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Chapter 10 

Symbolic Methods for the Simulation of Planar 
Mechanical Systems in Design 

Bruce R. Donaldt 

Computer Science Department 

Cornell University, Ithaca, NY 14858 

Dinesh K. Pait 

Department of Computer Science 

University of British Columbia, Vancouver, Canada V6T 1Z2 

Certain common mechanical systems can be simulated using purely algebraic methods, 
requiring no numerical integration. In this approach, we reduce the simulation problem 
to sweeping an arrangement of plane algebraic curves of low degree, which in turn reduce 
to algebraic intersection problems. We provide here an introduction to the problem, the 
simulation approach, and applications to design for assembly. 

1. Introduction 

Simulation of mechanical systems for design, analysis, and testing has traditionally 
been considered amenable only by numerical methods. Symbolic methods have been 
used, if at all, only for a few aspects of simulation such as the preparation of equations 
for numerical integration. However, in certain situations the simulation problem can be 
radically reformulated to allow fast simulation using symbolic methods and no numerical 
integration. Such a situation arises in the design of snap-fasteners and other compliantly
connected mechanical parts - under certain assumptions, the simulation problem can 
be reduced to sweeping an arrangement of algebraic curves in the plane (Donald and 
Pai, 1991). Here, we outline the formulation, describe the role of symbolic methods in 
the formulation and the application of the approach to problems in design. More details 
can be found in Donald and Pai (1991). 

t Supported in part by the National Science Foundation under grants No. IRI-8802390, IRI-9000532 
and by a Presidential Young Investigator award No. IRI-8957316, and in part by the Mathematical 
Science Institute. 

t Supported in part by ONR Grant N00014-88K-0591, ONR Grant N00014-89J-1946, and NSF Grant 
DMC-86-17355. 
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The motivation for our problem is design for assembly and more specifically the design 
of objects that require no additional fasteners such as screws. Such parts deform and 
"snap, together during assembly and considerably simplify their manufacture. Interest
ingly, the force required to assemble two parts may be much less than the force required 
to take them apart. 

Despite the increasing use of such parts, there exist no general techniques for automat
ing their design. In general, the simulation of such systems requires the solution of the 
mechanics of contact and deformation in the parts. These numerically intensive problems 
are prohibitively expensive for use in design methods which are interactive or perform 
extensive search of the design space. We choose instead to reformulate the simulation 
problem using symbolic methods and using a simpler but sufficiently accurate model of 
the interaction between the parts. 

Our approach deviates significantly from earlier simulation methods. A major imped
iment to simulation of these systems has been the apparent necessity to integrate out 
the differential mechanics in order to determine the long-term behavior of the system. 
This problem i~ exacerbated by the fact that in many models of rotational compliance 
such as the generalized damper (e.g. Lozano-Perez et al., 1984; Erdmann, 1986; Don
ald, 1988, 1990; Canny, 1989), the resulting trajectories are not known to be algebraic; 
neither do we have ways of computing algebraic bounding approximations (or forward 
projections). Hence the traditional numerical approach to simulating such systems has 
been the following: 

Typical Simulation Algorithm 

1 Given a state x of the system, numerically integrate the differential equation gov
erning motion of the system. Step forward in time to obtain (approximately) new 
state x 1

• 

2 Perform collision detection either at x' or along the path from x to x'. 
3 If the constraints have changed, reformulate the differential equation. 
4 Repeat. 

Numerical simulation of mechanical systems is fraught with error, special cases, and 
numerical problems. They are rarely combinatorially precise, and almost never come with 
guarantees of accuracy. We show how in the case of our system, numerical simulation 
can be avoided, and exact solutions can be obtained. We cannot claim that this can be 
done in general. However, our method yields, in this case, computationally efficient, exact 
solutions, and may possibly be useful in other domains. 

