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This paper surveys some results on the structural analysis of linear dynamical systems us
ing matroid-theoretic combinatorial methods. The mathematical model employed in this 
approach classifies the coefficients in the equations into independent physical parameters 
and dimensionless fixed constants. It is emphasized that relevant physical observations 
are crucial to successful mathematical modeling for structural analysis. In particular, the 
model is based on a kind of dimensional analysis. The concepts of the mixed matrix and 
its canonical form turn out to be convenient mathematical tools. An efficient algorithm 
for computing the canonical form is described in detail. 

1. Introduction 

In many different fields of engineering, a graph-theoretic approach has proved to be 
useful for the analysis of large-scale systems, in which a huge number of elements are 
interconnected with each other. Graph-theoretic concepts are suitable for describing the 
interconnections and hence for analyzing those qualitative aspects of a system which 
result from the combinatorial structure of the system. 

In control theory, to be specific, Lin (197 4) discussed a system-theoretic property called 
controllability of a system in terms of the interconnection of the elements, introducing the 
concept of "structural controllability". In so doing Lin initiated the "structural approach" 
in control theory, which discusses the system-theoretic properties of a dynamical system 
based on combinatorial (mainly graph-theoretic) considerations. Typically, this approach 
starts with the state-space equations: 

x(t) = A.x(t) + Bu(t) 
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and assumes that the nonzero entries of the matrices A and iJ are independent param
eters. It has been gradually recognized, however, that this assumption is not sufficiently 
justifiable in many practical situations and, as a consequence, the graph-theoretic ap
proach based on such a primitive mathematical model sometimes fails to be useful, as it 
ignores some important physical aspects. 

This paper surveys the mathematical framework, proposed by the author, for the 
structural analysis of linear dynamical systems using a matroid-theoretic combinatorial 
method. This approach is based on a physically reasonable mathematical model, which 
makes it possible to describe real-world systems more faithfully than the primitive model 
employed in the graph-theoretic approach and which, at the same time, retains as much 
mathematical simplicity and convenience for the subsequent analysis. The mathematical 
model classifies the coefficients in the equations into independent physical parameters 
and dimensionless fixed constants, and describes dynamical systems by means of a class 
of structured polynomial matrices. It is emphasized that relevant physical observations 
are crucial to successful mathematical modeling for structural analysis. In particular, 
the model is based on a kind of dimensional analysis, and the physical-dimensional con
sistency is shown to have a significant implication for the algebraic or computational 
complexity of the resulting mathematical model. The following key words will represent 
some important features of the proposed model: 

physical faith +-----~- mathematical convenience, 
independent parameters +-----~- fixed constants, 
dimensional consistency +-----~- algebraic/computational complexity. 

The concepts of the mixed matrix and its canonical form turn out to be convenient 
mathematical tools. The fundamental properties of mixed matrices are described in sec
tion 3.1. Here are some of the nice properties enjoyed by a mixed matrix. 

• The rank can be computed efficiently by a matroid-theoretic algorithm. 
• A notion of irreducibility is defined with respect to a natural transformation (of 

physical significance). 
• An irreducible component thus defined satisfies a number of nice properties that 

justify the name of irreducibility. 
• There exists a canonical block-triangular decomposition into irreducible compo

nents called the combinatorial canonical form (CCF for short). 

Section 3.2 affords a detailed description of the efficient algorithm for computing the 
canonical form which is only briefly explained in Murota (1987b). 

Finally, in section 4 we shall show some properties of the structured polynomial matri
ces that are relevant to the structural analysis of dynamical systems using the proposed 
mathematical framework. These results answer system-theoretic questions such as con
trollability fobservability, fixed modes in decentralized systems, disturbance decoupling, 
and structure at infinity of transfer matrices. The reader is referred to the author's re
search monograph (Murota, 1987b) for more information, unless otherwise indicated. 
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Figure 1. A mechanical system. 

2. The Mathematical Model 

Let us consider, as an example, a very simple mechanical system (see figure 1) which 
consists of two masses m 1 , m 2 , two springs k1 , k2 , and a damper/; u is the force exerted 
from outside. We may describe the system in the form of state-space equations (Kalman, 
1963): 

x(t) = Ax(t) + Bu(t) 

in terms of x = (x1. ... , x4), where x1 (resp. x2) is the displacement of mass m1 
(resp. m2), X3 (resp. x4) is its velocity and 

(2.1) 

The state-space (2.1) has been useful for investigating analytic and algebraic properties 
of a dynamical system, and the structural or combinatorial analyses at the earlier stage 
(Lin, 1974) were also based on it. It has now been recognized, however, that the state
space equations are not very suitable for representing the combinatorial structure of a 
system, in that the entries of matrices A and B of (2.1) are usually not independent 
but interrelated to one another, being subject to algebraic relations. In this respect, the 
so-called descriptor form (Luenberger, 1977): 

Fx(t) = Ax(t) + Bu(t), (2.2) 

or its Laplace transform: 

sFx(s) = Ax(s) + Bii(s), 

is more suitable. Then a system is described by a polynomial matrix 

D(s) =(A- sF I B). (2.3) 
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For our mechanical system it may be more natural to introduce two additional variables 
a:5 (= force by the damper f) and a:6 (= relative velocity of the two masses), where 
a:5 = fa: 6 and a:6 = x1 - x2, and describe the system using the descriptor form (2.2). We 
then have 

-s 0 1 0 0 0 0 
0 -s 0 1 0 0 0 

D(s) = -kl 0 -sm1 0 -1 0 1 
0 -k2 0 -sm2 1 0 0 
0 0 0 0 -1 I 0 
-s s 0 0 0 1 0 

for the matrix of (2.3). Note that no complicated algebraic expressions are involved in 
this matrix. 

The proposed mathematical model is based on two different physical observations; the 
first is the distinction between "accurate" and "inaccurate" numbers, and the second is 
the consistency, with respect to physical dimensions. 

