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Chapter 8 

Distance Metrics for 
Comparing Shapes in the Plane 

Daniel P. Huttenlochert 

Computer Science Department 

Cornell University, Ithaca, NY 14853 

Klara Kedem 

Computer Science Department 

Tel Aviv University, Tel Aviv, Israel 

A central problem in pattern recognition, computer vision, and robotics is determining 
the extent to which one shape differs from another. We say that two geometric objects 
A and B have the same shape if there exists a transformation T E T such that T(A) = 
B, where T is some transformation group (e.g. translation, similarity). That is, we 
define a shape to be an equivalence class of geometric objects under a given group of 
transformations. We are concerned with developing functions that measure the difference 
between two such shapes. We argue that for pattern matching applications it is important 
that such comparison functions be metrics. We show efficient methods of computing 
a number of different metrics on shapes, and present examples illustrating that these 
functions agree reasonably well with human intuition. In particular, we describe functions 
for comparing shapes composed of point sets in ~d ( d = 2, 3) under translation, and for 
polygons under similarity transformations. 

1. Introduction 

Determining the degree of resemblance between two shapes is an important problem in 
a number of fields, including pattern recognition, computer vision and robotics. Recently 
we have been investigating metrics for comparing shapes (Arkin et al., 1991; Huttenlocher 
and Kedem, 1990; Huttenlocher et al., 1991a). Here we discuss some of these metrics 
and the methods for computing them. We define a shape to be an equivalence class of 
geometric objects, such that two objects A and B have the same shape exactly when there 

f This work was supported in part by NSF grant IRI-9057928 and matching funds from General 
Electric and Kodak, and in part by the Air Force Office of Scientific Research under contract AFOSR-
91-0328. The second author was supported by a fellowship from the Pikkowski-Valazzi FUnd and by the 
Eshkol grant 04601-90. 
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exists some transformation T E T such that T(A) = B, where Tis a given transformation 
group. When A and B are the same shape according to this definition, we say A= B. 
For example, the triangles A and B with side lengths 3, 4, 5 and 6, 8, 10 respectively have 
the same shape under a similarity transformation (translation, rotation and change of 
scale). In this paper we consider several types of geometric objects: (i) sets of points in 
lRd, d = 2, 3, (ii) sets of line segments in the plane, and (iii) simple polygons in the plane. 
We discuss methods for comparing shapes of the first two types under translation, and 
shapes of the third type under similarity transformation. 

In pattern recognition and model-based vision applications, a stored set of 'model' 
shapes is often compared with an unknown shape that has been detected by some sensory 
device. The difference between each model shape and the unknown shape is computed, 
and the model that is closest to the unknown shape is reported as the best match. 
We have argued elsewhere (Arkin et al., 1991) that for such applications the function 
used to measure the difference between shapes should be a metric (see Mumford, 1987) 
for similar arguments). This means that given a class of geometric objects the shape 
difference function d should obey the following properties, for any three shapes A, B and 
c, 

1 d(A, B) ;:=:: 0 for all A and B. 
2 d(A, B)= 0 if and only if A= B (Identity). 
3 d(A, B)= d(B, A) for all A and B (Symmetry). 
4 d(A, B)+ d(B, C);:=:: d(A, C) for all A, B, and C (Triangle Inequality). 

The triangle inequality is a particularly important property, because it guarantees that 
if several 'model' shapes are similar to a given instance then these shapes must also be 
similar to one another. Thus, for example, it is not possible for two highly dissimilar 
models to be both similar to the same instance. Current pattern recognition and model
based vision methods generally compare shapes using functions that are not metrics, and 
thus may report that several dissimilar models match the same input, which is highly 
counterintuitive. In addition to obeying metric properties, a shape comparison function 
should also be easy to compute in order for it to be of practical use. The functions that 
wci describe can be computed efficiently both in theory and in practice. 

We first discuss a metric for sets of points in lRd under translation, and describe how 
to compute it efficiently for d = 2, 3. This distance is based on the Hausdorff metric, and 
was initially reported in Huttenlocher and Kedem (1990). For sets of points in the plane, 
the distance can be computed in time O(pq(p + q) log(pq)) for the £1, £2, L00 metrics, 
where p and q are 'the number of points in the two sets being compared. For sets of points 
in three-space, the distance can be computed in time O((pq)2 (p+q)a(pq) log2(pq)), where 
p and q are again the number of points in the two sets and where a( n) is the extremely 
slowly growing inverse Ackermann function. This technique for comparing point sets in 
the plane can be generalized to the problem of comparing sets of segments rather than sets 
of points; yielding an algorithm that runs in time O((pq)2a(pq)). These algorithms for 
computing the Hausdorff distance under translation are relatively involved to implement, 
and thus we also describe an approximation method that operates on a rasterized model 
and image (e.g. where the points can all be made to have integer coordinates). This is a 
provably good approximation scheme that runs very quickly in practice. 

The second distance function that we discuss is for comparing polygonal shapes under 
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similarity transformations. This distance was originally reported in Arkin et al. (1991). 
The distance function can be computed in time 0( mn log( mn)) for two simple polygons 
with m and n vertices respectively. It is based on computing the L 2 distance between 
the turning function representations of the two polygons. 

2. A Metric on Sets Under Translation 

A shape comparison function D(A, B) that measures the minimum Hausdorff distance 
between two point sets A and B under translation was defined in Huttenlocher and 
Kedem (1990). Here we present the definition of this function, claim that it is a metric, 
and describe methods for computing it efficiently. 

