xi. x2) [F(1,0) + F(2,0) Y1 + F(1,1) Y2J x1 + (F(o,1) + F(l,l) Y1 + F(o,2) Y2] x2 

We define the center of f as the vector y which minimizes the invariant norm (see 
Lemma 5.5 above) of the homogeneous polynomial Yd- 1 

11/d-1 + yt Y'/dll 2 
' 

a least squares problem, which has a unique solution if the vectors of coefficients of the 
partial derivatives of the term of degree d, the homogeneous polynomials 

8/d 8/d 
8x1 ' ... , 8xn 

/ 
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are linearly independent. In the example of the quadratic polynomial in two variables, 
we have 

llu1ll
2 = [F(l,o) + F(2,o) Y1 + F(1,1) Y2]

2 + [F(o,1) + F(1,1) Y1 + F(o,2) Y2F , 

which yields the value zero at the point 

( 
Y1) = _ (' F(2,o) F(1,1)) -

1 
( F(l,o)) 

Y2 F(1,1) F(o,2) F(o,1) 

when the 2 X 2 matrix in the right side is nonsingular. 

(7.2) 

Using the matrix formulation of previous sections, if fk(x) = F[~JX[kj(x) for k 

O,l, ... ,d, it is not difficult to see that Dfd(x)::::; F[d-1,1]X[d-1J(x). It follows that 
Ud-1(x) = [F[d-1] + F[d-1,1JY], and so 

IIUd-111
2 = IIF[d-1] + F[d-1,1JYII

2 

where the norm on the right side is the Euclidean norm. The conditions for unique 
minimizer is now a rank constraint on the matrix F[d-1,11 which has to be full rank, 
or equivalently F[1,d-1]F[d-1,1] has to be nonsingular. In general, the center of f(x) _is 
given explicitly by the following formula 

y = -F[~-1,1JF[d-1] , 

where F[~- 1 , 11 is the pseudoinverse of F[d- 1,11, which, if the condition for single solution 
is satisfied, is equal to 

Finally, we show that the intrinsic Euclidean center of a polynomial is a covariant 
vector. 

LEMMA 7.1. Let f(x) be a polynomial of degree d, x' = Ax+b an Euclidean coordinate 

transformation, f'(x') = f(At(x'- b)), y = -F[~- 1 , 11 F[d-1] and y' = -F[l_1,11F{d-l)' 

Then y' = Ay + b . 

The intrinsic Euclidean center can also be defined when the partial derivatives of fd 
are not linearly independent, but due to lack of space we will omit the description of 
such extension. 

8. Intrinsic Euclidean orientation 

The intrinsic Euclidean orientation of a 2D curve or 3D surface can be defined in several 
ways, all of them based on the fact that a symmetric matrix with nonrepeated eigenvalues 
has an associated set of ~igenvectors, thus generating 2n different orthogonal coordinate 
systems having unit vectors in the directions of these eigenvectors. In the example of the 
quadratic polynomial of two variables, the eigenvectors of the matrix 

(8.1) 
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define the orientation of the polynomial, if its eigenvalues are not repeated. 

For a polynomial f = L::t=o fk of degree d, we consider the symmetric n x n matrix 
[F[1,d-1]F[d-1,1J] defined by the coefficients of the form of degree d. In the case of the 
quadratic polynomial of two variables, it is the square of (8.J), which has the same 
eigenvectors, if its eigenvalues are not repeated. If the matrix [Fr1,d-1]F[d-1,1J] has all 
different eigenvalues, we define the intrinsic Euclidean orientation of f as the orientation 
induced by the eigenvectors of [Fr1,d-1]F[d-1,1J] . Then, iri order to disambiguate among 
the 2n different frames of reference, we will find the location of certain fixed points, 
other than the center. Every nonzero component of a fixed point can be used to chose 
the orientation of the corresponding axis. If the matrix has repeated eigenvalues, we will 
have to use information provided by the other homogeneous terms of f . In general, we 
can consider the eigenvectors of the n x n matrix 

d 

L wkF[l,k]F[k,1] (8.2) 
k=1 

where Wt, ... , Wd are fixed constants, chosen to minimize the likelihood of repeated 
eigenvalues among the family of expected curves or surfaces, where the polynomial f = 
Et=o fk is assumed to have been previously centered. For every value of w1, ... , Wd , 

the n eigenvalues of (8.2) are Euclidean invariants of the polynomial f, and although 
they are not sufficient to differentiate between any two polynomials of the same degree, 
they can be used as the first step towards the classification of f . 