We view the si~ulation problem, with rotational compliance and quasi-static mechan
ics, as a problem that can be solved by careful reduction to a plane sweep. In particular, 
for e~ch pawl, we reduce to sweeping a planar arrangement of algebraic curves of low 
degree. The size of the connected component of the free space to sweep is small - al
most linear in the number of constraints. The approach of Donald and Pai (1991) to 
modeling rotational compliance and to incorporating frictional constraints leads to the 
first formulation of the simulation problem which permits a reduction of motion predic
tion to plane sweep. Our solution differs from previous work on predicting, bounding, 
and planning rotationally compliant motions with quasi-static mechanics in that it is (i) 
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M 

Figure 1. Linked body M moving among N. 

purely algebraic, and hence exact, (ii) combinatorially precise, in that the computational 

complexity is exactly known, and (iii) requires no integration.t 

2. Formulation of problem 

We model the interaction between a flexible part M and the environment N (including 
its mating parts) as follows. The flexible part M is constructed by attaching polygons 
Mh, h = 1, ... , /,called "pawls", to a root polygon Mo, at hinge points Ph. Each hinge 
is coupled with a spring of stiffness kh. (See figure 1). The motion of the body M consists 
of rigid translation of the root polygon M 0 • The pawls Mh are free to move compliantly 
as dictated by interactions with the environment and the spring. The parts in contact 
obey Coulomb's law of friction and are in quasi-static motion. 

The simulation problem is to determine: 

1 The time of termination of the motion, the cause of termination (such as sticking 
due to friction, sticking due to kinematic constraints, etc.), and t,he configuration 
of M at termination. 

2 The time history of contacts between M and N. 

Some extensions to this problem are considered in Donald and Pai (1991), including 
the determination of the time history of contact and assembly forces, and the effect of 
uncertainty. 

We make the following assumptions about the physics of object interactions and the 
motion of M: 

• Object interactions are restricted to those between Mh and N. In other words, 
pawls do not collide with each other, but may collide with the environment N. The 
effect of this assumption is to make the motion of each pawl independent of the 
motion of other pawls. Henceforth we shall consider the motion of a single pawl 
Mh. 

• Since the root Mo is undergoing a rigid translation, so does the hinge point Ph. 

t Note that Donald (1988), Canny (1989), Briggs (1989) and Friedman et a/. (1989) address geometric 
reachability issues for translationally compliant objects, but these objects cannot rotate. 
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We shall assume that this translation is a straight line motion given by 

p= Po +pt (2.1) 

where tis the time, Po is the initial position (at t = 0) of Ph, and pis its velocity. 
• Stable contact: Suppose the pawl is in contact with a feature of the environment 

(for example, during sliding). We assume that if we perform a small displacement 
of the pawl away from the environment, the torque on the pawl due to the spring 
is such that the contact will be restored. This assumption is not very restrictive at 
all - in fact, in the face of even the smallest uncertainty, stable contacts are the 
only ones one can hope to observe in practice. 

• Quasi-static motion: The motion is assumed to be slow enough that inertial effects 
are not significant. This corresponds to assuming that there is no acceleration of the 
pawl, and hence the forces on the pawl are balanced. The quasi-static assumption 
is reasonable at small speeds and is widely used (see, for example, Whitney, 1982; 
Mason, 1982; Pai, 1988; Donald, 1990). 

• If the pa'Yl slides off N into free space, it may have a residual torque due to the 
spring being cocked. We shall assume that the pawl rotates back towards its rest 
orientation at such great speed that p does not change significantly during the 
rotation and can be taken to be constant. This, incidentally, is the "snap" in the 
snap-fasteners that we wish to model. Quasi-static motion implies that the root is 
moving "slow-enough" for the forces to be balanced. Hence, when a pawl is in free 
space and has a residual torque, its motion can be fast compared to that of the 
root, resulting in a "snap". This assumption can be relaxed by assuming a linear 
relationship between the translation p and the rotation (e.g. Canny, 1986), but we 
do not deal with it here. 

• The forces of friction arising from contact obey Coulomb's Law. We further assume 
that there is a single coefficient of friction. This assumption is also widely used. 