The Hausdorff distance between two sets, A = { a 1 , ..• , ap} and B = { b1, ..• , bq}, 
where each a;, bj is either a point or a line segment, is given by 

H(A, B)= max(h(A*, B*), h(B*, A*)) (2.1) 

where A* (resp. B*) is the union of all points and segments in A (resp. B), 

h(A*, B*) = max min p(a, b), (2.2) 
aEA• bEB• 

and p(a, b) is the underlying metric. The function h(A*, B*) is the directed Hausdorff 
distance from A* to B* , and measures the distance of the point of A* that is farthest 
from any point of B* (under p). Intuitively, the Hausdorff distance is small if and only 
if each point of A* is near some point of B* and vice versa (it measures the distance of 
the maximal outlying point). 

It is well-known that the function H(A, B) is a metric over the set of all closed, 
bounded sets. The Hausdorff distance, H(A, B), can be trivially computed in time O(pq) 
for two point sets of size p and q respectively; with some care, this can be improved to 
O((p + q) log(p + q)) (Alt et al., 1991). 

The shape comparison function D(A, B) is then defined to be the minimum value of 
the Hausdorff distance under translation. Without loss of generality we assume that the 
set A is fixed, and only the set B is allowed to translate, then 

D(A, B)= minH(A, B EEl x) 
X 

(2.3) 

where BE£) x = { b + x lb E B}, and H is the Hausdorff distance as defined above. That is, 
the distance is defined to be the minimal value of the Hausdorff distance over all possible 
translations of the set B. 

CLAIM 2.1. D(A, B) is a metric. 

PROOF. Clearly D(A, B) is everywhere non-negative, is symmetric and has the identity 
property because H(A, B) is a metric and has these properties. We show that D(A, B) 
also satisfies the triangle inequality. 

Denote by Xac the translation of A that minimizes H(A, C), and similarly by X be the 
translation,ofB that minimizes H(B,C). Let A'= AE!1Xab and B' = BE!1Xbc· Since the 
Hausdorff distance is a metric, the triangle inequality holds for H: 

H(A', B') ~ H(A', C)+ H(C, B'), 
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and by the choice of Xac and Xbc 

H(A', C)+ H(G, B') = D(A, G)+ D(C, B). 

Since A' and B' are translations of A and B, 

D(A, B) ::::; H(A', B') ::::; D(A, G)+ D(G, B). 

0 

A problem closely related to measuring D(A, B) is that of finding the best approximate 
congruence under translation for two sets of n points, A and B (Alt et al., 1988). Formally, 
this problem is to find the translation x of B and the bijection I : B -* A that minimizes 

d = maxp(b + x, l(b)). 
bEB 

This function is not very well suited to pattern recognition problems, however, because 
a sensing device will often merge two close points into one or split one point into two. 
When this happens there will either no longer be a total matching between the point 
sets, or the least cost matching will be forced to pair relatively distant points with one 
another and thus greatly increase the cost. In contrast, the minimum Hausdorff distance 
under translation just measures the proximity of each point in one set to the nearest 
point in the other- without requiring a matching between the sets. 

2.1. THE MINIMUM HAUSDORFF DISTANCE FOR POINT SETS 

We now describe how to compute the minimum Hausdorff distance under translation, 
D(A, B)= minx H(A, B E9 x), for sets of points in ~2 and ~3 • First we consider sets of 
points in the plane, and then show how the method generalizes to points in space. Note 
that because in this section the sets A and B contain only points, their unions A* and B* 
can be identified with A and B respectively. The main idea is to consider the distances 
defined in (2.1) and (2.2) as functions that depend on the translation x of the set B. These 
functions lead to constructs called Voronoi surfaces. Below we define Voronoi surfaces 
and the upper envelope (pointwise maximum) of a set of Voronoi surfaces. We then show 
the correspondence between the upper envelope of Voronoi surfaces and our problem of 
finding the minimum Hausdorff distance between sets of points. 

Given a set S = {Pili = 1, ... , n} of sources (points or line segments) in ~d, and 
some metric p(., .), the Voronoi diagram of S, denoted by Vor(S), is the decomposition 
of ~d into 'Voronoi cells' C1, ... , Gn, where each cell Gi contains those points of ~d that 
are closer to Pi than to any other source (with closeness measured using the metric p). 
Consider now the function 

d(x) = minp(x, q). 
qES 

(2.4) 

'The graph of this function, {(x,d(x))ix E Rd}, is a surface which we call the Voronoi 
surface of S (we use a slight abuse of notation and refer to the surface also as d(x )). Note 
that this surface is at a local minimum (of zero) exactly when x is coincident with some 
source Pi E S, and is at a local maximum for certain points that lie along the boundary of 
cells ofVor(S). That is, the surface gives the distance from x to the nearest point Pi E S. 
An illustration of such a surface in one-dimension is shown in figure 1, where the four 
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Figure 1. A Voronoi surface; the distance to the nearest point of S. 

points Pi E S are denoted by open circles, and a particular point x is denoted by a closed 
circle. The height of the surface, d( x), clearly gives the distance to the nearest point Pi. 
The analogous surface for sets of points in lR2 looks like an irregular 'egg-carton'. 

The upper envelope (pointwise maximum) of m Voronoi surfaces was investigated in 
Huttenlocher et al. (1991a). This work provided bounds on the number of vertices of 
the upper envelope of m Voronoi surfaces, and presented theoretical algorithms for effi
ciently computing the upper envelope. We now discuss the relation between the problem 
of computing the minimum Hausdorff distance and the problem of computing the up
per envelope of Voronoi surfaces. This yields algorithms for computing the minimum 
Hausdorff distance for sets of points in lR2 and lR3 , and for sets of line segments in lR2 • 

\ 

In more detail, we can express the distance between a pair of points a; E A and bj E B, 
as bj undergoes a translation x, by 

O;,j(x) = p(a;, bj + x) = p(a;- bj, x) 

where p is the underlying metric, which can be any Lp metric (but in this paper we will 
refer to the most common metrics, namely, L1, L 00 and L 2 ). We then define the function 
d;(x) to be the lower envelope of the functions Di,j(x) for a fixed point a; E A and over 
allbjEB, 

(2.5) 

If we denote the set a; e B by S; (i.e. S; = {a;- bj lbi E B}) then substituting we obtain 

d;(x) = min p(p, x ), 
pES; 

which is by definition the Voronoi surface of S; from equation (2.4). Recall that this 
surface specifies the distance from a point X to the closest point of the set S; = a; e B. 
Similarly, denoting the set A e bi by Sj, the function 

dj(x) = min 8;,j(x) =min p(p, x) 
a;EA pESj 

is the lower envelope of the functions Di,j ( x) for a given bj E B and over all a; E A. 

