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Invariant theory yields a range of indexing functions, which can be used to identify plane 
objects in image data quickly and efficiently, without reference to their pose or to camera 
calibration. These indexing functions have found application in a fast model-based vision 
system that works well with a relatively large model base of 33 objects. This system is 
discussed in detail. 

A way in which one might compute indexing functions from the outline of a curved, 
three dimensional object is then described. This approach uses extensive symbolic com­
putations to construct a system of equations in object parameters which c~ easily be 
solved. This technique has been implemented, and is demonstrated on images of simple 
real scenes. 

1. Introduction 

Model-based vision systems search for instances of object models in images, typically 
using some form of shape information as the only clue to object identity. This process 
is complicated, because the outline observed in an image depends very strongly on the 
position of the object relative to the camera, and on the camera parameters. A widespread 
approach to recognition hypothesizes matches between aggregates of image features, and 
similar aggregates of model features. Given an hypothesized match, the position and 
orientation of the model can be computed. This information makes it possible to predict 
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the appearance of the object outline, and the resulting predictions can be checked against 
image data, to accept or discard the match. 

Versions of this approach have been successfully demonstrated by a number of authors, 
e.g. Huttenlocher and Ullman {1987), Mundy and Heller (1990) and Thompson and 
Mundy (1987). Ponce's ground-breaking algorithm for recognizing curved surfaces (in 
this volume, and (Ponce and Kriegman, 1989) has similarities to this approach. The 
algorithm hypothesizes a model instance, solves for the position and orientation· (pose) 
of the object most consistent with that hypothesis, and verifies the instance using this 
information. 

This form of hypothesize and test has unattractive features as a recognition algorithm. 
The primary disadvantage is that each model in the model base must be used, in turn, 
to generate hypotheses. It is, therefore, a difficult algorithm to use when the model base 
contains parameterized systems of models, rather than a discrete collection of models. 
For example, it is hard to use this approach to recover the ratio of major radius to minor 
radius in an image of a torus without generating large optimization problems (like those 
of Nguyen et al., '1991). Furthermore, the complexity of this approach is linear in the 
number of models; although this does not appear to be an insurmountable barrier, in 
practice it has lead to systems that have small model bases (two models is currently 
viewed as a respectable number). 

One way of overcoming this problem is to compute descriptors from image outline infor­
mation that immediately identify the object. We call such descriptors indexing functions, 
after Wayner (1991). These descriptors in effect provide an index into a model library. 
Clearly, an indexing function must not produce different values for different views of the 
same object, so that classical invariant theory can be used as a rich source of such func­
tions. As a number of reviews of the aspects of invariant theory relevant in vision have 
appeared (e.g. Forsyth et al., 1991a; Mundy and Zisserman, 1991), we do not review this 
area in detail here, but in section 2 provide some examples of relevant invariants that 
have been applied. 

We then describe a working model-based vision system that uses indexing functions for 
recognizing planar objects, in section 3. This system is able to determine object identity 
without searching a model base. Furthermore, the system is able to back-project objects 
to verify recognition without knowing any camera parameters. Another system of this 
type is given in Lamdan et al. (1988). Lamdan's system uses an affine model of the map 
from object to image planes, and so uses affine invariants. The affine model of projection 
breaks down when the object depth is not small with respect to the viewing distance. Our 
system models projection as a projective mapping, a model that works even for viewing 
large objects close to the camera. 

There are many objects which are not planar. Recognizing curved surfaces from a 
single view is an important open problem in computer vision. In section 4, we show one 
way in which indexing functions can be computed from the image outline of an algebraic 
surface. ' 
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2. Background 

We adopt the notation that corresponding entities in two different coordinate frames 
are distinguished by large and small letters. Vectors are written- in bold font, e.g. x and 
X. Matrices are written in typewriter font, e.g. c and C. 

Given a group g and a space M, an action of g on the space associates with each 
group element 9 E g a map 9 : M ---+ M: 

id(x) 

(91 x 92)(x) 

(2.1) 

(2.2) 

where 91 ,92 E g, id is the identity element of the group, and X is the group composition 
function. A scalar invariant of a group action has the following property: 

An invariant, I(p ), of a function f(x, p) subject to a group, g, of transformations 
acting on the coordinates x, is transformed according to I(P) = I(p).Here g E g 
and I(p) is a function only of the parameters, p. 