The first observation is concerned with how we recognize the structure (or genericity) of 
a system. When a system is written in the form of (2.2) in terms of elementary variables, 
it is often justified to assume that the nonzero entries of the matrices F, A, etc. are 
classified into two groups: one group of generic parameters and another group of fixed 
constants. In other words, we can distinguish the following two kinds of numbers, which 
together characterize a physical system: 

Inaccurate Numbers: Numbers representing independent physical parameters such as 
masses in mechanical systems and resistances in electrical networks which, being 
contaminated with noise and other errors, take values independent of one another, 
and therefore can be modeled as algebraically independent numbers, and 

Accurate Numbers: Numbers accounting for various sorts of conservation laws such as 
Kirchhoff's laws which, stemming from topological incidence relations, are precise 
in value (often ±1), and therefore cause no serious numerical difficulty in arithmetic 
operations on them. 

We may also refer to the first kind of numbers as "system parameters" and to the 
second kind as "fixed constants". For our mechanical system, it will be natural to choose 
T = {m1, m2, k1. k2,!} as the set of system parameters; see Murota and Iri (1985) or 
Murota (1987b, Chapter 4) for further discussions in terms of examples. 

This observation leads to the assumption that the matrices F, A and B in (2.2) are 
expressed as 

B = Qn +Tn, 

where QF, QA and Qn are matrices over Q (the field of rational numbers) and 

(Al): The collection Tofnonzero entries ofTF, TA and Tn are algebraically independent 
over Q. 

As will be explained in section 3, such matrices as F, A and B are called mixed 
matrices. Accordingly, we express 

D(s) = Qv(s) + Tv(s) (2.4) 
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with 

Qv(s) = (QA- sQp I QB), Tv(s) = (TA- sTp I TB)· 

Then Qv(s) is a matrix over Q(s) (the field of rational functions in s with rational 
coefficients) and the nonzero entries of Tv(s) are algebraically independent over Q(s). 

For our mechanical system we have the decomposition (2.4) of D(s) with 

-s 0 1 0 0 0 0 
0 -s 0 1 0 0 0 

Qv(s) = 0 0 0 0 -1 0 1 
0 0 0 0 1 0 0 
0 0 0 0 -1 0 0 

-s s 0 0 0 1 0 

and 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

Tv(s) = -kl 0 -sm1 0 0 0 0 
0 -k2 0 -sm2 0 0 0 
0 0 0 0 0 f 0 
0 0 0 0 0 0 0 

Remark 2.1. It should be clear that assuming algebraic independence ofT is equivalent 
to regarding the members ofT as independent parameters, and therefore to considering 
the family of systems parametrized by those parameters in T. 

Remark 2.2. The rationality of the entries of Qp, QA and QB is not essential. In case 
nonrational constants are involved, we may choose as K an appropriate extension field 
of Q. The subfield K affects the computational complexity of algorithms. 

The second physical observation due to Murota (1985) is a kind of dip1ensional analy
sis concerning the "accurate numbers", i.e. with Qv(s) in (2.4) (see also Murota, 1987a, 
1987b, Chapter 4). The "accurate numbers" usually represent topological and/or geo
metrical incidence coefficients, which have no physical dimensions, so that it is natural 
to expect that the entries of Qp, QA and QB are dimensionless constants. On the other 
hand, the indeterminate s in (2.3) should have the physical dimension of the inverse of 
time, since it corresponds to the differentiation with respect to time. 

Since the system (2.2) is to represent a physical system, relevant physical dimensions 
are associated with both the variables (x, u) and the equations or, alternatively, with 
the columns and the rows of the matrix D(s) of (2.3). Choosing time as one of the 
fundamental dimensions, we denote by -Cj and -r; the exponent to the dimension 
of time associated respectively with the jth column and the ith row. The principle of 
dimensional homogeneity then demands that the ( i, j) entry of D( s) should have the 
dimension of time with exponent Cj - r;. 

Combining this fact with the observations on the nondimensionality of Qp, QA and 
QB and on the dimension of s, we obtain 

r;- Cj = 1 if (QF)ij f:. 0, 
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ri-Cj=O if (QA)iJ-=fiO, 

ri- Cn+J = 0 if (Qn)ij -=fi 0, 

or in matrix form: 

Q ( ) - d' [ r1 rn] Q (1) d' [ -c1 -Cn+m] D s - tag S , ••• , S • D • tag S , .•• , S • (2.5) 

This implies that 

(A2}: Every nonvanishing subdeterminant of QD(s) is a monomial ins over Q. 

The converse is also true as stated below. 

THEOREM 2.1. (MUROTA, 1985, 1987B) Let Q(s) be an m x n matrix with entries 
in K[s], where K (2 Q) is a field and s an indeterminate over K. Every non vanishing 
subdeterminant of Q( s) is a monomial in s over K iff 

' Q( ) _ d' [ r1 rm] Q(1) d' [ -c1 -en] s - tag s , ... , s · · 1ag s , ... , s 

for some integers ri (i = 1, ... ,m) and Cj (j = 1, .. . ,n). 

For our mechanical system we may choose time T, length L and mass M as the 
fundamental quantities. Then the physical dimensions associated with the equations, i.e. 
with the rows of D(s), are 

r- 1 L, r- 1 L, T- 2 LM, r- 2 LM, T- 2 LM, r- 1 L, 

whereas those with the variables (xi and u), i.e. with the columns of D(s), are 

L L T- 1 L T- 1L T- 2 LM T-1 L T- 2 LM , ' ' ' , , . 
We see that QD(s) admits an expression of the form (2.5) if we choose the negative of 
the exponents to T as ri and Cj, i.e. 

r1 = r2 = 1, r3 = r4 = rs = 2, r6 = 1; 

CJ = C2 = 0, C3 =c4 = 1, C5 = 2, C6 = 1, C7 = 2. 