Denote by f( x) the upper envelope of the functions d; ( x), dj ( x), then 

: : f(x) =max (~;;d;(x), ~t:dj(x)) = H(A, B E9 x). (2.6) 

Hence 

minf(x) = minH(A, B E9 x). 
X · X 

Thus, in order to determine the minimum Hausdorff distance between two sets A and B, 
where the set B is translated by x, we have to identify the value of x that minimizes the 
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upper envelope of all the Voronoi surfaces defined by the sets S; = a;GB and Sj = Aeb;. 
Moreover, note that f(x) specifies the value of H(A, B EB x) for each translation x of the 
set B. 

CLAIM 2.2. The number of local minima of f(x) is O(pq(p+ q)) for the metrics Lt and 
Loo as underlying metrics, and is O(pq(p + q)a(pq)) for L2 as the underlying metric. 

PROOF. It was shown in Huttenlocher et al. (1991a) that the upper envelope of m Voronoi 
surfaces with a total of n source points is of complexity 0( mn) for the £ 1 and Leo metrics, 
and O(mna(n)) for the £ 2 metric (where a is inverse Ackermann function). In computing 
the minimum Hausdorff distance we have m = p+q sets (S;, 1 ~ i ~ p and S;, 1 ~ j ~ q), 
and a total of n = 2pq points over all the sets. Substituting these quantities, the result 
follows immediately. 0 

In order to determine D(A, B) we must identify the global minimum of f(x) which can 
be done by calculating all the local minima and inspecting each of them. Huttenlocher 
et al. (1991a) 'showed that the upper envelope of m Voronoi surfaces with a total of n 
source points can be computed in time O(mn log(n)). Computing the upper envelope 
clearly dominates the running time, and thus, 

CLAIM 2.3. The minimum Hausdorff distance under translation between two sets of 
points in the plane (and the translation that achieves this minimum) can be computed in 
time O(pq(p + q) log(pq)) for the metrics Lt, L2, and L00 • 

We do not present this algorithm here, however, because the method tha,t we have 
implemented is an approximation based on rasterizing the Voronoi surfaces. The exact 
method requires the computation of O(pq) Voronoi diagrams and the computation of 
O(pq) unions of convex polygons having altogether O(pq(p + q)) edges and vertices, 
which in practice is not as fast as the rasterized method. Moreover, since most data 
from pattern matching and computer vision applications is already in raster form, the 
rasterized method is particularly appropriate. 

When the sets A = { a1, ... , ap} and B = { b1, ... , bq} consist of points in ~3 , and the 
underlying distance metric pis £ 2 , we can apply the results ofHuttenlocher et al. (1991a) 
on the upper envelope of four-dimensional Voronoi surfaces. They show that with m sets 
and a total of n source points, the complexity of computing the upper envelope in this 
case is O(mn2 log(m)a(n)). For two sets of points A and Bin space, with p and q points 
respectively, tl}is yields the following bound (again m = p + q, n = 2pq), 

CLAIM 2.4. The minimum Hausdorff distance under translation between two sets of 
points in ~3 based on the L 2 metric {and the translation that achieves this minimum) 
can be computed in time O((pq)2 (p + q)a(pq) log2(p + q)). 

2.2. THE MINIMUM HAUSDORFF DISTANCE FOR SETS OF SEGMENTS 

The problem of computing the minimum Hausdorff distance for sets of line segments 
and points can also be solved by the technique of upper envelopes of Voronoi surfaces, 
although some extra care is needed here. The reason for the difficulties is that in the case 
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of line segments there is a substantial difference between the finite sets A, B and the 
infinite sets A*, B* (the unions of the points of A and of B respectively). Thus, direct 
application of the method in the previous section would call for computing the upper 
envelope of uncountably many Voronoi surfaces, each having a_ set of sources obtained 
as the Minkowski differences of segments in A and a point in B*, or of a point in A* 
and the segments of B. However, it suffices instead to form the upper envelope of only a 
finite number of surfaces, each obtained by computing the Minkowski sum of the Voronoi 
surface of the (reflected) set A with each segment of B, or the Minkowski sum of the 
Voronoi surface of (the reflected) set B with with each segment of A, as we describe 
below. 

Let A = { a1 , ... , ap} and B = { b1 , ... , bq} be two sets of points and segments in the 
plane, where we require that the segments are all open, and that if a set contains an 
(open) segment it also contains its endpoints; in other words, each closed line segment 
appears in a set as three distinct (and pairwise disjoint) sites-its relative interior and 
its endpoints (note that segments can share endpoints). 