3. Outline of Simulation 

Given the above model of flexible objects as compliantly connected rigid bodies, our 
task is to simulate their behavior efficiently. We proceed by transforming the problem 
into an appropriate configuration space, in which obstacles and other constraints are 
reduced to algebraic curves of low degree. 

Two types of contact are possible between the pawl Mh and a polygon inN. Following 
the convention of Lozano-Perez (1983), Canny (1986) and Donald (1987), we say that 
Type-A contact occurs when a vertex of N touches an edge of the pawl; Type-B contact 
occurs when a vertex of the pawl touches an edge of N. 

We can now write the contact constraint equations for the two types of contact, as in 
Canny (1986). We shall index features (vertices and edges) of the moving pawl by the 
subscript i and features of the polygonal environment by the subscript j. Let an edge 
of Mh be represented by its outward normal, ni, and its distance to the hinge point 
along the normal, di. Let Pi be a vector to the contact vertex of N. Let Re be the linear 
transformation which rotates a vector by an angle(), Then the type-A constraint can be 
written as 

(Pi- p)·Reni- di = 0. (3.1) 
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Figure 2. Configuration space constraints for a moving pawl. (Reprinted courtesy of Randy Brost 
(Brost, 1989). The sweep plane L(t) intersects the cspace obstacles in a planar arrangement of cubic 

curves. 

Similarly, the type-B constraint can be written as 

(Rop; + p)·ni- di = 0, (3.2) 

where Pi is the vector from the hinge point Ph to the contact vertex of Mh. 

Consider the motion of a single pawlMh, whose translation is governed by (2.1). 
The obstacle constraints (3.1) and (3.2) can be reduced to algebraic equations by the 
substitution u = tan~· This yields constraint equations that are quadratic in u, with 
coefficients that are affine in x andy. Since x and y are affinely parametric in timet, the 
coefficients are also affine in t. Intersecting two of these constraints requires intersecting 
two quadratics. Pure rotational intersection detection (the "snap") requires solving a 
quadratic in u. Pure translational intersections require solving an affine equation. Hence 
there exists a closed-form, purely algebraic solution to these intersection problems. The 
collision detection for each obstacle constraint can be done in constant time, since the 
degree, size, and number of variables in the constraint polynomials is fixed. 

Thus then constraints given by (3.1) and (3.2) are manifest as algebraic ruled surfaces 
{ fl, ... , fn} in a 3D configuration space, C, with coordinates (x, y, u). Each surface is 
only "applicable" for some range of orientations [u0 , ul], by which we mean that the 
surface only "exists" for u in this range (Donald, 1987). See figure 2 from Brost (1989).t 

Let u be a vector along the u-axis (think of u as (0, 0, 1)). Now, the constraint of pure 
translation (2.1) of the hinge point Ph of the pawl Mh restricts any possible evolution 
of the system to lie in a 2D cylinder Y of (x, y, u)-space. We call this "plane" Py; it has 
"normal" u X (p, 0), and it corresponds to a chart for the cylinder Y. 

As timet increases, the vertical line L(t) sweeps across Py. This line contains the state 
of the system. It is our task to calculate the it coordinate as t evolves (i.e. increases). Now, 

Py has degree 1 and hence when intersected with a constraint fi we obtain a cubic+ curve 

t We thank R. Brost for providing us with these figures, from Brost (1989). 

t In fact, each curve 'Yi is simultaneously quadratic in u and linear in t. 
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Figure 3, Sweep events: translational collision, sliding collision, and jamming due to incompatible 
kinematics. 

segment /i in the (t, u) plane. So all the configuration space constraints are manifest as 
an arrangement of cubic curve segments { /1, ... , In } in this plane, where /i = fi n Py 
(i=l, ... ,n). 