In this way, our physical observations have led us to a class of polynomial matrices 
D( s) as a mathematical model representing the structure of linear dynamical systems. 
Namely, we consider a polynomial matrix D(s) in indeterminates over a field F(:::> Q) 
which is represented as 

(2.6) 

where 

(Al): The nonzero coefficients T (~ F) of the entries of TD(s) are algebraically inde
pendent over Q, al}d 

(A2}: Every nonvanishing subdeterminant of QD(s) is a monomial ins over Q. 

Note that assumption (A1) implies that D(s) is a mixed matrix (cf. section 3 for the 
definition) with respect to K = Q(s). In section 4 we consider control-theoretic problems 
using such a mathematical model. It is noted, however, that T and D(s) may be replaced 
by different objects depending on the problem. 
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3. Mixed Matrices 

3.1. FUNDAMENTAL PROPERTIES 

This section lists some known properties of a mixed matrix, a layered mixed matrix and 
their canonical forms, which constitute the mathematical foundation for the structural 
analysis based on the mathematical model of section 2. The notion of mixed matrix was 
introduced by Murota and Iri (1985); see Murota (1987b, 1990b) for the proofs. 

For a matrix A, the row set and the column set of A are denoted by Row(A) and 
Col( A). For I~ Row( A) and J ~ Col( A), A[ I, J] means the submatrix of A with row set 
I and column set J. The rank of A is written as rank A. The (multi)set of nonzero entries 
of A is denoted by N(A). The zero/nonzero structure of a matrix A is represented by a 
bipartite graph G(A) = (Row(A), Col(A),N(A)) with vertex set Row(A) U Col(A) and 
arc set N(A). The term-rank of A is equal to the maximum size of a matching in G(A). 

Let K be a subfield of a field F. A matrix A over F is called a mixed matrix with 
respect to K if 

A=Q+T, (3.1) 

where 

(i) Q = (Qij) is a matrix over K, and 
(ii) T = (T;J) is a matrix over F such that the set T = N(T) of its nonzero entries is 

(collectively) algebraically independent over K. 

Note that a polynomial matrix D(s) of (2.6) satisfying assumption (A1) is a mixed 
matrix with respect to K = Q(s). 

The following identity is fundamental. It can be translated nicely into the matroid
theoretic language and enables us to compute the rank of A by an efficient algorithm 
using arithmetic operations in the subfield K only. 

THEOREM 3.1. (MUROTA AND IRI, 1985) For a mixed matrix A= Q + T, 

rank A= max{rankQ[I, J] + term-rankT[R- I, C- J] I I~ R, J ~ C}, 

where R = Row( A), C = Col( A). 

A matrix A is called a layered mixed matrix (or an LM-matrix) with respect to K if 
it takes the following form (possibly after a permutation of rows): 

A=(~) (3.2) 

and Q and T of (3.2) meet the requirements (i) and (ii) above. In other words, an 1M
matrix is a mixed matrix (3.1) such that the nonzero rows of Q-part and T-part are 
disjoint. 

With an 1M-matrix A of (3.2) we associate a function pas follows. Set Row(Q) = RQ, 
Row(T) = RT and Row(A) = R; then R = RQ U RT. The column sets of A, Q and 
T, being identified with one another, are denoted by C; namely, Col(A) = Col(Q) = 
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Col(T) =C. Put 

p(I, J) 

r(I,J) = 

rank Q[I, J], I~ Rq, J ~ C, 

U {i E Il7ii # 0}, I~ RT, J ~ C, 
jEJ 

lf(I, J)l, I~ RT, J ~ C, 'Y(I,J) 

p(I, J) p(I n Rq, J) + 'Y(I n RT, J)- IJI, I~ R, J ~ c. (3.3) 

The function p : 2R x 2° -t Z is bisubmodular: 

p(lt u h J1 n h)+ p(I1 n hIt u h) ::; p(h, h)+ p(I2, J2), 
I; ~ R, J; ~ C (i = 1, 2). 

Put 

L(I) = {J ~ c I p(I, J) ::; p(I, J'), v J' ~ C}, I~ R. (3.4) 

For each I~ R, L(I) forms a sublattice of 2° by virtue of the bisubmodularity of p. 
' 

Based on the Rank Identity in Theorem 3.1 we can prove the following, an extension of 
the well-known min-max characterization of the term rank of a matrix or the maximum 
matching in a bipartite graph, which is ascribed to J. Egervary, D. Konig, P. Hall, 
R. Rado, 0. Ore and others. 

THEOREM 3.2. (MuROTA, 1987B; MUROTA eta/., 1987) For an LM-matrix A, 

rankA[I, J] = min{p(I, J') I J' ~ J} + IJI, I~ R, J ~C. 

By the admissible transformation for an 1M-matrix A of (3.2) we mean the transfor
mation of the form: 

(3.5) 

where S is a nonsingular matrix over the subfield K, and Pr and Pc are permutation 
matrices. The admissible transformation brings an 1M-matrix into another 1M-matrix 
and two 1M-matrices are said to be LM-equivalent iff they are connected by an admissible 
transformation. Note that the function PR = p(R, ·) : 2° -t Z is an invariant under the 
1M-equivalence. That is, if A' is 1M-equivalent to A, then Col(A') rriay be identified 
with C = Col(A) and the functions p and p' associated respectively with A and A' 
satisfy p'(Row(A'), J) = p(Row(A), J) for J ~C. 

Remark 3.1. An electrical network is typically described by means of an 1M-matrix 
when currents in and voltages across branches are chosen as the elementary variables 
(e.g. Iri, 1983; Recski, 1989). In that case, the Q-part represents the structural equations 
for Kirchhoff's current and voltage laws. As is well-known, there are a number of different 
ways of expressing these conservation laws. The 1M-equivalence accounts exactly for the 
degree of freedom in expressing Kirchhoff's laws, as follows. 