Define as above A* = UaEA a, and B* = ubEB b. We want to compute 

D(A, B)= minH(A, B EB x) = 
X 

min max( max min p(y, z + x), max min p(z + x, y)) 
X yEA· zEB· zEB· yEA· 

where p is the underlying metric, which we assume 
1 
in this subsection to be £ 1 or L00 

only. The above min-max-min expression is equal to 

minmax(maxmax min p(x, y- z), max max min p(x, y- z)). 
x a;EA yEa; zEB• b;EB zEb; yEA• 

Note that for any pointy E ai and for every x we have 

min p(x, y- z) = min p(x, y- bj), 
zEB• ~EB 

and that the right hand side of this equation is the Voronoi surface of (the reflected) 
B translated by y E A*. Similarly, for the other minimization, we have for any point 
z E bj and for every x, minyEA• p(x, y- z) = mina;EA p(x, ai- z), which is the Voronoi 
surface of Vor(A) translated by z E B*. That is, in the minimization portions of these 
expressions, we can minimize over (translated) objects in A or in B and not over their 
unions. We denote these Voronoi surfaces by 

for each y E A*, z E B*. 

d.(x) = minp(x,ai- z) 
a;EA 

Next we define the upper envelope f(x) of the surfaces dy(x) and d.(x) over ally E A* 
and z E B*, 

f(x) = max(maxdy(x), maxd.(x)), 
yEA• zEB• 

which we can rewrite as 

f(x) = max(maxmaxdy(x), maxmaxd.(x)). 
a;EA yEa; b;EB zEb; 

It follows that f(x) is the upper envelope of at most p + q surfaces, each defined either 



208 D.P. Huttenlocher and K. Kedem 

by D;(x) = maxyea; dy(x), or by Dj(x) = maxzebi d .. (x). D;(x) is the upper boundary 
of the volume obtained by sweeping the surface of Vor( -B) horizontally along a;; Dj (x) 
has a similar interpretation. 

Let us fix a segment a; E A. Denote the endpoints of this segment by a' and a". For 
each face F of da'(x), when yEa; moves from a' to a11

, the face F is swept horizontally 
along the segment a; = a"- a1

• The resulting swept volume is simply the Minkowski sum 
F E9 a;, which we denote by :F. For general metrics, including L2 , the structure of the 
swept volume is rather complicated, but in the L1 and L00 metrics the structure is quite 
straightforward. In these cases each such face F is a polygon, hence the boundary of :F 
is a prism whose two bases are parallel to F and all its other sides are parallelograms 
whose parallel edges are parallel to a;. It follows that we can represent the swept surfaces 
as a collection of O(pq) triangles: every D;, for i = 1, ... , p has 0( q) triangles, and every 
Dj for j = 1, ... , q, has O(p) triangles, hence a total of O(pq). This gets us to, 

CLAIM 2.5. The minimum Hausdorff distance under translation between two sets A and 
B 1 of p and q line segments respectively, with L 1 and L 00 as underlying metrics, in the 
plane, can be computed in time O((pq)2a(pq)). 

This is because the upper envelope f(x) is the upper envelope of O(pq) triangles, so 
its complexity is O((pq)2a(pq)) (Pach and Sharir, 1989), and it can be computed in time 
O((pq)2a(pq)) {Edelsbrunner et al., 1989). 

It is interesting to compare this result with recent results of Alt et al. {1991) for com
puting the minimum Hausdorff distance under translation, between sets of line segments 
in the plane, in time O((pq?(P + q) log(pq)) for the L2 metric (whereas Claim 2.5 is 
for L1 and L00 ). Recently Agarwal et al. {1992) have come up with an algorithm that 
computes the minimum Hausdorff distance between sets of line segments in the plane 
under the L 2 metric in time O((pq) 2 (p + q) log3 (pq)), using parametric search. 

2.3. CoMPUTING THE HAUSDORFF DISTANCE IN PRACTICE 

We now turn to the task of comparing two point sets A and B where the points of 
each set lie on an integer grid. For machine vision and pattern recognition applications 
this is a reasonable model, because most data comes from grid-based sensors. Thus we 
assume that we are given two sets of points A = { a 1 , ... , ap} and B = { b1 , ... , bq} such 
that each point p.; E A and bj E B has integer coordinates. Consider the characteristic 
function of the set A, 

{ 
1 if {x, y) E A 

a(x, y) = 0 otherwise. 

This function is always zero for any non-integer values of x or y, because the set A is 
restricted to have points with integral coordinates. Thus the function can be represented 
using a binary array A[k, 1] where the k, 1-th entry in the array is nonzero exactly when 
the point (k, 1) E A (which of course is common in image processing applications). The 
set B has an analogously defined characteristic function and its array representation 
B[s, t]. 

As in the continuous case considered above, we wish to compute the Hausdorff distance 
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as a function of translation by taking the pointwise maximum of a set of Voronoi surfaces 
for the point sets S; = {a;:- bi lbi E B} and Sj = {a; - bj Ia; E A}. In this case, however, 
the point sets are now represented as binary arrays, where the nonzero elements of each 
array correspond to the elements of the sets. We denote by S;[x, y] the binary array 
representing the characteristic function of the set S;, and by Sj[x, y] the characteristic 
function of the set Sj. We then compute for each S; [x, y] the rasterized approximation to 
the Voronoi surface d;( x), which we denote by D; [ x, y]. This array specifies for each pixel 
location (x, y) the distance to the nearest nonzero point of S;[x, y] (for some distance 
function). That is, the array D;[x,y] is zero wherever S;[x,y] is one, and the other 
locations of D;[x, y] specify the distance to the nearest nonzero location in S;[x, y]. 

If we make the analogous definition of Dj[x, y] for the characteristic function Sj[x, y] of 
each set Sj, then similarly to the previous section we can compute the pointwise maximum 
of these functions in order to determine the Hausdorff distance under translation (up to 
the rasterization accuracy of our integer grid), 

F[x, y] = max(m~xD;[x, y], m?xDj[x, y]). 
' J 

That is, F[x, y] is an approximation to the Hausdorff distance as a function of translation, 
f(x), given by equation (2.6). It can be shown that IF[xo, Yo]- f(x)l :S 1.0 for x = (xo, Yo)· 
(Huttenlocher et al., 1991b). 