In what follows, we use the term invariant to mean exclusively a scalar invariant. An 
invariant under one group action may not be invariant under another-for example, the x­
coordinate of a point on the plane is invariant under translation along the y-direction, but 
not under plane rotations. We present a variety of invariants, invariant under projection, 
below. 

2.1. EXAMPLES OF INVARIANTS 

Example 1. The cross-ratio: The cross-ratio is a well-known projective invariant 
for four collinear points. Given Xi, i E {1, .. , 4}, in homogeneous coordinates, their cross 
ratio is: 

IMt2IIMa4l 
IMtaiiM24 

where M;j = (xi, Xj) Four concurrent lines can also be used to form a cro~s-ratio, because 
concurrent lines are dual to collinear points on the projective plane. 

Example 2. Five coplanar points: Given five coplanar points xi, i E {1, .. , 5}, in 
homogeneous coordinates, two projective invariants are defined: 

It= IM4atiiMs21l 
IM42tiiMsatl 

[2 = IM42diMsa2l 
IM4a2IIMs21l 

(2.3) 

where Mijk = (xi, Xj. xk) and IMI is the determinant of M. Should any triple of points 
become collinear the first invariant is undefined. An alternative definition appears in Mohr 
and Morin (1991). Again, we may use lines instead of points to form the invariants. 

Example 3. Projective invariants for pairs of plane conics: A plane conic can 
be written as xtc1x = 0, for x = (x, y, 1) and a symmetric matrix Ct, which determines 
the conic. A pair of coplanar conics has two scalar invariants, which we will describe 
here. Given conics with matrices of coefficients c1 and c2, we define: 

lc1 c 2 Trace(ct-1c2) 
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Under the action X = TX, Cl and C2 go to cl = TtclT and c2 = Ttc2T. In particular, 
using the cyclic properties of the trace, we find: 

Ic
1
C

2 
Trace(T-1c1- 1{Tt)-1Ttc2T) 

Trace( c1-1c2) 

lc1c2 

A similar derivation holds for Ic2 c1 • Note that c1-1c2 transforms to T-1c1-1c2T, which 
is a similarity transformation, and so its eigenvalues are preserved. This provides an 
alternative demonstration of invariance. Since a conic can be represented both by C and 
kC, where k is a scalar, to evaluate and interpret these invariants we need to make some 
assumption to set the relative scale of the conic matrices. All the conics we use will be 
normalized by the criterion JCI = 1. 

Example 4. Projectively invariant measurements: If there is a distinguished 
conic curve in the plane (say, c), then for two points x1, x 2 that do not lie on the conic, 
the function: 

(x1 T cxt)(x2T cx2) 
(2.4) 

is independent of the frame in which the points and the conic are measured. This can 
be used to define a projectively invariant metric (see Springer, 1964). Furthermore, this 
supplies an invariant for a configuration of a conic and two points, or a conic and two 
lines by duality. 

3. Recognizing planar objects using algebraic invariants 

This section describes briefly the current implementation of a model-based recognizer 
for plane objects that uses algebraic invariants as indexing functions. This system has a 
model base that at the date of writing consisted of 33 objects. A detailed description of 
this system appears in Rothwell et a/. {1991). Recognition proceeds in three stages: 

1 Feature extraction: Conics and lines are extracted from image edge data. 
2 Hypothesis generation: The invariants for groups of features are computed. We 

index the invariants measured against invariant values in the library using a hash 
table and, if a match is found, produce a recognition hypothesis. 

3 Hypothesis combination and verification: Hypotheses that could have come 
from the same object are merged. The final system of hypotheses is verified by pro­
jecting edge data from an acquisition image to the test scene. Should the projected 
and scene edge data be sufficiently close the match is confirmed. 

Although this system uses an hypothesize and test approach to recognition, the recog­
nition hypotheses are achieved by using image primitives to index directly into the model 
base, without searching the model base and without pose computations. Thus, given that 
the indexing functions used are sufficiently powerful to distinguish between a wide variety 
of shapes, the size of the system's model base should not affect its performance. 
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We describe each stage in greater detail below, assuming that a model library exists. 
In this system, object models consist of a set of lines and conics, the projective invariants 
of this set, the model name, and an outline of the modeled object in some view. In fact, 
all model data are extracted from images of the object, using a process described m 
section 3.5. 