As an example, consider the simple electrical network of figure 2, which consists of 
five resistors (branches 1 to 5) and a voltage source (branch 6). Then the current e; in 
and the voltage 'f/i across branch i should satisfy Kirchhoff's laws. To be specific, let us 

- consider the current vector e = (ei I i = 1, ... ' 6). If we translate Kirchhoff's current law 
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e 

Figure 2. An electrical network. 

into the statement that the algebraic sum of the currents flowing into each node is equal 
to zero, and notice that it is necessary and sufficient to consider three nodes, we obtain 
a mathematical expression Q1e = 0 with 

-1 
1 
0 

0 
-1 
1 

0 
0 

-1 

1 
0 

-1 

for Kirchhoff's current law. We may obtain another equally natural mathematical expres
sion if we pick up a tree in the underlying graph and consider the fundamental cutsets 
associated with it. For the tree consisting of the branches 1, 2 and 3; for instance, we 
have the expression Q2e = 0 with 

(

1 0 0 -1 
Q2 = 0 1 0 -1 

0 0 1 -1 
~1 =~) . 
-1 0 

These two mathematical expressions for Kirchhoff's current law are not identical, having 
different coefficient matrices, but are equivalent in that they specify an identical subspace 
of the space of e. In fact, the coefficient matrices are related as Q1 = SQ2 with 

-1 
1 
0 

This transformation matrix S corresponds to the second factor in the admissible trans
formation (3.5) of an 1M-matrix. 

It has been shown that there exists a finest block-triangular matrix, called the combi
natorial canonical form (or CCF for short), among the matrices which are LM-:equivalent 
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to each other ( cf. Theorem 3.3 below). Since the transformation (3.5) is more general 
than mere permutations of rows and columns, the CCF is a generalization of the canon
ical decomposition of a bipartite graph due to Dulmage and Mendelsohn (1959). An 
algorithm for the CCF is described in detail in section 3.2. 

The CCF can be constructed based on the submodular function PR = p(R, ·): 2°-+ Z 
of (3.3) and the lattice L(R) ~ 2° of (3.4) with the aid of a general principle, the Jordan
Holder type decomposition principle, for a submodular function. It should be recalled that 
by Birkhoff's representation theorem (Aigner, 1979), a sublattice of 2° is in one-to-one 
correspondence with a partition of C into partially ordered blocks { C0 ; C1, ... , Cb; Coo}, 
where 

CknCr=0 if k=fi/,{k,/}~{0,1, ... ,b,oo}, 

and Ck =fi 0 fork= 1, ... ,b (Co and Coo can be empty). The partial order among the 
blocks will be denoted as :::5 and furthermore Ck -< Cr will mean that C~c :::5 Cr. Ck =fi Cr; 
and Ck-< · Cr will mean that Ck -< Cr and there does not exist Cm such that Ck -< Cm-< 
Cr. 

The following theorem claims for the existence of the CCF for an 1M-matrix. It should 
be clear in the last statement (4) that the partitions of C into partially ordered blocks 
are partially ordered with respect to refinement relation. 

THEOREM 3.3. (MUROTA, 1987B; MUROTA eta/., 1987) For an LM-matrix A there 
exists an LM-matrix A which is LM-equiva/ent to A and satisfies the following properties. 

(1) A is block-triangularized, i.e. 

A[Rk, Cr] = 0 if 0 ~I< k ~ oo, 

where {Ro; R1, ... , Rbi Roo} and {Co; C1, ... , Cb; Coo} are partitions ofRow(A) and Col(A) 
respectively such that 

RknRr=0, CknCr=0 if k=fi/,{k,/}~{0,1, ... ,b,oo}, 

and Rk =P 0, Ck =P 0 fork= 1, ... , b (Ro, R00 , Co and C00 can be empty). 

Moreover, when Col( A) is identified with Col( A), the partition { C0 ; C1, ... , Cb; Coo} 
agrees with that defined by the lattice L( R) and the partial order on { cl, ... I cb} induced 
by the zero/nonzero structure of A agrees with the partial order :::5 defined by L(R); i.e. 

{2} 

(3} 

A[Rk, Cr] 0 unless Ck :::5 Cr (1 ~ k, I~ b); 

A[R~c, Cr] =fi 0 if Ck-< · C1 (1 ~ k, I~ b). 

rank A[Ro, Co] 

rank A[R~c, Ck] 

!Col if Ro =P 0, 
IC~cl (>0) for k=1, ... ,b, 

!Cool if Coo =fi 0. 

IRol, 
IRk!= !Ckl for k = 1, .. . ,b, 
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rank A[ Roo, Coo] !Cool· 

(4) A is the finest block-triangular matrix with properties (2) and {3) that is LM-equivalent 
to A. 

The matrix A above is the CCF of A. The submatrices A[Ro, Co] and A[ Roo, Coo] 
are called the horizontal tail and the vertical tail, respectively. An LM-matrix A will be 
called LM-irreducible or simply irreducible if its CCF does not split into more than one 
nonempty block, that is, if(a) b = 1 and Co= Roo= 0, (b) b = 0 and Roo= 0, or (c) b = 0 
and Co= 0. Each block A[Rk, Ck] of the CCF above is irreducible (k ;= 0, 1, ... , b, oo). 

Remark 3.2. The CCF is uniquely determined so far as the partitions of the row and 
column sets as well as the partial order among the blocks are concerned, whereas there 
remains some indeterminacy in the numerical values of the entries in the Q-part. 

Example 3.1. Consider an 1M-matrix A=(~) of (3.2) defined by 

X1 X2 X3 X4 X5 X6 X7 rl 0 1 -1 0 1 !J Q= -2 0 1 -2 0 0 
2 0 0 1 1 1 

and 
X1 X2 X3 X4 X5 X6 X7 

(" 
0 0 0 0 t2 

0 ) T= 
t3 0 0 0 t4 0 0 
0 t5 0 t6 t7 0 0 . 

0 ts 0 t9 tlO 0 tu 

We have 

T=N(T) = {t1, ... ,tu}. 