In the context of model-based recognition, we generally view the set B as being a 
'model' that is matched under translation to an 'image' A (i.e. it is most natural to 
view the model as translating and the image as fixed). In order for F[x, y], the Hausdorff 
distance, to be small at some translation (x0 , y0 ), it must be that every D;[x, y] and 
Dj[x, y] are small at that location. This in turn means that every point of the translated 
model, B is near some point of A and vice versa. 

Before turning to a discussion of the computation of F[x, y], we briefly consider the 
computation of the digitized Voronoi surface, D[x, y], using a distance transform (Borge
fors, 1986), and using specialized hardware for computer graphics. The array D[x, y], 
specifying the distance from each pixel (x, y) to the nearest nonzero p_ixel of a binary 
array E[x, y], can be computed efficiently using an iterative local process. The value 
D[x, y] is initially set to infinity if E[x, y] = 1 and one if E[x, y] = 0. Then the value 
of D[x, y] at each pixel (x, y) is updated to be the minimum of its neighboring values, 
plus the distance from each neighbor to (x, y). This updating continues until no distance 
changes. Clearly at the end, each pixel reflects the distance to the nearest nonzero pixel of 
E[x, y]. The computation can also be done on a serial machine by making two passes over 
the distance array, as described in Borgefors (1986). These local propagation methods 
of computing D[x, y] are only an approximation to the true distance when the £ 2 norm 
(Euclidean metric) is used as the metric p specifying the distance between two points. 
When the £1 norm or L 00 norm are used to measure the distance between two points, 
then the computations yield the distance exactly. 

The computation of D[x, y] can also be performed very rapidly with special-purpose 
graphics hardware for doing z-buffer operations. The array D[x, y] is simply the lower 
envelope of q cones (for the £ 2 norm, or inverted pyramids for £1 and £ 00 ), one for 
each point of B. Pointwise computation of upper and lower envelopes is exactly the 
operation that a z-buffer computes, when orthographic projection is used for the z-
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buffering operation. Thus D[x, y] can be computed rapidly by rendering q cones (or 
approximations thereof) and computing the view from z = -oo. 

2.3.1. CoMPUTING F[x, y] 

In order to simplify the presentation, we consider separately the directed Hausdorff 
distance from A to B as a function of the translation of B, given by 

FA[x, y] = m11xD;[x, y], 
• 

and the directed Hausdorff distance from B to A given by FB [x, y] = maxi Dj [x, y] (where 
D;[x,y] and Dj[x,y] are as defined above). Note that F[x,y] is simply the pointwise 
maximum of these two directed distance functions. 

The computation of FA [x, y] (resp. FB [x, y]) simply involves computing the upper 
envelope of D;[x, y] shifted with respect to itself (resp. Dj [x, y]). This can be seen by 
noting that S;,= {a;- bj lbi E B} (and Sj ={a;- bj Ia; E A}), Thus if we denote the 
distance transform (rasterized Voronoi surface) of B[s, t] by D[s, t], then FA[x, y] can be 
written equivalently as the maximization of the reflected D[s, t] shifted by each nonzero 
value of A[k, /], 

FA[x, y] = m:=txDi[x, y] = max D[k- x, 1- y] 
• k,I;A[k,l]=l 

(2.7) 

(andsimilarly for FB[x, y]). Note that this maximization can be performed very rapidly 
with special-purpose graphics hardware for doing pan (shift) and z-buffer operations. 

It is also possible to view the computation of FA[x, y] slightly differently, and note 
that (2.7) is simply equivalent to maximizing the product of A[k, l] and D[s, t] at a given 
relative position, 

FA[x, y] = maxmaxA[k, l]D[k- x, 1- y]. 
k I 

(2.8) 

In other words, the maximization can be performed by 'positioning' the reflected D[k, /] 
at each location (x, y), and computing the maximum of the product of A with D (and 
similarly for FB[x, y]). 

This form of the directed Hausdorff distance under translation is very similar to the 
binary correlation of the two arrays A[k, I] and B[s, t], 

C[x, y] = L L A[k, l]B[k- x, 1- y]. 
k I 

The only differences a~e that the array B[s, t] in the correlation is replaced by the distance 
array D[s, t] (the distance to the nearest pixel of B[s, t]), and the summation operations 
in the correlation are replaced by maximization operations. Binary correlation is one of 
the most commonly used tools in image processing, and thus it is interesting to briefly 
compare the Hausdorff-distance under translation with correlation. One drawback of the 
correlation measure is that it is not a metric. In particular, this means that there may 
be several dissimilar models that all have high correlations with the same portion of 
the same image. Second, for binary images the correlation operation is quite sensitive to 
errors in the classification of a point (i.e. a 1-pixel that is classified as a 0 or vice versa), 
because it measures the exact superposition of points in A[k, /]and B[s, t]. In contrast, the 
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minimum Hausdorff distance measures nearby points in the two sets, and thus is not very 
sensitive to pixel classification errors as long as nearby pixels were correctly classified. 
A final advantage of the (bidirectional) minimum Hausdorff distance over correlation is 
that it measures the degree of 'agreement' between the model and the image and vice 
versa. Thus it is possible to distinguish a situation in which a g'iven model matches well 
from a situation in which literally any model will match well (such as a large region 
of all 'ones'). Correlation, which simply sums the product of the two bitmaps, cannot 
distinguish this. 

Now we turn to a simple algorithm for computing the directed Hausdorff distance as 
a function of translation. ' 

Algorithm 2.1. Given two input binary image arrays, A[k, l] and B[s, t], compute the 
discrete directed Hausdorff distance under translation, FB[x, y], from B[s, t] to A[k, l] for 
each translation (x, y) of B[s, t], 

1. Compute the array D'[k, l] that specifies the distance to the closest nonzero pixel of 
A[k, 1] using a distance transform or special graphics hardware, as discussed above. 