3.1. SEGMENTATION 

The segmentation phase aims to extract straight lines, conics, and higher order curves 
from edge features so that we can form invariants. Chains of edge pixels are taken directly 
from the output of a local implementation of the Canny edge detector (Canny, 1983). 
Chains with single pixel breaks are reunited. Points where the chain turns sharply are 
marked (:Pridmore et al., 1987), and the chain is broken into separate segments at these 
points. We then use an efficient incremental fitting procedure, described in detail in 
Rothwell et al. (1991), to decide whether the points on a chain lie on a conic, a line, or 
some other curve. We note, however, that fitting conics to small portions of image curves 
is unstable, and avoid this practice. 

The segmentation produces a collection of lines, conics and higher order plane curves. 
Some duplications can appear in this collection if, for example, a straight line in the image 
is broken into two aligned segments by an~ occlusion event. In this case, the two segments, 
represented by two copies of the same line, are merged, using a procedure detailed in 
Rothwell et al. (1991). The straight lines are then grouped into chains, consisting of all 
lines that are fitted to a single chain of edge points, with an ordering around the chain. 
This grouping is an attempt to reduce difficulties with matching combinatorics. 

To determine all the invariants for groups of five lines in an image containing n lines 
we need to compute O(n5) invariantst, a cost that swamps the benefit of constant time 
library indexing. By using an ordered cycle we can compute invariants only for consec­
utive lines in a chain, with a cost of only O(n), yielding potentially fast recognition. 
This strategy can miss potential matches as a result of poor segmentation, or because 
occlusion can lead to cycles which do not consist of the right lines in the•right order. Our 
experience has been that this approach works well, when occlusion effects are moderate. 

3.2. GENERATING. RECOGNITION HYPOTHESES 

The segmenter produces a system of geometric primitives, consisting of chained lines, 
conics and other curves. At present our system uses only the chained lines and the conics. 
For each possible collection of primitives that will yield invariants, that is for each instance 
of five lines in sequence in a chain, two conics, or a conic and any two lines, we form a 
feature vector, consisting of the measured values of the invariants for those primitives. 
These values are then matched via a hash table to an object name in the model library. 
If the invariant values are within some error bound of indexing a model, the associated 
collection of primitives is considered to be a recognition hypothesis. 

In fact, many collections of primitives may come from the same model instance: for 

t Irritatingly, only O(n) of the invariants are functionally independent. 
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example, an object consisting of a square plate with a circular hole in it admits six 
collections, each consisting of a conic and two lines. The recognition hypotheses that these 
collections produce are compatible, in the sense that a single instance could explain all 
of them simultaneously. We merge all compatible hypotheses into joint hypotheses, using 
a process described in detail in Rothwell et al. (1991). This process substantially reduces 
the amount of time verifying match hypotheses, as verifying a single joint hypothesis 
verifies all its many constituents as well. 

3.3. VERIFYING JOINT HYPOTHESES 

The invariants we have used are effective shape descriptors, but they do not capture 
every detail of a shape. We must therefore confirm hypothesized matches to avoid false 
matches. Verification is expensive, and can be hard for occluded scenes. In typical present­
day systems, verification is based on using the computed pose of the recognized object 
and the camera parameters (normally the focal length of the lens and the position of the 
camera center on the sensing array) to predict its outline in the image (e.g. Mundy and 
Zisserman, 1991). The image is then searched for object features, other than those used 
to form the hypothesis, which are consistent with the predicted outline. 

Our verification scheme proceeds in a similar fashion, but requires no knowledge of 
camera parameters. This is an advantage, as these parameters are often hard to measure 
accurately. We exploit the fact that the map from a planar object to its image is a 
projectivity (see Forsyth et al., 1991a), and so is uniquely determined by four point 
correspondences or by four line correspondences. In fact, given any structure sufficiently 
complicated to admit projective invariants, we can determine this projectivity. We then 
apply this transformation to an outline of the model to project it into the image, where 
it can be compared with image edge data. 