The in variance of the intrinsic Euclidean orientation of a polynomial follows easily from 
the transformation properties of the covariance matrices of coefficients, and we omit the 
proof. 

We have defined the intrinsic Euclidean orientation for a d-th degree algebraic 2D 
curve or 3D surface, solely in terms of the coefficients of its d-th degree monomials. Is 
this a stable representation ? This representation should be stable for two reasons. First, 
the coefficients of the highest degree monomials are significant in the polynomials that 
we use. They are significant for the interest regions because lower degree polynomials 
do not fit the data well there. They are significant when each polynomial is a product 
of a group of low degree polynomials that we use because, again, a single lower degree 
polynomial would not fit a group of surfaces involved. Second, the regions chosen to be 
interest regions are those for which the representative polynomials are not sensitive to 
small changes in the region used. The groups of low degree polynomial surfaces that we 
use are those that can be easily found, that is, for which the segmentation is very stable, 
even in the presence of partial occlusion. 

9. Intrinsic Euclidean center and orientation of a 3D curve 

An algebraic curve has been defined as the set of zeros of a vector f(x) = (f(x ), g(x))t 
of polynomials of degree ~ d, with at least one of the two components of degree d. We 
can decompose the polynomials as sums of forms 

d 

f and g LUi, 
i=O 
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and without loss of generality, we will assume that the degree of f is d, and the two 
forms of higher degree, /d and gd , are orthogonal with respect to the invariant inner 
product of forms of degree d. Otherwise, we can replace the two polynomials by two 
independent linear combinations of them 

!' Auf+ A12g 
g' A21 f + A22g 

which satisfy this condition. This transformation does not change the curve or surface. 
If the degree of g is less than d , we define the center of the curve as the center of the 
surface associated with f. 

If both f and g are polynomials of the same degree d , by using the same argument 
as above, we can assume that the invariant norms of /d and gd are both equal to 1. 
In this case we define the center as the point y which minimizes the sum of the square 
norms of the two forms of degree d - 1 of the translated polynomials, the quadratic 

II F[d-1] + F[d-1,1] Yll 2 +II G[d-1] + G[d-1,1] Yll 2 
' 

' which can also be written as 

II H[d-1] + H[d-1,1] Yll 2 

where, for each pair of nonnegative integers j and k, the matrix H[j,k] is constructed 
by concatenating the corresponding matrices of coefficients of f and g 

Hu kJ = ( F[j,kJ) ' 
' G[j,kJ 

and we also write H[k] instead of H[k,O]. Finally, the solution is given by 

Y = -H{d-1,1JH[d-1] · 

when [H[1,d-l]H[d-1,1j] is nonsingular, and can be extended to the singular case as well. 

The intrinsic Euclidean orientation of an algebraic 3D curve can be defined in the 
same way, but using the matrices H[j,k] defined above, instead of the matrices F[j,k]· 

It can be proved that both the intrinsic center and orientation of a 3D curve defined 
in this way are independent of the coordinate system, but we omit the proof due to lack 
of space. 

10. A Remark on algebraic curve and surface fitting 

Since the homogeneous term /d of highest degree of a polynomial f = I:~=O fk of 
degree dis invariant under translations, the invariant norm of /d is an Euclidean invariant 
of the polynomial f . This invariant can be used as a constraint for fitting an algebraic 
surface or 2D to a data set V = {p1, ... , Pq} , by minimizing the mean square error 

1 q 

- 2:::: lf(p;)l2 
' 

q i=l 

constrained by 
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Figure 8. Fourth degree algebraic curve fits. 

Since this constraint is invariant under Euclidean transformations, the curve or surface 
defined by the minimizer of the problem is independent of the coordinate system. Book­
stein (1979) introduced the constraint 

2 1 2 2 1 2 
111211 = 2F(2,o) + F(l,l) + 2F(o,2), 

for fitting conics to planar data sets following this method, and Cernuschi-Frias (1984) 
derived the constraint 

II 11
2 1 2 2 2 1 2 2 1 2 

f2 = 2F(2,o,o) + F(l,l,O) + F(l,O,l) + 2F(o,2,o) + F(o,l,l) + 2F(o,0,2) · 
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(c) (f) (i) 

Figure 9. Intrinsic coordinate systems corresponding to the curves in figure 8. 

for fitting quadric ~urfaces to three dimensional data sets. The problem with this approach 
to algebraic curve and surface fitting is that, in general, the mean square error is a very 
biased approximation of the mean square distance from the data points to the set of zeros 
of f. The curve or surface defined by the solution of this minimization problem, although 
invariant, fails to represent the data near singular points. The methods described in 
section 4 produce better results. 
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Table 1. Invariant vectors corresponding to the curves in figure 8. 