By choosing 

u~ 
-1 

D S= -1 
1 

in (3.5) we can transform Q to 

Xl X2 X3 X4 X5 X6 X7 

0 0 0 1 0 1 -1) Q' = SQ = 0 1 0 0 2 0 ' 
0 0 0 1 0 0 
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which in turn yields the CCF: 

X2 X4 X7 X3 X6 X1 X5 
0 1 -1 0 1 1 0 
t5 t6 0 0 0 0 t7 

A = Pr ( 'g: ) Pc = 
ts tg tu 0 0 0 t1o 

1 2 0 0 
t2 it 0 

1 1 
t3 t4 

with 
1 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 1 0 0 0 

Pr= 0 1 0 0 0 0 0 , Pc= 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 1 
0 0 1 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 0 1 0 0 0 0 

The columns of A are partitioned into four blocks as 

C1 = {x2, X4, X7}, C2 = {x3}, C3 = {x6}, C4 = {xt. X5} 

with the partial order 
c4 
! 

c3 
/ '\. 

c1 c2 
0 

The irreducibility of an 1M-matrix is characterized by the function p of {3.3) as follows. 

THEOREM 3.4. Let A be an LM-matrix with R = Row(A) and C = Col(A). 

(a) In case IRI = ICI (> 0): 

A is irreducible {:::=:} p(R, J) > p(R, 0) = p(R, C) (= 0), VJ f. 0, C (J ~C); 

(b) In case IRI < ICI: 
A is irreducible {:::=:} p(R, J) > p(R, C), VJ f. C (J ~C); 

(c) In case IRI > ICI: 
A is irreducible {:::=:} p(R, J) > p(R, 0) (= 0), VJ f. 0 {J ~C). 
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Theorem 3.5 below states some properties of a square irreducible LM-matrix. Note 
that the determinant of A is a polynomial in T = N(T) over K. 

THEOREM 3.5. (MuRoTA, 1989A) Let A = (~) be a nonsingular LM-matrix with 
respect to K, and T = N(T). 

{1} The determinant det A is an irreducible polynomial in the ring K[T] if A is LM
irreducible. Conversely, if det A is an irreducible polynomial, then there exists in the 
CCF of A at most one diagonal block which contains elements ofT' and all the other 
diagonal blocks are I X I matrices over K. 

{2) Each element ofT appears in det A if A is irreducible. 

{3} A - 1 is completely dense, i.e. (A - 1 )ij f. 0, \f ( i, j), if A is irreducible. 

A minor (subdeterminant) of A is also a polynomial in T = N(T) over K. Let dk(T) E 
K[T] denote the k-th determinantal divisor of A, i.e. the greatest common divisor of all 
minors of order kin A as polynomials in T over K. 

THEOREM 3.6. (MUROTA, 1987B, 1989B, 1991) Let A be an irreducible LM-matrix 
with respect to K; put R = Row(A), C = Col(A). 

(a) In case IRI = ICI (> 0): dk(T) E K- {0} for k = 1, ... , IRI- 1. 

(b) In case IRI < ICI: dk(T) E K- {0} for k = 1, ... , IRI. 

(c) In case IRI > ICI: dk(T) E K- {0} for k = 1, ... , ICI. 

Theorems 3.5 and 3.6 together imply the following. 

THEOREM 3.7. (MUROTA, 1991) Let A be an LM-matrix of rank r with respect to K. 
The decomposition of the r-th determinantal divisor dr(T) of A into irreducible factors 
in the ring K[T] is given by 

b 

dr(T) =a· IT det A[Rk, Ck], 
k=1 

where A[Rk, Ck] (k = 1, ... , b) are the irreducible square blocks in the CCF of A, and 
a E K- {0}. 

A submatrix A[ I, C], where I ~ R, of an LM-matrix A is again an LM-matrix, for 
which the CCF is defined. We denote by PeeF(I) the partition of C (with a partial order 
among blocks) in the CCF of A[ I, C]. In some applications we are concerned with the 
family of partitions {PeeF(/) I IE B}, where 

B ={I~ R I rank A= rankA[J,C] =III}. 

A concise characterization to the coarsest common refinement of {Peep(/) I I E B} is 
given in Murata (1990a). 

With an m x n mixed matrix A = Q+ T with respect to K we associate a (2m) x ( m+n) 
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1M-matrix 

A = ( . Im Q) = ( q) , 
-dmg [t1, ... , tm) T T 

where t1, ... , tm are "new" indeterminates (in F). Note that rank A = rank A+ m. Fur
thermore, ,the CCF of A yields the finest block-triangular matrix which can be obtained 
from A by means of the transformation of the form SA Pc with a nonsingular matrix S 
over K (free from N(T)) and a permutation matrix Pc. 

3.2. ALGORITHM FOR THE COMBINATORIAL CANONICAL FORM 

An efficient algorithm is described here which computes the CCF of an 1M-matrix A 
of (3.2) in 0( n3 log n) time with arithmetic operations in the subfield K only. Note that 
for an 1M-matrix A of (3.2) the Rank Identity (Theorem 3.1) specializes to 

ran~ A= max{rankQ[Rq, J] + term-rankT[RT,C- J] I J ~ C}. (3.6) 

In order to illustrate a connection between the CCF and the Dulmage-Mendelsohn 
decomposition, we first restrict ourselves to a nonsingular 1M-matrix A. In this case the 
CCF can be found as follows: 

[Algorithm (outline) for the CCF of a nonsingular A] 

1. Find J ~ C such that both Q[Rq, J] and T[RT, C- J] are nonsingular (such J with 
IJI = IRql = ICI- IRTI exists by (3.6)). 

2. LetS denote the inverse of Q[Rq, J] and put 

A':=(~ ~)A. 
3. Find the Dulmage-Mendelsohn decomposition A of A', namely, A := Pr A' Pc with 

suitable permutation matrices Pr and Pc. D 

The first step is nothing but the well-studied problem of matroid partition and a num
ber of efficient algorithms are available for it. The Dulmage-Mendelsohn decomposition 
in step 3 can be computed by first finding a maximum (perfect) matching in the bipartite 
graph associated with A', i.e. the graph denoted as G(A') at the beginning of section 
3.1, and then decomposing an auxiliary digraph into strongly connected components. See 
Murota (1987b) for more detail on the Dulmage-Mendelsohn decomposition. 