2. Denote the nonzero pixels of B[s,t] by (s 1 ,t1), ... ,(sq,tq)· For each value (x,y) 
a. Compute the maximum over all values j, 1 ~ j ~ q of B[sj, tj]D'[sj + x, tj + y]. 
b. Set FB [x, y] to the maximum computed in the previous step. 

The computation of FB[x, y] can be sped up substantially if there is a pre-specified 
threshold, f, such that we are only interested in minima below this value. In such a case, 
the maximization in Step 2(a) only needs to be performed until some value over f is seen 
(rather than for all values of j). More importantly, a large value of FB[x0 , y0 ] means that 
neighboring locations around (x0 , yo) can be ruled out. More specifically, if FB[x0 , y0] = c, 
then no points within radius c- f can produce values of less than f (because the slope of 
the function FB[x, y] is 1). In practice, it is often possible to determine such a threshold, 
f, in which case the computation becomes extremely fast . 

The bidirectional Hausdorff distance is the maximum of the directed Hausdorff distance 
from A to Band from B to A. However, in computing the bidirectional distance we must 
be sure to translate the sets A and B consistently. Simply using Algorithm 2.1as a 
subroutine ends up with inconsistent translations (the translations will have opposite 
signs from each other). The output F[x, y] specifies a distance for each translation (x, y) 
of the model array B[s, t]. 

Algorithm 2.2. Given two input binary image arrays A[k, 1] and B[s, t], compute the dis
crete Hausdorff distance under translation, F[x, y], for each translation (x, y) of B[s, t]. 

1. Compute the array D[s, t] that specifies the distance to the closest nonzero pixel of 
B[s, t] using a distance transform or special graphics hardware, as discussed above. 

2. Compute the analogous array D'[k, /] for A[k, /]. 
3. Denote the nonzero pixels of A[k, /] by (k1,lt), ... , (kp, lp), and denote the nonzero 

pixels of B[s,t] by (s 1 ,t1), •.. ,(sq,tq)· For each value (x,y) 
a. Compute the maximum over all values i, 1 ~ i ~ p of A[ki, li]D[ki- x, li- y]. 
b. Compute the maximum over all values j, 1 ~ j ~ q of B[sj, tj]D'[sj + x, tj + y]. 
c. Set F[x, y] to the larger of the values computed in the previous two steps. 

The bidirectional Hausdorff distance as computed by Algorithm 2.2 is not of much 

' 

I 
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practical use in many situations because there are often nonzero pixels of the image that 
have nothing to do with an instance of the object. In such cases, the distance "from the 
image to the model" will never be small, because these image pixels will not be near any 
nonzero pixels of the translated model. Thus, rather than maximizing over all nonzero 
pixels (ki, h) of A[k, 1], it is more natural to maximize over those nonzero pixels of A[k, ij 
that are covered by the translated array B[s, t]. This is analogous to the operation of 
correlation, where in effect a given translation of the model masks out all of the image 
except the portion that is covered by the model. 

In many machine vision and pattern recognition applications it is also important to be 
able to identify instances of a model that are only partly visible (either due to occlusion 
or to failure of the sensing device to detect the entire object). The Hausdorff distance 
under translation can naturally be extended to the problem of finding the best partial 
matches between an 'model' bitmap B[s, t] and a 'image' bitmap A[k, /].Recall that for 
each location t the computation of F[x, y] simply determines the distance of the point 
of the translated model B EIJ t that is farthest from any point of the image A (and vice 
versa). Thus iR effect each point of B E1J t is ranked by the distance to the nearest point of 
A (and vice versa). That is, the largest ranked point- the point farthest from any point 
of the other set - determines the distance. Hence, rather than maximizing over these 
rankings, it is possible to some compute quantile, or percentage value (for more details 
see Huttenlocher et al., 1991b). This yields a natural notion of the best partial match at 
each translation. 

We have implemented the above algorithms for computing the rasterized approxima
tion to the Hausdorff distance under translation. In experiments contrasting the method 
with binary correlation, we have found that the Hausdorff distance is substantially less 
sensitive to small perturbations in the data than is correlation. The main reason is that 
the Hausdorff distance measures spatial proximity, whereas correlation measures exact 
superposition. 

3. A Metric on Polygons Under Similarity Transformation 

We now describe a metric for comparing polygonal shapes under similarity transfor
mations (Arkin et al., 1991). Consider a simple polygon represented as a sequence of 
points P = (Pl, ... , Pn), Pi E ~2 • An alternative representation of P is the turning func
tion 0p(s), which measures the cumulative angle of the counter-clockwise tangent as 
a function of the arc-length s (starting from some reference point on the boundary). 
That is, 0p(s) keeps track of the turning that takes place (see figure 2). Note that this 
is somewhat different from the standard definition, because we measure the cumulative 
angle rather than the angle between the tangent and the reference orientation. Without 
loss of generality, we assume that each polygon is rescaled so that the total perimeter 
length is 1; hence, 0p is a function from [0, 1] to ~. 

We define the distance between two polygons P and Q to be the minimum of the L 2 

distance between their two turning functions 0p(s) and eQ(s), where the minimization 
is done over all possible relative orientations and all possible starting locations, s0 , along 
the boundary. Schwartz and Sharir (1984) have defined a similar distance function that is 
limited to comparing convex polygons. However, they compute an approximation based 
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Figure 2. Two polygons and their turning functions, E>(s). 

on discretizing the turning functions into equally spaced points, where the quality of the 
approximation depends on the number of points chosen. 