(a) 
(b) 
(c) 
(d) 
(e) 
(f) 
(g) 
(h) 
(i) 

3.04 
2.98 
3.93 
3.95 
4.03 
5.64 
6.27 
5.92 
5.14 

9.31 
9.33 
8.97 
8.96 
8.92 
8.00 
7.52 
7.80 
8.33 

-2.49 
-2.59 
-3.76 
-3.76 
-3.90 
-6.24 
-7.07 
-6.55 
-5.58 

3.42 
3.17 
3.82 
3.89 
3.87 

-4.06 
-4.28 
-4.25 
-4.21 

11.22 
11.27 
10.73 
10.70 
10.66 

9.40 
. 8.69 

9.10. 
9.74 

Table 2. Distance matrix among invariant vectors corresponding to the curves in 
figure 8. 

(a) (b) (c) (d) (e) (f) (g) (h) (i) 

(a) 0 3 17 17 19 90 100 95 87 
(b) 3 0 18 18 20 88 98 93 85 
(c) 17 18 0 1 2 86 94 90 84 
(d) 17 18 1 0 2 87 95 91 85 
(e) 19 20 2 2 0 86 93 90 84 
(f) 90 88 86 87 86 0 14 6 10 
(g) 100 98 94 95 93 14 0 8 23 
(h) 95 93 90 91 90 6 8 0 15 
(i) 87 85 84 85 84 10 23 15 0 

11. Examples 

Figure 8 shows nine fourth degree 2D curves fitted to the data inside the grey circles 
using the methods described in section 4. 

Multiplying by the proper constants, we normalize the polynomials such that the 
Euclidean norm of their leading form be equal to one. If we write the leading form as 

( ) 
1 4 1 3 1 22 1 3 1 4 

!4 Xt, x2 = 24 F(4,o)x1 + 6 F(3,1)x1 x2 + 4 F(2,2)x 1 x 2 + 6 F(1,3)XtX2 + 24 F(o,4)x 2 , 

then its Euclidean norm is 

II 11
2 1 2 1 2 1 2 1 2 1 2 

/4 = 24 F(4,o) + 6F(3,1) + 4F(2,2) + 6F(1,3) + 24 F(o,4) · 

Then we construct the matrices of coefficients 

and 

F(2,2] 

~F(3,1) 
~F(2,2) 

7iF(2,2) 

~F(1,3) 

~F(3,1) 
F(2,2) 

)2F(1,3) 
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(a) 

Figure 10. Fourth degree algebraic surfaces. 

Table 3. Invariants corresponding to the surfaces in figure 10. Eigenvalues of the 
matrix F[2 ,2] • 

(a) 
(b) 
(c) 

-.6600 -.6600 
-.1775 .0000 
-.1808 .0000 

.7542 

.0000 

.0000 

.7542 

.5324 

.5262 

.8166 
1.0575 
1.0240 

1.8233 
2.1370 
2.1334 

For each one of the nine curves, we computed nine invariants of the leading forms. These 
vectors of invariants are shown in table 1. 

The first two invariants are the square roots of the two eigenvalues of the symmetric 
positive definite 2 X 2 matrix F[1,3]F[3,11 = F[1 ,3]F[~,a], and the last three invariants are 
the three eigenvalues of the symmetric 2 x 2 matnx F12,2] • The reason for taking the 
square roots is to maintain the five numbers within the same range, because F[1,3]F[3,1] 

is a quadratic function of the coefficients, while F12,21 is linear. The distances among 
the vectors of invariants, multiplied by ten and rounded to the closest integer, are shown 
in table 2. We can see in this table that these invariants very clearly separate the two 
classes. 