If the projected edge points lie close (within 5 pixels) to image edge points of the 
same orientation (within 15°), we count this as support for the recognition hypothesis. 
If more than a certain proportion of the projected model data is supported [we use 50%­
as a support threshold; Mundy and Heller (1990), in a system for recognizing polyhedral 
objects in image data, used 30% successfully], the recognition hypothesis is confirmed. 

As computing the Euclidean distance from a point in the image to the nearest edge 
location is expensive, we use the 3-4 distance transform of Borgefors (1988) to provide 
an approximation. The distance transform applies chamfer masks to the output of the 
edge detection system. The orientation associated with image edgels is that of the Canny 
output, whereas that associated with projected model features depends on the type of 
the feature, and is detailed in Rothwell et al. (1991). 

Verification is hard for occluded scenes because an incorrect match may have as much 
image support as a heavily occluded correct match; that is, for scenes where there is 
dense edge data it is quite likely that a large number of edges may be close to, and have 
the same orientation as, the projected model edges. This means that there is a clear 
tradeoff in setting the support threshold. A high value will ensure that false matches are 
rejected, but may lead to false negatives. A low value will encourage false positives. More 
sophisticated verification algorithms are a subject of ongoing research. 
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Figure 1. Two different objects (lock sl.riker-plates) are recognized in this image even with substantial 
occlusion and significant perspective distort.ion. 

Figure 2. The three objects in the library are recognized despite considerable occlusion and clutter. 
Edge data from acquisition images is projected onto the test scene using the model to image 

transformation hypothesised by the match. The close match between the projected data (shown in 
white), and the scene edges shows that the recognition hypothesis is valid. 

3.4. EXAMPLES 

A recognition example is shown in figure 1. Two different objects are found in the 
image by the recognizer even though one of the objects is substantially occluded and 
the other has undergone significant perspective distortion. Figure 2 shows another set of 
typical results. In this figure, a bracket is recognized in a scene with occlusion and clutter 
caused by other objects. 

Figure 2 also demonstrates the verification process. The edge data from an image used 
to model the bracket has been projected onto the test image and is shown in white. The 
close correspondence between this data and the test edge data (59.3% within 5 pixels 
and 15°) confirms the recognition hypothesis. 

3.5. BUILDING A MODEL LIBRARY 

A novel aspect of this work is the ease with which models may be acquired. We extract 
all possible invariants from an unoccluded view of the isolated object, and enter these 
invariants into a feature vector. We now measure another feature vector for the same 



190 D. Forsyth, J.L. Mundy, A. Zisserman and C. Rothwell 

object from a different viewpoint. We then compare these two vectors. If, for a given 
value in the first vector, a corresponding value exists in the second vector, we accept 
that the lines involved are coplanar, correspond, and will give rise to a useful invariant, 
and insert this information into the model-base. The edge data forming these features 
are aiso stored, for use in the hypothesis verification stage. 

If, however, a measurement changes between two different viewpoints we know that 
the features used to compute the measurement are not coplanar, or that the features are 
a result of segmentation problems, and so the measurement is not useful, and is rejected. 

4. Algebraic techniques for 3D object identification 

Not all objects are planar. There is great interest in recognizing three dimensional 
objects from their outlines. This is a difficult problem because, as one views a surface 
from different viewpoints, the appearance of the outline changes because the contour 
generator (the curve, lying on the surface, that projects to the image outline) moves 
around on the surface. In this section, we consider using the outline as a cue to the shape 
of the surface. 

Indexing functions cannot be recovered from a single outline if the surfaces involved 
are completely unrestricted because, for example, we can disturb any such function by 
adding a smooth bump to the side of the surface that is hidden from the viewer. In this 
section and the next, we show ways of obtaining such descriptors from a single outline, for 
algebraic surfaces, i.e. surfaces given by the vanishing of a single polynomial. Algebraic 
surfaces have substantial advantages as a model problem. 

• They are "rigid", in the sense that local modifications to the surface are not possible 
(informally, one cannot hide an extra bump on the surface). 

• Collections of algebraic surfaces are parameterized in a relatively accessible way. 
This means that geometrical matters like hi-tangency and singularity are relatively 
easily settled. 

• Algebraic surfaces, particularly quadrics and hi-rational cubic patches, are widely 
used in industrial applications. 