Consider two polygons P and Q and their associated turning functions 0p(s) and 
0q(s). The L2 distance between 0p(s) and 0q(s) is given by 

62(P, Q) = (11

10p(s)- 0q(sW ds) ~ 
(Royden, 1968). 62 is by definition invariant with respect to translation and scaling of 
P and Q, but it is sensitive to both rotation and to choice of reference point on the 
boundary of either polygon. Since rotation and choice of reference point are arbitrary, it 
makes sense to consider the distance to be the minimum over all such choices. If we shift 
the reference point 0 along P's boundary by an amount t, then the new turning function 
is given by 0p(s + t). If we rotate P by an angle 0 then the new function is given by 
0p(s) + 0. Thus, we want to find the minimum over all such shifts t and rotations 0. In 
other words, we want to solve for 

1 l 

( min r l0p(s + t)- 0q(s) + 01 2 ds) 2 

' 8E!R tE(O,l] } 0 
1 

( min hpq(t,o))
2

, 
8E!R tE(O,l] ' 

where 
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1 2 

Figure 3, The rectangular strips formed by the functions 9p(s) (solid lines) and 9q(s) (dashed 
lines). The shaded region between 9p(s + t) and 9q(s) is the area being minimized. 

CLAIM 3.1. d2(P, Q) is a metric. 

PROOF. Clearly d2(., .) is everywhere positive, is symmetric, and has the identity prop
erty, because the L2 norm a metric and has these properties. By a straightforward ap
plication of the Minkowski inequality for Lp metrics, it can also be shown that d2(., .) 

obeys the triangle inequality; see Arkin et a/. (1991) for more detail. D 

We can compute the value of hP,Q(t, 0) for a fixed t simply by adding up the value of 
the integral within each strip defined by a consecutive pair of discontinuities in 0p(s) 
and 0Q(s) (see figure 3). The integral within a strip is trivially computed as the width of 
the strip times the square of the difference j0p(s +t)- eQ (s)l (which is constant within 
each strip). Note that if m and n are the numbers of vertices in P and Q, respectively, 
then there are m + n strips and that as 0 changes, the value of the integral for each strip 
is a quadratic function of 0. Thus it is straightforward to show that, 

CLAIM 3.2. For any fixed value oft, hP,Q(t, 0) is a quadratic function of 0. 

In order to compute d2(P, Q), we must minimize hP,Q(t, 0) over all t and 0. We begin 
by finding the optimal 0 for any fixed value oft. To simplify notation in the following 
discussion, we use f(s) = 0p(s), g(s) = 0Q(s), and h(t, 0) = hp,Q(t, 0). 

CLAIM 3.3. Let h(t,O) = I0
1(f(s+t)-g(s)+0)2 ds. Then, in order to minimize h(t,O), 

the best value of 0 is given by 

O*(t) fo\g(s)- f(s + t)) ds 

a- 27rt, 

where a= I~ g(s) ds- I~ f(s) ds. 
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PROOF. 

8h(t,B) 
{)(} 

fol (28 + 2/(s + t)- 2g(s)) ds 

= 28 + 2 fo\f(s + t)- g(s)) d~. 
Claim 3.2 assures us that the minimum occurs when we set this quantity equal to zero 
and solve for B. Thus, 

B*(t) = fo
1 

(g(s)- f(s + t)) ds. 

Some simplification of lo1 

f(s + t) ds yields 211't + fo
1 

f(s) ds. Thus, 

e*(t) fol g(s) ds- 211't- fol f(s) ds 

a- 211't. 

0 

Substituting the expression for (}* (t) in d2(P, Q) we are left with a one-variable mini
mization problem, 

1 

d2(P,Q) = {min [ {
1

[f(s+t) -g(s)j2 ds- [B*(t)F]}
2 

tE[O,l] } 0 

3.1. COMPUTING THE DISTANCE 

(3.1) 

In order to compute d2(P, Q) we show that the function we are minimizing, h(t, B), 
achieves its minimum at one of mn discrete points on [0, 1], which we call critical events. 
Recall that in the process of finding d2(P, Q) we have to shift the function f(s) to 
f(s+t) fortE [0, 1]. During this shifting operation, the breakpoints off collide with the 
breakpoints of g. We define a critical event as a value oft where a breakpoint off collides 
with a breakpoint of g. Clearly there are mn such critical events for m breakpoints in f 
and n breakpoints in g. Using the fact that the minimum is obtained at a critical event, 
we show how to compute d2(P, Q) in time O(n2 log(n)) (or O(mn log(mn)) for unequal 
numbers of vertices). 

CLAIM 3.4. Iff(-) and g(·) are two piecewise-constant functions with m and n break
points respectively, then for constant e, 

h(t, B)= fo
1 

(f(s + t)- g(s) + 8)2 ds 

is piecewise-linear as a function oft, with mn breakpoints which are independent of the 
value (}. 
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PROOF. We give a geometric proof. First recall that for a given value oft the disconti
nuities in f and g define a set of m + n rectangular strips (see figure 3). The value of 
h(t, 0) is simply the sum over all these strips of the width of a strip times the square of 
its height. Except at critical events, as f is shifted the width of each strip changes, but 
the height remains constant. Each changing rectangle contributes to changes in h(t, 0). 
If t is the amount of shift, then for a shrinking rectangle, the change is ( -t) times the 
square of the height; for a growing rectangle the change is ( +t) times the square of the 
height. Since the heights are constant, the change in h(t, 0) is a sum of linear terms and 
is therefore linear. Breakpoints in h(t, 0) clearly occur at each of the mn critical events 
where a discontinuity off is aligned with a discontinuity of g. D 

This result leads to a straightforward algorithm for computing d2 (P, B). Let (t*, 0*) 
be the location of the minimum value of h(t, 0). By the preceding proposition, h(t, 0*) is 
piecewise-linear as a function oft with breakpoints at a fixed set of critical values; thus, 
t* must be at one of the critical values. Now, h(t, O*(t)) = h(t, 0)- [O*(t)]2 = h(t, 0)
[a- 21rt]2 (froip equation 3.1), so it suffices to evaluate h(t, 0) = J[f(s + t)- g(s)J2ds at 
critical values oft. For each such value oft, recall that we can compute h(t, 0) in linear 
time, simply by adding up the squared heights of all of the strips. The optimal value 
O*(t) for each t can then be computed in constant time (by Claim 3.3). Thus the time 
for each critical event is linear, and the overall running time is O(mn(m+n)). This time 
bound can be improved by using a somewhat more complex algorithm. 