Figure 9 shows the intrinsic coordinate systems corresponding to the same curves. 
Since the leading forms are nonsingular, the centers are given by 

I -1 

y = -F1~, 1JF[3J = -F1i,31 [F[1,3JF{1,a]] F[3J , 

where F131 is the vector of coefficients of the third degree form 

( 
1 V 1 V 1 V 1 V )t I 

F[3] = "\76r(3,0) :;;72r(2,1) :;;72r(1,2) "\76r(o,3) ', 

The intrinsic Euclidean orientation are determined by the eigenvectors of the matrix 
F[1 ,3]F[3 ,1]. Since the two eigenvalues of these matrices are well separated in the nine 
cases, the determination of the intrinsic Euclidean orientation based on these matrices is 
accurate. 

Finally, figure 10 shows three fourth degree algebraic surfaces. The first surface, which 
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is the same one shown in figure 2, is defined by the polynomial x1- ~xi(x~ + x~)+ 
(x~+x~)2 -l. The second surface is defined by the polynomial x1+2xi-2x~x~+4xi-l. 
The third surface was obtained from the second one through an orthogonal coordinate 
transformation, and so, should have the same invariants. This can be seen in table 2. The 
invariants shown in that table are the six eigenvalues of the matrices F[2,2J constructed 
with the coefficients of the leading forms. 
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Appendix: Proofs 

PROOF. (Lemma 5.2) The multinomial formula is 

1 ( )d -d! x1+ .. ·+xn - 2::::: ~ xf' · · · x~" 
lal=d 

""' .l xa L..J a! . 
l<>l=d 

Let x and y be two n-dimensional vectors, and let us consider the multinomial expansion 
of the d-th power of the inner product yt x , the polynomial of 2n variables' 

1 ( t )d 1 ( )d 
d! Y X d! Y1X\+ · · · + YnXn 

I:lal=d a! (ylxi)<>• · · · (YnXn)a,. '\' 1 a a 
L--lal=d a! Y X 

This polynomial is homogeneous of degree din both x and y , and it is obviously invariant 
under simultaneous orthogonal transformations of the variables x-y . In vector form, 

J, (ytx)d = X[d)(Y)t X[d)(x). 
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1-(a)) Let A and B be nxn nonsingular matrices. Then, the following expression 

(AB)[d]X[d](x) = X[d]((AB)x) X[d](A(Bx)) = A[d]X[d](Bx) 
:::: A[d](B[d]X[d](x)) = (A[d]B[d])X[d](x) 

is a polynomial identity, and all the coefficients of the polynomials on the left side are 
identically to the corresponding coefficients of the polynomials on the right side, that is 

1-(b)) Follows from the uniqueness of representation of a homogeneous polynomial as a 
linear combination of monomials (5.2). 

1-(c)) From (1-(b)), the identity matrix is map to the identity matrix. Let A be a nxn 
nonsingular matrix. Apply (1-(a)) with B = A- 1 to obtain 

I = (AA- 1)[d] = A[d](A- 1)[d] => (A[d])- 1 = (A-1)[d]. 

2) Let A be a "! x n nonsingular matrix. Then, the following expression 

0 = J,[((Ay)tx)d _ (yt(Atx))d] 
= X[d](Ay)t X[d](x)- X[d](y)X[d](Atx) = X[d](Y)t ((A[d])t- (At)[d]) X[d](x) 

is a polynomial identity, and all the coefficients of the polynomial on the right side are 
identically zero, that is 

If A is symmetric, we have 

If the matrix A is symmetric positive definite, we can write A 
nonsingular n x n matrix B . Then 

A[d] = (BBt)[d] = B[dJB{d] 

and so A[d] is positive definite as well. If A is orthogonal, we have 

(A[d])-1 = (A-t)[d] = (At)[d] = (A[d])t. 

B Bt , for certain 

3) If a and f3 are two multiindices of size d, the (a, {3)-th. element of the matrix A[d] 
is 

I 

Where DfJ is the partial differential operator 

nfJ = (~) {3, ••• (_!_) f3n 
OX1 OXn 

If f3 follows a in the le~icographical order, then, for certain 1 < k < n we have 

al = f3t, ... , ak-1 = f3k-1, ak > fJk , 

and so 

ak+l + ' · · + an < f3k+1 + · · · + fJn · 
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Since the matrix A is lower triangular, the degree of 

as a polynomial in Xk+b •.. , Xn with coefficients polynomials in 
x1, ... , Xk is clearly not greater than ak+l +···+an, and so 

(
_a_)f3k+l ... (~)f3,. ((Ax)a) = o. 
OXk+l OXn 

It follows that Df3((Ax)<>) = 0, and the matrix A[d) is lower triangular. 