For the 1M-matrix of Example 3.1, which is nonsingular, we can take J = {x4 , x3 , xs} 
in step 1. The transformation matrix S given in Example 3.1 is equal to the inverse of 

(

-1 

Q[Rq,J] = ~2 
1 
1 
0 

For a general (not necessarily nonsingular) 1M-matrix it has been shown that the CCF 
can be constructed by identifying the minimum cuts in an independent-flow problem. 



Analysis of Dynamical Systems by Matroids 235 

See Murota (1987b) and Murota et al. (1987) for this reduction and Fujishige (1991) for 
independent-flow problems. 

The detail of the algorithm for a general 1M-matrix A of (3.2) is now described. As 
before let RT = Row(T) and C = Col( A). Furthermore let CQ be a disjoint copy of C, 
where the copy of j E C will be denoted as iQ E CQ. The algorithm works with a graph 
G = (V, B) with vertex set V = RT U CQ U C and arc set B = BT U Be U B+ U M, where 

BT = {(i,j) I i E RT,j E C, Tii i= 0}, Be= {(jQ,j) I j E C}, 

and B+ and M are sets of arcs which are defined and updated in tl}.e algorithm; B+ 
consists of arcs from CQ to CQ and M from C to RT U CQ. The set of end-vertices of 
M (vertices incident to an arc in M) will be designated as oM (~ V). The variable P 
is a two-dimensional array, or a matrix (over K), of size IRQ I X ICI, where P = Q at the 
beginning of the algorithm (step 1 below). The variable base is a one-dimensional array, 
or a vector, of size IRQ I, which represents a mapping (correspondence): RQ-+ C U {0}. 

[Algorithm for the CCF of a general A] 

1. M := 0; base[i] := 0 (i E RQ); P[i,j] := Qii (i E RQ,j E C). 
2. I:= {i E c 1 iQ E oM n CQ}; 

J := {j E C- I I For all i, base[i] = 0 implies P[i, j] = 0}; 
s;j; := RT- oM; s~ := UQ E cQ 1 i E c- (I u J)}; s+ := s;j; us~; 
s- :=C-oM; 
B+ := {(iQ, iQ) I hE RQ,j E J, P[h, j] "1- 0, i = base[h]}; 
If there exists in G a directed path from s+ to s- then go to step 3; otherwise 
(including the case where s+ = 0 or s- = 0) go to step 4. 

3. Let L (~ B) be (the set of arcs on) a shortest path from s+ to s-; 
M := (M- L) u {(j, i) 1 (i,j) E L n BT} u {(j,iQ) 1 (iQ,i) E L n Be}; 
If the initial vertex ( E s+) of the path L belongs to S~, then do the following: 

{Let jq ( E S~ ~ CQ) be the initial vertex; 
Find h such that base[h] = 0 and P[h, j] "1- 0; 
base[h] := j; w := 1/ P[h,j]; 
P[k, 1] := P[k, 1]- w x P[k,j] x P[h, I] (hi-kE RQ, IE C) }; 

For all ( iQ, jQ) E L n B+ (in the order from s+ to s- along L) do the following: 
{Find h such that i = base[h]; 
base[h] := j; w := 1/ P[h,j]; 
P[k, I]:= P[k, ~- w x P[k,j] x P[h, I] (hi-kE RQ, IE C)}; 

Go to step 2. 
4. Let Voo (~ V) be the set of vertices reachable from s+ by a directed path in G; 

Let Vo (~ V) be the set of vertices reachable to s- by a directed path in G; 
Co:= Cn Vo; Coo:= Cn Voo; 
Let G' denote the graph obtained from G by deleting the vertices V0 U V 00 (and 
arcs incident thereto); 
Decompose G' into strongly connected components {V.x I A E A} (V.x ~ V); 
Let { ck I k = 1' ... , b} be the subcollection of { c n V.x I A E A} consisting of all the 
nonempty sets C n V_x, where Ck's are indexed in such a way that for I< k there 
does not exist a directed path in G' from Ck to Ct; 
Ro := (RT n Vo) u {hE RQ I base[h] E Co}; 
Roo := (RT n Voo) u {hE RQ I base[h] E Coo u {0} }; 
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R-Jc := (RT n V~c) u {hE Rq I base[h] E CJc} (k = 1, ... 'b); 

A := Pr ( ~) Pc, where the permutation matrices Pr and Pc are determined 

so that the rows and the columns of A are ordered as (Ro; R1, ... , Rb; Roo) and 
(Co; C1, ... , Cb; Coo), respectively. o 

At each execution of step 3 the size of M increases by one, and at the termination of 
the algorithm we have the relation: rank A= I MI. The matrix A is the CCF of the input 
matrix A, where {Ro;R1, ... ,Rb;R00 } and {C0 ;Cb···,Cb;C00 } give the partitions of 
the row set and the column set, respectively. 

The shortest path in step 3 and the strongly connected components in step 4 can be 
found in time linear in the size of the graph G, by means of the standard graph algorithms 
(see Aho et al., 1974). 

Note also that the updates of P in step 3 are the standard pivoting operations on P, 
which is a matrix over the subfield K. The sparsity of P should be taken into account in 
actual implementations; for example, P[h, j] = 0 if base[h] = 0 and j E I U J. 

When the transformation matrix S in (3.5) is to be computed, we introduce another 
two-dimensional array, or matrix (over K), of size IRql X IRql, set S := I (identity 
matrix) in step 1, and update S together with P in step 3 according to the formula: 

S[k,l] := S[k,l]- w x P[k,j] x S[h,l] (h "# k E Rq,l E Rq). 