• The contour generator and the outline of an algebraic surface are both algebraic 
curves. It is particularly easy to determine the form of both curves, given the 
surface. Algebraic curves have interesting and useful global geometric properties, 
and, unlike smooth curves, have an important and useful intrinsic geometry. 

It is natural to allow complex points when considering algebraic curves: for example, if 
one admits only real points, the curve x2 +y2 + 1 = 0 has no geometry worth mentioning. 
Although considering complex points leads to elegant geometry, it is hard to envisage 
imaging them with a CCD camera. In fact, if a curve has a sufficiently rich set of real 
points, it is possible to determine its coefficients. In turn, if one knows the coefficients of 
a curve, one can construct its complex points. 

From now on, we assume that all the curves and surfaces we deal with are irreduciblet, 

t Loosely, this means they consist· of. only a single curve or surface, if one considers the complex 
points as well. For example, the conic x 2 - y 2 = 0 is reducible, because it consists of a pair of lines. The 
conic x 2 + y2 - 1 = 0 is irreducible. Unfortunately, an irreducible curve can have real points that look 
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and that the coefficients of the curve can be determined from its real points alone. These 
are reasonable assumptions. First, the outline of a generic irreducible surface from a 
generic viewpoint is irreducible. Second, we will primarily deal with surfaces where the 
real points determine the surface {it is not possible to manufacture algebraic surfaces 
without this property), and we can reasonably assume that the 'real points of the outline 
determine the full outline. 

In this section, we are going to concentrate on recovering some parameters of a surface, 
given its outline, assuming that the surface comes from some restricted class of surfaces. 
These parameters should be invariant to Euclidean actions at least, and so can be used 
to identify the surface. 

4.1. THE OUTLINE 

When a surface is viewed under perspective, its outline is given by the intersection 
of the image plane with a cone formed by a system of rays through the camera focal 
point and tangent to the surface. Without loss of generality, we can assume that the 
camera focal point is at the origin. Figure 3 shows this cone for a simple shape. If the 
surface is given by P(x, y, z) = 0, the tangency condition is given by x ~~ + y~~ + z ~~ = 
Q(x, y, z) = 0. The equation of the cone, as a function of the coefficients of the surface, 
can be computed by eliminating t from P(tx, ty, tz) and Q(tx, ty, tz). This resultant 
vanishes along the whole length of any line through the origin given by (x, y, z), if there 
is a point on the line where the line is tangent to the surface. Thus, it is homogeneous and 
represents the desired cone through the origin. The image outline is the curve obtained 
by slicing this cone with a plane. 

LEMMA 4.1. For a generic surface of degree n viewed from the origin, the cone, and 
hence its outline, has degree n(n- 1). 

PROOF. We work in projective space, and consider a generic focal point {fo,!l,/2,/3). 
The surface, say P(x, y, z, t), haS degree n, and the tangency condition requires that 
planes tangent to the surface at a point on the contour generator must pass through the 
focal point. This is: 

aP aP aP aP 
fo- +11-+h- +/3- = 0 

oxo 8x1 8x2 ox3 
and has degree n - 1. The curve is the complete intersection of these two hypersurfaces, 
and so has degree n( n - 1) in the generic case. D 

4.2. RECOVERING SURFACE PARAMETERS FROM THE OUTLINE 

The cone tangent to the surface is the key to our argument. This cone can be completely 
reconstructed from the image outline, given the focal point and its position relative to the 
image plane in camera coordinates. We assume that this information is always available, 
and work with the cone. Any rigid motion of the camera with respect to the surface 
coordinate frame can be expressed as a translation of the focal point followed by a rotation 

like several distinct connected curves. In this case, each component implies the other, because one can 
determine the coefficients of the whole curve from each separate component. 
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fucalpoint 
r-------, 

Figure 3. The cone of rays, through the focal point and tangent to the object surface, that forms the 
image outline, shown for a simple object. 

of the camera, keeping the focal point fixed. Although such a rotation changes the outline 
seen in the image because it changes the position of the image plane with respect to the 
cone, it has no effect on the geometry of the cone itself, but merely rotates the frame 
within which the cone is measured. As a result, if we consider only those properties of 
the cone that are invariant to rotation, camera rotation parameters no longer come into 
our problem. Much of what follows relies on being able to compute rotation invariants of 
cones and surfaces. We have found the symbolic method of 19th century invariant theory 
(discussed in, for example, Abhyankar, 1992; Forsyth et al., 1991a; Salmon, 1885; Weyl, 
1946) to be the best technique for computing such expressions. 