4) For every matrix A, there exist an orthogonal matrix Q, and a lower triangular matrix 

1· L such that A ::::: LQ . Since the map A 1-+ A[d) is a homomorphism, we have A[d) = 
L[d]Q[d] , where L[d) is lower triangular and Q[d] is orthogonal, i.e. the decomposition 
is preserved. Since IA[d)l = IL[d)l, without loss of generality we will assume that A is 
lower triangular itself. 

Now note that for every 1 :::; k :::; n the variable Xk appears only in the last term of 
the product 

( ) 

a· k i • 

}] r;aij Xj 1 

and so 

By induction in k = n, n-1, ... , 1, it follows that the a-th element of the diagonal of 
A[d) is 

c!!Da((Ax)a) = afi .. ·a~:; = a<> 

Since A is triangular, IAI =au·· ·ann, and we have 

IA[d)l = II a<> = a'Y , 

l<>l=d 

where 'Y = Liai=d a. By symmetry, all the components of the multiindex 'Y are equal, 
and so, for every 1 :::; i :::; n 

n 

'Yi = :L lYi = * :L :L lYi = :L = *(n~~~~) = (n+~-~) = m. 
l<>l=d i=l l<>l=d l<>l=d 

Finally 

0 
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PROOF. (Lemma5.3) Let D = (al8x1, ... ,alaxn)t be the vector offirst order partial 
derivatives. For every multiindex a let 

For every form of degree d 

1/;(x) = I: ;h '11 11 x 11 

l'll=d 

there is a corresponding homogeneous linear differential operator 

1/;(D) = I: ;h '11 11 D11 , 

l'll=d 

and every homogeneous linear differential operator of degree d can be written in this 
form in a unique way, i.e. the vector space of linear differential operators of order d 
is a vector space of the same dimension hd, and the map 1/J( x) 1-+ 1/;(D) defines an 
isomorphism of 'vector spaces. For integers j and k , the vector of differential operators 
X[kj(D) will be denoted D[k), and the matrix X[j,kj(D) will be denoted D[j,k). If </J is 
a form of degree d, from the Taylor formula <I> a= D"</J for every multiindex a, where 
{<I> a : Ia I = d} are the coefficients of </J. It follows by construction that <I>[ d) = D[d)ifJ, 
and <I>[j,k) = D[j,k)<fJ, for every pair of indices such that j + k =d. 

If x' = Ax is a coordinate transformation, the partial derivatives with respect to the 
two different coordinate systems are related by the chain rule 

a n ax'· a n a 
ax· = I: ax~ ax'. = 'I:A;; ax'· ' 

' j=l ' J j=l J 

or in matrix form, D' = (a I ax~' ... 'a I ax~)t = A-t D. It follows that 

D(kJ X[kJ(D') = X[kJ(A-t D) (A-t)[kJX[kJ(D) = A~jD[kJ, (11.1) 

and 

Dfk,iJ = X[kj(D')Xu1(D') 

= A~jX[kJ(D)Xu1 (D)A[j{ 
Finally, from (11.1) 

<I>[ d) = D(d) <P' ( x') 

and if d = j + k, 'from (11.2) 

X[kJ(A-t D)Xu1(A-t D) 

A~jD[k,JJA[j{ . 

A(dj<I>[dJ ' 

<~>u,kJ = Du,kJ<P'(x') A[jj (D[j,kJ<fJ(x)) A~j A-t<I> A-1 [j) [j,k) (k) . 

(11.2) 

D 

PROOF. (Lemma 7.1) It is sufficient to consider the cases of pure translation and pure 
rotation separately. Let us first consider the case of a pure translation, i.e. x' = x + 
b . Since the term of degree d of a polynomial is independent of the transformation 
parameters, we have 

fd(x') = /d(x), 
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or equivalently, 

F{d-1,1] 

The term of degree d - 1 is given by 

f~_ 1 (x') = /d-1(x)- D[1]/[d-1(x)b, 

or, in terms of the coefficients, 

F{d-1] 

The center is in this case 
I _ F,' fF,t 

y - - (d-1,1] (d-1] 

Now, the case of pure rotation x' = Ax . In this case, since the terms of different degrees 
transform independently of each other, we can apply the transformation rules studied in 
the previous chapter 

and obtain 

Finally, 

I _ F,' f F,' y - - [d-1,1] [d-1] 

F.' t (d-1,1] 

and 

Ay. 

0 
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