Example 3.2. The algorithm above is illustrated here for a 4 x 5 1M-matrix A= (~) 
of (3.2) with 

X1 X2 X3 X4 X5 Xl X2 X3 X4 X5 

Q = ( ~ ; ~ ~ ~ ), T = ~~ ( t~ t~ .~ ~ :~ ), 

where Col(A) = C = {xl,x2,xa,x4,xs} and Row(T) = RT = {ft,/2}. We work with a 
2 X 5 matrix P, a 2 X 2 matrix S, and a vector base of size 2. The copy of C is denoted 
as Cq = {x1q, x2q, xaq, X4q, xsq}. 

The flow of computation is traced below. 

1. M := 0; 

base := ~~ ( ~) , P := ~~ ( ~ 
2. I:= 0; J := {xs}; 

1 
2 

1 
1 

S;j := {ft,h}; S¢ .- {x1q,x2q,xaq,x4q}; 
s- := {xl,x2,xa,x4,x5}; 
B+ :=0; 
There exists a path from s+ to s- . 

3. L := {(x1q, x1)}; M := {(x1, x1q)}; 

1 
1 ~ ) ' s := ( ~ ~) . 

[See G(o) in fig. 3] 
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Xl X!Q 

h X2 X2Q 

xaq • 
h X4Q 

~ • 
xs xsq 

Figure 3. Graph G(0 ) of Example 3.2. 

The initial vertex X!Q of L is ins~' and the matrices are updated (with h = rt) to 

X! X2 X3 X4 X5 

base := ~~ ( x0
1
). p := ~~ ( ~ ~ ~ ~ ~ ) , s := ( ~ ~) . 

Noting L n B+ = 0 we return to step 2. 
2. I:= {xt}; J := {x5}; 

S:} := {ft,/2}; S~ := {x2Q 1 X3Q 1 X4Q}; s+ := {/t,/2,X2Q,X3Q,X4Q}; 
s- := {x2,xa,x4,x5}; 
B+ :=0; 
There exists a path from s+ to s-. [See Q(l) in fig. 4] 

3. L := {(x2q, x2)}; M := {(xt, x1q), (x2, x2q)}; • 
The initial vertex X2Q of L is ins~' and the matrices are updated (with h = r2) to 

X3 X4 

1/2 1/2 
1 1 ( 1 -1/2) s := 0 1 . 

Noting L n B+ = 0 we return to step 2. 
2. I:= {x1, x2}; 

J := {x3, X4 1 X5}; 
S:} := {ft,/2}; S~ := 0; s+ := {ft,/2}; s- := {xa,X4 1 X5}; 
B+ := {(x1q, Xaq), (x1q, X4q), (x2q, xaq), (x2q, x4q)}; 
There exists a path from s+ to s-. [See G(2) in fig. 5] 

3. L := {(/!, x5)}; M := {(x1, x1q), (x2, x2q), (x5, /!)}; 
The initial vertex ft fl. S~ and L n B+ = 0. Therefore the matrices remain un
changed and we return to step 2. 

2. I:= {x1,x2}; J := {xa,x4,x5}; 
S+ ·- {f }· s+ ·- 0· s+ ·- {f }· s- ·- {x x }· T ·- 2 , Q ·- , ·- 2 , ·- a, 4 , 

B+ := {(x1q, xaq), (x1q, X4q), (x2q, xaq), (x2q, x4q)}; 
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Xl XlQ 

h X2 X2Q 

~ 
X3Q • 

h 
~ 

X4Q • 
xs xsq 

Figure 4. Graph a(l) of Example 3.2. 

Xl XlQ 

h X2 X2Q 

X3 X3Q 

h X4 X4Q 

xs xsq 

Figure 5. Graph G(2) of Example 3.2. 

There exists a path from s+ to s- . [See G(3 ) in fig. 6] 
3. L := {(/2, x2), (x2, X2<J), (x2Q, X3Q), (x3Q, x3)}; 

M := {(xt, XlQ), (x3, X3Q), (xs, !1), (x2, h)}; 
The initial vertex h tJ. S~ and L n B+ = {(x2Q, x3Q)}. The matrices are updated 
(with h = r2) to 

X1 X2 X3 X4 xs 

r1 ( x1) p ·- r1 ( 1 -1 0 0 ~), s ·- (1 -1) base:= , ·- r2 0 2 1 1 .- 0 1 . r2 x3 

2. I:= {x1, x3}; J := {x2, X4, x5}; 
s+ ·- 0· s+ ·- 0· s+ ·- 0· s- ·- {x4}· T .- ' Q .- ' .- ' .- ' 
B+ := {(x1Q, X2Q), (x3Q, X2Q), (x3Q, X4Q)}; 
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Xl X!Q 

h xz 

X3 X3Q_ 

h X4 X4Q 

X5 X5Q 

Figm·e 6. Graph G(3 ) of Example 3.2. 

Figure 7. Graph G( 4 ) of Example 3.2. 

There exists no path from s+ ( = 0) to s-. [See G(4) in fig. 7] 
4. Voo := 0; Vo := {x3,X4,X3Q,X4Q}i 

Co := {x3, x4}; Coo := 0; 
Strongly connected components of G' are given by {V,x,, V,x 2 }, where 
V,x, = {xt,Xz,xs,XtQ,XzQ,/t,/z} and V,x 2 = {xsQ}i 
Since c n V,x2 = 0, we have b := 1 and Ct := c n V,x, = {xt, Xz, xs}; 
Ro := {rz}; Roo:= 0; R1 := {rt,ft,fz}; 
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xs X4 X1 X2 xs 

r, c 1 0 2 

~~) - P r1 1 -1 
A := Pr ( T) Pc = ft tl 0 

h 0 ts t4 

is the CCF. 0 

4. Some Properties of Dynamical Systems 

In this section we shall briefly mention some control-theoretic problems (e.g. Rosen
brock, 1970; Wolovich, 1974; Wonham, 1979) which have been successfully treated using 
the mathematical model introduced in section 2. It should be understood that we treat 
generic (or structural) properties with respect to the parameters T; for example, by "con
trollability" we mean the generic (or structural) controllability. Though not emphasized 
below, it should be noted that all the combinatorial characterizations lead to practi
cally efficient algorithms which run in polynomial time and which are composed of graph 
manipulations and arithmetic operations on rational numbers. 