We first compute some of the rotation invariants of a general cone or system of cones 
of the given degree, as functions of the coefficients of the cone. The numerical values of 
these rotation invariants can be measured from image data. However, because we are 
dealing with a parameterized class of surfaces, we can compute symbolic expressions 
for the cone's rotation invariants as functions of surface parameters and the translation 
between the surface and the focal point. In particular, the surface P(x, y, z) = 0 is 
translated to some point in the camera frame, so that its equation becomes P'(x, y, z) = 
P((x- tx), (y- ty), (z- tz)) = 0, and the coefficients of the cone over this surface 
are computed symbolically. The rotation invariants of this cone are functions of the 
coefficients of the ,translated surface alone. We can measure these invariants, and compute 
them as symbolic expressions in the coefficients of the translated surface. The result is a 
polynomial system in surface parameters and translation. 

4.3. WORKED EXAMPLE AND RESULTS 

The method as described requires a large amount of symbolic computation to set up, 
but has been shown to work on simple surfaces. Here we work the example of a pair of 
spheres of unknown but equal radius, and we will recover the ratio of their 3D separation 
to the radius (which is clearly a Euclidean invariant) from a single image. We will denote 
the separation of the spheres by d, and their radius by R. 
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The cone generated by a sphere is right circular, and so the problem of determining the 
rotation invariants of the image cone becomes one of determining the rotation invariants 
of a pair of quadratic cones in space. If we write one cone as I:i+i+k=2 /iikxiyi zk = 0, 
and the other as I:i+Hk=2 Uiikxiyi zk = 0, we obtain from t_he symbolic method the 
following invariants, among others: 

i2 

ia 

i4 

is 

</>1 = 

{-3go2oU~o1 + 3gouU1o1Uno- 3goo2Y~10- 3u5uY2oo + 12goo2Uo2oU2oo) 
(2(2uoo2 + 2go2o + 2g2oo)3

) 

( -u5u + 4goo2Uo2o- Y~o1- Y~10 + 4goo2U2oo + 4go2oU2oo) 
(2(2goo2 + 2go2o + 2g2oo)2) 

( -3/o2offo1 + 3/ou/lOdno - 3/oo2Jf10 - 3/Juhoo + 12/oodo2ohoo) 
(2(2/oo2 + 2/o2o + 2hoo)3

) 

(- f6u + 4/oodo2o - f'fot - ff1o + 4/ood2oo + 4/o2ohoo) 
(2(2/oo2 + 2/o2o + 2hoo)2) 
(2(/oo2 + /o2o + hoo)</>1) 

( ..,..Y5u + 4goo2Uo2o - Y~o1 - Y~1o + 4goo2U2oo + 4g02oU2oo) 
where 

(-hooY5u + 4hooUoo2U020 + /uoUonU1o1 - 2/101U020U1o1 - /o2oYio1 -

2/uoUoo2Uno + fto1Uouuuo + /ou91o19no- /oo2Ui10 + 4fo2o9oo292oo-

2/ouUon92oo + 4/oo2902092oo) 

((- f6u + 4/oodo2o - ffo1 - Jf10 + 4/ood2oo + 4fo2ohoo)4>2) 
( 4(2goo2 + 2go2o + 2g2oo)) 

where 

(-ff10Uoo2 + 4fo2ohooUoo2 + ftoduouou - 2/ouhoouou - tfo1Uo2o + 
4/ood2oo9o2o- 2/o2o/101U1o1 + /ou/uoU1o1 + /ouftolUuo-

2/oo2/no9uo - f6uu2oo + 4/oo2/o2oU2oo) 
((/oo2 + /o2o + hoo)</>a) 
(2uoo2 + 2go2o + 2g2oo) 

where 

(2/o2oUoo2 + 2hooUoo2 - /ouuou + 2/oo2U020 + 2hooUo2o - /1o1U1o1 -

/uoUuo + 2/oo2U2oo + 2/o2oU2oo) 

These invariants were obtained from the symbolic method without regard to their geomet­
rical meaning. However, this system will capture such geometrically meaningful rotation 
invariants as the angle between the cones, and their eigenvalues. 