In our algorithm, the sweep line sweeps across this planar arrangement of curves, and 
as we sweep, we compute the trajectory of the system. "Events" caused by crossing the 
curves /i will modify the trajectory. We define the following sweep events: (i) translational 
collision, (ii) sliding collision, (iii) jamming due to incompatible kinematics, (iv) snapping 
free from a single constraint, (v) jamming on a single constraint, (vi) snapping free from 
a vertex, and finally an event which depends on the presence offriction- (vii) a sticking 
event. Each event will have to be handled, by which we mean that the solution trajectory 
we compute may be modified. In between events, the trajectory is piecewise algebraic. 

Examples of these events are depicted in figure 3. We can explain the trajectory com
putation algorithm like this: the dynamical system has the following geometric inter
pretation in slice Py. In Py, the line u = 0 is an attract or, and we imagine a vector 
field on Py parallel to the u-axis and pointing towards the t:-axis. Hence the attracting 
vectors are parallel to -u for u > 0 and parallel t6 +u for u < 0. The curves /i act 
as (holonomic) constraints. The sweep point cannot cross these curves, but it can follow 
them as L(t) moves. They can prevent motion of the sweep point from attaining u = 0. 

The simulation problem is thus reduced to sweeping an arrangement of algebraic curves 
in the plane. The connected component of free space defined in this planar arrangement 
has complexity O(>.r(n)), and ca11 be constructed in time O(>.r(n) log2 n) using a red
blue merge algorithm (Guibas et al., 1988); see Donald and Pai (1991) for more details. 
Here >.r(n) is the (almost linear) maximum length of (n, r) Davenport Schinzel sequences 

(Guibas et al., 1988), and r is a small constant related to the number of times two cubict 
configuration space constraint curves can intersect. 

t By "cubic" we mean the total degree of the defining multinomial is 3. Our curves have additional 
structure, such as low-degree parameterizations, as well. 
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3.1. COMPUTING KINEMATIC EVENTS 

Here we treat the frictionless case, defining six types of local geometric events which 
are purely kinematic (for example, see figure 3). If the trajectory is at the u = 0 position 
and the sweep point z(t) encounters a constraint')';, then the sweep point complies to the 
constraint and is forced to move away from the zero line (u becomes positive here). This 
corresponds to a pure translational collision, followed by a continued motion of the root 
which "cocks" the pawl against an obstacle. During this motion, the sweep point follows 
/i· If a new constraint /j is reached, then the sweep point slides alopg the curve /j in 
turn. This corresponds to a sliding collision: while sliding on constraint')';, the pawl hits 
constraint /j. The motion continues, following /j compliantly. Hence the sliding collision 
can result in a constraint change. Finally, if the sweep point is following a curve ')'; which 
crosses u = 0, the trajectory breaks contact there and continues along the t-axis. This 
event is a "dual" subcase of type (i). 

As can be seen from figure 3, some constraint changes result in jamming due to in
compatible kinematics. This occurs as follows. Define the outward normal 'f/i of a curve 
/i to point into free space F. Lett be a unit vector in the positive t-direction. Jamming 
occurs at /in /j when both the inner products 

'f/i · t and 'f/j · t (3.3) 

are negative. At this point the simulation is terminated, bec~use further motion is im
possible. 

Pure translational collision events can occur where a curve')'; intersects the line u = 0. 
Sliding collisions can occur when two boundary curves of F intersect, i.e. at ')'; n /j. 
Jamming events can occur when both normals at ')'; n /j point in the (-i)-direction. 
A non-jamming sliding collision causes a change of constraint (i.e. the sweep point now 
follows 'Yi instead of')';). It is clear that sweep events of type (i), (ii) and (iii) are local 
geometric conditions and can be detected and handled while sweeping the line L(t) over 
F. Similarly, it is clear that modifying the trajectory z(t) at a sweep event can be done 
in 0(1) time. • 

We now describe the sweep events (iv) snapping free from and (v) jamming on a single 
constraint. Suppose the sweep point is following a constraint curve 'Y· A singularity 
occurs at vertical tangencies of 'Y· Assume, without loss of generality, that 1 lies in the 
halfplane u > 0. There are two possibilities. If the F is concave at the singularity, then the 
sweep point has been following the "upper" branch of the curve. After the singularity, the 
sweep point follows the vector field attracting it towards u = 0. That is, the sweep point 
moves parallel to the u-axis toward the t-axis. It stops at the first new constraint curve 
it hits while moving away from the singularity towards the line u = 0. If no constraints 
are encountered, it stops at u = 0. This motion corresponds to the pawl "snapping free" 
from a single constraint edge. It executes an instantaneous pure rotation towards the 
zero position. If another constraint is in the way, then it stops there. 