Throughout this section, D(s) denotes a (square or nonsquare) polynomial matrix 
expressed as (2.6) with (A1) and (A2). This implies, in particular, that D(s) is a mixed 
matrix with respect to K = Q ( s). The entries of D( s) are not restricted to linear functions 
ms. 

4.1. DYNAMICAL DEGREE, MODEL MATCHING AND DISTURBANCE DECOUPLING 

The degrees of minors of D( s) are often of system-theoretic interest. For example, for 
the descriptor system (2.2), the degree of det (A- sF) in s, i.e. 

6(A- sF)= deg 3 det (A- sF), 

is one of the fundamental characteristics, sometimes called the dynamical degree. It 
expresses the number of exponential modes, or the number of state-space variables when 
(2.2) is reduced to the standard state-space (2.1). 

Let R = Row( D) and C = Col( D). We define 

6(D) = deg.detD(s), 

and furthermore, for Io ~ R, Jo ~ C and k ~ max(IIol, IJol) we define 

6k(D; Io, Jo) = max{6(D[I, J]) I I 2 Io, J 2 Jo, III= IJI = k}. 

The problem of computing 6( D) (or the dynamical degree if D = A- sF) has been for
mulated as a weighted matroid-partition/intersection problem (or independent matching 
problem) and an efficient algorithm for c5(D) has been given in Murota (1985); see also 
Murota {1987b, 1989b ). Recently, this result has been extended by Murota and van der 
Woude {1991) to compute 6k(D; I0 , J0 ). This extension has made it possible to compute 
the structure at infinity of transfer matrices, to test for the solvability of the exact model 
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matching problem, and to test for the solvability of the disturbance decoupling problem. 
See Murata and van der Woude (1991) for details. 

4.2. SMITH NORMAL FORM AND CONTROLLABILITY /OBSERVABILITY 

The Smith normal form of m x n polynomial matrix D(s) is often of system-theoretic 
interest. For example, the controllability (of the exponential modes) of the descriptor 
system (2.2) (with A- sF nonsingular) is known to be equivalent to the condition that 
the Smith normal form of D(s) =(A-sF I B) is equal to (Im I 0). This is also equivalent 
to saying that 

dm(s) = 1, 

where dm(s) denotes the monic greatest common divisor (in F[s]) of all them X m minors 
• : of D(s). 

It has been shown in Murata (1987a) that degdm(s) can be computed by solving a 
weighted-matroid union problem; based on this characterization an efficient algorithm 
has been constructed in Murata (1987a, 1987b) for testing for the controllability. 

A recent paper (Murata, 1991) shows that the Smith normal form of D(s) has a very 
simple structure, as stated below, and hence it can be computed efficiently by solving 
a weighted matroid-partition/intersection problem. The CCF plays the primary role in 
deriving this result. 

THEOREM 4.1. (MuRaTA, 1991) Assume (AJ) and (A2} for D(s) of (2.6), and let 

diag [c1(s), ... , tr(s), 0, ... , 0] 

be the Smith normal form of D(s), where r is the rank of D(s). Then, 

t"k(s)=sPk, k=1, ... ,r-1, 

for some Pl :::; · · ·:::; Pr-1· 

4.3. FIXED MODES 

Let D(s) be a nonsingular matrix expressed as (2.6) with 

Q D ( s) = Q0 + sQ1 , Tn ( s) = (T0 + sT1
) + K, 

where (Al) and (A2) are assumed again. We distinguish N(K) from N(T0
) U N(T1 

), 

regarding the latter as the parameters of fixed values describing a given system and the 
former as the parameters that we can control or design. 

The fixed polynomial'¢( s) is defined as the greatest common divisor of the set of 
det D(s) when i< runs over all admissible matrices, i.e. 

1/J(s) = gcd{detD(s) IKE K}, 

where K denotes the set of all real matrices of the given zero/nonzero pattern. A complex 
number A E Cis called a fixed mode if 1/J(A) = 0. 

When the state-space (2.1), augmented by y(t) = Cx(t), describe a decentralized 
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control system with v local control stations, the local nondynamic output feedback u(t) = 
Ky(t) is specified by a block-diagonal real matrix 

K = block-diag [Kt, ... , Kv], 

where Ki represents the output feedback at the ith control station (i = 1, ... , v). The 
concept of fixed modes defined above agrees with the usual definition if we define 

c-·F B 

~)' D(s) = g -I 
0 -I 

(QA Qn J:) rQ,. 0 0) QO = 0 -I Ql= 0 0 0 
Qc 0 -I 0 0 0 

c· 
Tn g). (-Tp 0 g). T 0 = 0 0 Tl = g 0 

Tc 0 0 c 0 0) K = 0 0 TK , 
0 0 0 

where the admissible feedback structure is assumed to be specified by the mixed matrix 
K = QK + TK with N(TK) representing the free parameters. 

It has been shown in Murota (1989c) that the fixed polynomial can be identified with 
the aid of Theorem 3.5, and an efficient algorithm for computing deg$'¢'(s) has been 
given. Note that the CCF plays the primary role again. 

5. Conclusion 

The mathematical framework presented in this chapter for the analysis of dynamical 
systems shares a lot in common with the matroid-theoretic methods developed for other 
engineering problems. The reader is referred to Iri (1983), Recski (1989) and Sugihara 
(1986). 

Though a considerable number of papers have been published on "nice" applications 
of matroid theory, they still remain "nice" theoretical applications. It must be admitted 
that those matroid-theoretic methods have never been tested against real-world problems 
in industry. It is hoped that this short survey, and in particular, the detailed description 
of the algorithm in section 3.2, will contribute to the integration of theory and practice. 
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