CLAIM 3.5. The distance d2 (P, Q) between two polygons P and Q (with m and n vertices} 
can be computed exactly in time O(mn log(mn)). 

PROOF. We show this by describing the algorithm. D 

The basic idea is to compute h(t, O*(t)) for each of the critical values oft. From the 
above discussion we know that it suffices to evaluate h(t, 0) = f[J(s + t)- g(s)]2ds at 
critical values oft. Now we observe that by keeping track of a small set of values we can 
easily determine how the function h(t, 0) changes at each critical event. The values we 
keep track of are based on the rectangular strips that appear between the two functions 
f(s) and g(s). Recall that g(s) is fixed in place and that f(s) is shifted backwards by t. 
For a given value oft, the discontinuities in f(s + t) and g(s) define a set of rectangular 
strips, as was illustrated in figure 3. Each rectangular strip has f at the top and g at the 
bottom or vice-versa. The sides of a strip are determined by discontinuities in f and g. 

We separate the strips into two groups based on the discontinuities at the sides of the 
strips: Rjg for those with f on the left and g on the right and Rgf for those with g on the 
left and f on the right. We keep track of two quantities: Hfg and H 91 • H 19 is the sum 
of the squares of the heights of all the strips in R19 , and H 91 is the sum of the squares 
of the heights of all the strips in R91. The algorithm is based on the observation that for 
values oft between two critical events the slope of h(t, 0) is Hjg- H 91. This follows from 
the fact that, as f is shifted backwards by t, RJu is the set of all strips that increase in 
width by t, and Rgf is the set of all strips that decrease in width by t. The widths of the 
R1 1 and R99 strips remain unchanged. 

Consider what happens at one of the critical events, where the change is no longer 
simply linear. We claim that the quantities Hjg and H 91 can be easily updated at these 
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Figure 4. Comparing several polygons with a square using d2(P,Q) .. 

points. To see this note that, at a critical event, a gf-type strip disappears (its width 
goes to zero) and a new fg-type strip appears (see figure 3). At the same time, the right 
boundary of the adjacent strip to the left is converted from g to J, and the left boundary 
of the adjacent strip to the right is converted from f. to g. To update H 19 and H gf we 
need to know just the values of f and g around the critical event. 

Algorithm 3.1. Given twq polygons P and Q, compute the distance d2 (P, Q). 

1. Compute the turning function representations, f and g, of the polygons P and Q, 
respectively. 

2. Initialize: 
• Given the piecewise-constant functions f and g, determine the critical events: 

the shifts off by t such that a discontinuity in f coincides with a discontinuity 
in g. Sort these critical events by how far f must be shifted for each event 
to occur. Let co, c1, ... , Ce be the ordered list of shifts for the critical events; 
co= 0. 

• Calculate h(O, 0). This involves summing the contributions of each of m + n 
strips and takes linear time. 

• Determine initial values for Hjg and Hgf. 
3. For i = 1 to e 

• Determine the value of 

h(ci, 0) = (HJg- Hgf )(ci- Ci-d + h(ci-b 0). 

• Update Hjg and Hgf· 

It is easy to see that the time for initialization is dominated by the time it takes to sort 
the critical events: 0( e loge), where e is the number of critical events, or 0( mn log( mn)) 
where m and n are the sizes of the two polygons. The updates required for the remainder 
of the algorithm take a total of O(e), or O(mn) time. 

We have implemented this method, and it runs quickly in practice, even for polygons 
with hundreds of vertices. We illustrate some of the qualitative aspects of the distance 
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Figure 5. Comparing several polygons with a triangle using d2 (P, Q). 

function d2(P, Q) by comparing some simple polygons using the above algorithm. In 
addition to providing a distance, d2 (P, Q), between two polygons, the method gives the 
relative orientation, ()*, and the corresponding reference points of the two polygons for 
which this distance is attained. Consider the ten shapes shown in figures 4 and 5. In 
figure 4 the shapes are ordered by their distance from the square, and in figure 5 the 
same shapes are ordered by their distance from the triangle. (Note that the numbers under 
each shape reflect just the ordering, and not the magnitude of the distance.) The order of 
the shapes corresponds remarkably well to our intuitive idea of shape-resemblance. The 
match to the cut-off triangle suggests that the metric is useful for matching partially 
occluded objects, as long as the overall shape of the object does not change too radically. 

A straightforward extension of the algorithm applies to shapes composed of piecewise 
circular arcs rather than line segments. In this case, the function 0p(s) is piecewise linear 
rather than piecewise constant. 

4. Summary 

We have discu~sed a number of methods for comparing shapes. We defined two geomet
ric objects A and B to have the same shape, A = B, if they are in the same equivalence 
class with respect to a given transformation group (i.e. if T(A) = B for some transfor
mation Tin the group). We have argued that shape comparison functions should obey 
metric properties, and have presented several distance metrics that are efficiently com
putable both in theory and practice. The methods are applicable to problems in pattern 
recognition, computer-vision, and robotics. In particular, we described a function for 
comparing sets of points or line segments in the plane using the Hausdorff distance as 
a function of translation. This shape comparison function can be computed efficiently 
in theory, and a close approximation can be computed efficiently in practice. We also 
investigated how this method can be extended to sets of points in ~3 . The second class 
of shape comparison functions we discussed are based on comparing the turning function 
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representations of polygons. This latter class of methods does not appear to extend easily 
to shapes in higher dimensions, which is an important area for many applications. 
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