If F is convex at the singularity, then no further motion is possible, and the motion 
jams there on a single constraint. At this point the simulation is terminated. Singularity 
(vertical tangency) is a local geometric condition that can be detected during the plane 
sweep of F, since each curve is algebraic. 
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There is one more kinematic sweep event that is "dual" to type (iii) jamming due 
to incompatible kinematics. It is type (vi) snapping free from a vertex. It occurs at a 
constraint change 'Yi n 'Yi (i.e. the sweep point is following a curve 'Yi, and it hits another 
curve /j ). However, in this case, both the outward normals 1Ji and 1Jj point in the positive 
t-direction. That is, the dot products in (3.3) are both positive. In this case, the sweep 
point "snaps free" from 'Yi n /j and moves vertically towards the attractor u = 0. The 
snapping free happens just as in event (iv) above. Snapping free from a vertex corresponds 
to the situation where suddenly there are no holonomic constraints on the pawl, so it can 
move towards its rest position u = 0. Conceptually, there is little difference from event 
(iv) (snapping free from one constraint). The sweep events of type (iv), (v) and (vi) are 
local geometric conditions and can be detected and handled while sweeping the line L(t) 
over F. 

3.2. CoMPUTING FRICTION EvENTS 

When the pawl is in contact with the environment, it is possible for the motion to 
stop because the contact forces are adequate to balance the applied forces. This is called 
"stick~ng due to friction". The algorithm must determine if this can happen during mo
tion. The works of Mason (1982) and Erdmann (1984) address this issue in considerable 
detail. 

In Donald and Pai (1991), we show that for our problem this determination can be 
expressed by simple algebraic constraints. The possible locations of the hinge point Ph 
relative to the contact point and edge can be divided into four sectors or qualitative 
dynam;ic regions. We can show that the question of whether or not a pawl will stick 
on the environment can be reduced to that of determining the sector containing the 
hinge point. In addition, if the hinge point is in a sliding sector, the state of the system 
will ev6lve until it enters the next sticking sector. The boundaries between the sliding 
and sticking sectors can be translated into configuration space constraints. For example, 
for type-B contact, the constraints are given by RoPi = ifil2 (±nj + JLV) where v is 
orthogonal to ni and oriented in the direction of sliding. 1-' 

Thus for each configuration space surface fi we can define two constraints gi and hi 
which are also algebraic surfaces of the same degree as ft; gi and hi depend on the 
direction of assembly pin (2.1). 

The surfaces gi and ht break up fi into sliding and sticking regions. We call these 
qualitative dynamical regions (QDRs). In a sliding region, motion is possible as t increases. 
In a sticking region, equilibrium results, and no further motion is possible (compare 
work on translational compliant motion, e.g. Donald, 1988; Briggs, 1989). Now, when 
we intersect fi with the plane Py to obtain a curve 'Yi we obtain a 1D slice of these 
qualitative dynamic regions (sliding and sticking). 

Now, we define a seventh type of sweep event, (vii) a sticking event as follows. Suppose 
the sweep point is following a curve 'Yi· If it enters a sticking region on the curve, then 
equilibrium is reached and the simulation is terminated. Entry into the sticking region 
corresponds to crossing another algebraic curve hi or Ui, and hence is a local geometric 
event that can be detected and handled during the sweep. Note that gi and ht apply 
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only to fi and do not affect any other surface /j, and hence we call them local dynamic 
constraints. 