The apex of the cones lies at the focal point, and the image outlines form a section 
of the cone. Thus, if the position of the camera focal point is with respect to the image 
coordinate system, we can reconstruct the cones from an image outline, and so determine 
its coefficients numerically. By substituting these numerical values into the symbolic 
expre~sion above, we can determine numerical values of these invariants from image 
data. These numerical values capture the geometry of the cones and the focal point, up 
to rotation, because they are rotationally invariant. As a result, we can ignore camera 
rotations. We will use these measurements to determine surface parameters. 

However, we have more than just numerical measurements, because we can determine 
symbolic expressions for the cones over a pair of spheres, both of arbitrary radius R, and 
separated by an arbitrary distance d, and translated to some arbitrary point in space 
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(tx, ty, tz). These expressions can be computed using elimination, in the manner described 
above. We now substitute the symbolic expression for each coefficient in the expressions 
for the invariants given above, and obtain symbolic expressions for the invariants in terms 
of the geometry of the surface, and the translation from the surface to the focal point. For 
example, in the geometry we are working with, the following substitution would apply: 

9101 ----* ( -8dtz - 8txtz) 

This process yields a system of equations of the form ~ = mi, where Pi and qi are 
polynomials in R, d, and (tx,ty,tz). Here mi is the measured value of ii, obtained by 
substituting the numerical values of the cone coefficients we determined above. 

These expressions are extremely complicated, but admit a simplifying change of vari­
ables. We write: 

= 
v2 = R 2 - t2 - t 2 - t2 - d2 - 2dt X y Z X 

v3 - ' 3R4 - R 2d2 - 2R2dt - 3R2t 2 - 3R2t 2 + d2t 2 - 3R2t 2 + d2t 2 
- X X y y Z Z 

V4 d2 + 2dtx 

By making this change of variables, and then cross multiplying and subtracting to get 
equations that vanish (i.e. Pi - mHi = 0), we obtain a system of seven equations. It 
turns out that we require only the following three, obtained from i 5 , i 6 , and i 7 : 

e1 = 128v2(4msv~ + 8msv1 v4 + 10msv1v2 + 4msv4v2 + 4msv~- va) 

e2 = 128( V4 + v2)( 4m6v~ + v1 v4 + 2m6v1 V4 + 10m6V1 v2 + 4m6V4V2 + 4m6v~ - va) 

ea -16(m7(4v~ + 8v1v4 + 16v1v2 + 16v4v2 + 16vn- 2v~- v1v2- 2v4v2- va) 

each of which vanishes. Because these equations vanish, the expressions 16e1 + 128v2ea 
and 16e2 + 128( V4 + v2)ea must vanish; expanding these expressions, factoring the result, 
dropping irrelevant factors (those not containing any m;), and recalling that the values 
of the m; are known, we obtain two homogeneous linear equations in four unknowns, 
v1 ... v4. Adjoin ea, substitute uo for.!!.:!., u1 for ~vv and u2 for .!!i, and we obtain: 

Vt 1 Vt 

4ms- 4m7 + (1 + 2ms- 8m7)u1 0 

4m6- 4m7 + (1 + 2m6- 8m7)u2 + (1 + 2m6- 8m7)u1 0 

-64m7 - 128m7u2 + 16y- 256m7u1 + 32u2u1 - 256m7u2u1 + 
32u~ - 256m7u~ + 16uo 0 

Here the m; _are known, numerical measurements, so this system is triangular, and can 
be solved uniquely for u 0 ,_ u 1 and u2. 

We now consider the expressions for the v;; write these as v;- f;(tx,ty,tz,d,R) = 0, 
t2+t2+t2 

and substitute as above, writing as well a for (~)2 , f3 for~ and 1 for "' R~ •. Note 
that a is the parameter we wish to recover. Discarding irrelevant factors, we obtain: 

-1 + a + 2/3 + 1 + uo 0 

-3 + a + 2/3 + /32 + 31 - a1 + u 1 0 

-a- 2/3 + u2 0 
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Figure 4. Four views of a pair of ping-pong balls, placed approximately Scm apart. 