Finally we must slightly modify our kinematic plane sweep. After a pure translational 
or pure rotational collision with a curve 'Yi, we first check to-see whether we are in 
a sticking or sliding region on that curve. If it is a sticking region, we terminate the 
simulation in equilibrium, otherwise we proceed as above .. 

4. Application to Design for Assembly 

In design for assembly, we often desire "locking" parts that, when mated, cannot be 
disassembled by motion plans in a particular family of directions. More generally, we may 
require interlocking parts that cannot be disassembled at all, for any translational motion 
plan. Most generally, one might want parts that cannot be disassembled without exerting 
large forces. Following a suggestion of Mason (1984), we call such objects "motion diodes". 
The term is motivated by the fact that motion is possible in certain directions, but not 
in others. Our usage differs from Mason's, in that his motion diodes are geometries from 
which a robot cannot be guaranteed to emerge. Our motion diodes are (flexible object, 
environment) pairs such that for some family of controls (or perhaps all controls) no 
change in the sign of the controls can reverse the motion to re-achieve the start position. 
In our simple case a "plan" is a translation given as a straight line motion p =Po + pt 
where t is the time, Po is the initial position (at t = 0), and p is the root velocity. A 
family of controls corresponds to a set of velocities { p }, and changing the sign amounts 
to specifying -p. 

If motion diodes can be designed, analyzed and verified, then they can be rigidly 
attached as "fasteners" to bodies that we wish to mate, but not to disassemble. Our 
algorithm can analyze designs for these kinds of diodes. For example, if the triangular 
pawl in figure 4 is attached in the z-axis (perpendicular to the figure) to a root body in 
a parallel x-y plane to the figure, then the root body can be fastened irreversibly to its 
mating part. 

In the example depicted in figure 4 the triangular pawl can pivot about its center; a 
torsional spring is attached at the pivot. The root body is not in the plane of the pawl 
and is not shown. The pawl is moved down in a pure -y translation, and in response 
to the reaction forces from the environment, it rotates compliantly. Let us label the 
black obstacles, starting with the uppermost one, in clockwise order, A, B and C. The 
pawl contacts A and rotates counterclockwise while sliding along A's upper left corner. 
Eventually, the pawl breaks contact with A, and snaps off, only to hit the rightmost 
vertex of C. It briefly slides (while rotating compliantly) along C, until it hits B. The 
tighter constraint from B takes over, and the pawl is again "cocked" counterclockwise 
until it breaks contact at the lower left vertex of B. Finally, the pawl snaps off B to its 
rest position. 

Now, this mechanical system is a "diode" with respect to pure y-translation (see the 
figures). When the pawl is moved back up in the +y direction, it jams due to incompatible 
kinematic constraints. More interestingly, if B and C are extended to the right and left 
(resp.), the system is a diode with respect to all translational motions. That is, no 
commanded translation can bring the flexible body back out of the hole between B and 
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(a) 

-
Figure 4. "Moti~n diode" example. There is no root body, and only one triangular pawl which can 
pivot about a torsional spring at its center. In figure (a), the pawl snaps off the upper right obstacle 

and continues downward. Figure (b) shows the reverse motion, during which the pawl gets stuck due to 
incompatible kinematic constraints. 

C. Our algorithm can be used to decide that for a particular motion plan, a system is a 
diode. 

5. Conclusion 

There are several important situations in design where there is a need for rapid sim
ulation of the motion of flexible objects using simplified models. Such simulations have 
typically required computationally intensive numerical simulation methods which are 
inappropriate for interactive design and for design search. 

We have outlined an approach to fast simulation based on algebraic methods for a 
class of simple planar mechanical systems (Donald and Pai, 1991). In addition to speed, 
the algebraic approach provides precise combinatorial bounds on the complexity of the 
simulation and provides a systematic basis for enumerating special cases. While we can 
not claim that such an approach is suitable for all problems, we believe that this concept 
of "simulation as sweep" is a useful and broadly applicable paradigm. 
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