· I Given that u 0 , u1 and u 2 are uniquely defined by the triangular system above, we can 
solve this system up to a two-fold ambiguity in a. 

Figures 4 to 6 each show four views of a pair of ping-pong balls, lying on a sheet of 
black cloth. In each figure the parameter a is different. Figure 7 shows a graph of the 
values of a obtained for these figures, by fitting conics to the image outlines and using 
the measurements and system of equations described above. The value is constant as the 
viewpoint changes, and changes as the geometry changes, which is the property required 
for recognition. These measurements require a calibrated camera, but are impressively 
robust to errors in camera calibration. The results shown were obtained from a camera 
that had been calibrated by reading the focal length from the lens, computing the aspect 
ratio using a tape measure, and assuming the camera center was in the center of the 
pixel array. 

It is, however, essential for a good result to ensure that the coefficients of the conic 
fitted to the image outline genuinely represent a right circular cone (i.e. the conic matrix 
has two equal eigenvalues), and the fitting program was designed to accomplish this. 

4.4. DISCUSSION 

In the example given above, a number of apparently arbitrary changes of variable led 
to a simple system with a low Bezout number. In fact, this is an illustration of a general 
principle, that the system above admits a functional decomposition, as the following 
argument illustrates. 
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Figure 5. Four views of a pair of ping-pong balls, placed approximately lOcm apart. 

Figure 6. Four views of a pair of ping-pong balls, placed approximately 15cm apart. 
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Figure 7. This graph shows the parameter a measured and plotted against the view number, for the 
views of ping-pong balls shown above. In each case, the parameter is constant as the viewpoint­

changes, and changes when the geometry changes. 

Recall that the surface P(x, y, z) = 0 is translated to some point in the camera frame, 
so that its equation becomes P'(x,y,z) = P((x- tx),(y- ty),(z- tz)) = 0, and the 
resulting surface is viewed from the origin. 

The outline cone is a cone of tangents to P', passing through the focal point. The 
coefficients of this cone are functions of the coefficients of P', and nothing else. This 
means that the rotation invariants of this cone are also functions of the coefficients P', 
and nothing else, Since they are invariant to rotation they must be rotation invariants 
of P'. 

In turn, for the groups we are dealing with, there is a finite number of "primitive" 
invariants, and all others are functions of these primitives. As a result, a functional de­
composition of the system derived from the rotation invariants of the cone is guaranteed 
to exist, although it may be trivial. Hence, as in the example above, the cone system 
consists of polynomials in a set of new variables which are themselves non-trivial polyno­
mial functions of the original variables, that is, the coefficients of P and the translation 
of that surface (tx, ty, tz) above. We can therefore write the system derived from the cone 
as Qi(Vj{tx,ty,tz,)..)) = 0, where the Vj are known functions. This is what yielded the 
substitutions v1 ... v4 above. 

It appears that this functional decomposition might be achieved automatically by a 
symbolic algebra program, at least in principle, because the vi can be determined. To 
date, we have constructed the functional decomposition by hand. 

Since the Euclidean invariants of the translated surface must also be invariant to 
rotation, they are functions of its primitive rotation invariants, and so it should be 
possible to recover soine' or all of the surface's Euclidean invariants after only the first 
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stage of solution process. In fact, we could simply solve for the numerical values of 
the "primitive" rotation invariants (the Vj ), and plug these values into the expressions 
for the Euclidean invariants as functions of the rotation invariants. The argument has 
merit, however, because it suggests an explanation for the relatively low Bezout number 
observed. 

5. Conclusions 

Indexing functions offer a highly successful approach to building a model-based vision 
system based around plane objects. We have demonstrated this approach in a model­
based vision system that is successful at recognizing instances of objects drawn from a 
large model base. 

Constructing indexing functions that identify a three-dimensional curved surface from 
its outline remains a challenging problem. In this paper, we have shown an approach to 
this problem which has been successfully implemented. This approach requires demand­
ing symbolic computations, but works on real images of simple scenes. In a companion 
paper (Forsyth et al., 1991b ), we describe a construction that yields indexing functions 
for rotationally symmetric curved surfaces, which require no knowledge of camera pa­
rameters. Recent unpublished work shows that indexing functions can be computed from 
the outline of a generic algebraic surface of any degree, by studying the embeddings of 
the outline into space. 
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