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Chapter 11 

Basic Requirements for the Automatic Generation of 
FORTRAN Code 

Stanly Steinbergt 

Department of Mathematics and Statistics 

University of New Mexico 

Albuquerque, New Mexico 87131 

The design of a numerical algorithm has a critical impact on the possibility of using 
computer symbol manipulation techniques to implement the algorithm in a numerical 
programming language. This paper describes a finite-difference discretization of a general 
elliptic partial-differential operator that is used to approximate a general boundary-value 
problem involving such operators. The boundary-value problems are posed in complex 
regions in three dimensions. Samples of generated FORTRAN code, some of the basic 
symbol manipulation tools, and portions of the special purpose symbol code used for 
generating the FORTRAN are given. This technology was used to produce thirty pages 
of FORTRAN code for a three-dimensional problem; the resulting code contained only 
one error. 

1. Introduction 

Part of a project to build a modeling program for porous media flow in a complex three
dimensional underground region required the generation of FORTRAN code for solving 
a boundary value problem (BVP) for a linear, second-order, symmetric, elliptic, partial 
differential equation (PDE) with Robin (mixed) boundary conditions (BCs). Because of 
the nature of the porous media, the coefficients of the second derivatives in the PDE form 
a general symmetric matrix with discontinuous entries. The problem that was modeled 
required a mixture of Dirichlet and Neumann boundary conditions so, to cover all cases, 
full Robin boundary conditions were implemented. A significant part of the FORTRAN 
code was generated using symbol manipulation (MACSYMA Reference Manual, 1988). 
The size of the symbol manipulation effort can be estimated from the fact that the 
generated code for the three-dimensional case is just under thirty pages long. 

The complexity in this project comes from the general coefficients of the PDE, the 

t This work was partially supported by the Office of Naval Research, Sandia National haboratories, 
the Army Research Office, and the Air Force Weapons Laboratory. 
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general boundary conditions, and the underlying geometry. Numerical grid-generation 
techniques (Thompson et al., 1985; Steinberg and Roache, 1986a) are used to handle 
the complex geometry. The new code was integrated into an existing modeling program, 
so the modules from that program which handle the input of the geometry, input of 
parameters for the PDE and BCs, output of numerical results, and graphics were used 
in this project. Most of the remaining code was written using MACSYMA. 

Both numerical algorithm design and the building of symbol manipulation tools (Stein
berg and Roache, 1987) played a critical role in this project, so both will be described 
here. The numerical algorithm has the following major parts: 

1 generate a transform.ation of the given region to a unit box using boundary con
forming coordinates (Thompson et al., 1985; Steinberg and Roache, 1986a); 

2 transform the PDE and BCs to the new coordinate system; 
3 calculate the stencils for (coefficients of) the difference approximations of the PDE 

and BCs; and 
4 solve the resulting system of algebraic equations. 

' 
The grid-generation problem in step 1 has been solved previously (Steinberg and 

Roache, 1986a) and the required FORTRAN code was generated using MACSYMA 
(Steinberg and Roache, 1987). Some previous work had been done on generating finite
difference code (Steinberg and Roache, 1988); a main point of this project was to extend 
this work to finite-volume formulations and general boundary conditions and to generate 
code for steps 2 and 3. An extensive theoretical background for this work is given in 
Steinberg and Roache (1991). In step 4, the algebraic equations are solved using a semi
coarsening multigrid algorithm of Dendy et al. (1989) (SOR and line SOR are also used). 
In the papers (Steinberg and Roache, 1986b, 1987, 1988; Florence et al., 1987; Liska and 
Drska, 1990), related work on the use of symbol manipulators to generate FORTRAN is 
presented. 

The numerical algorithms are derived by first transforming the BVP to boundary
conforming coordinates and then discretizing the resulting PDE and the BCs. Two ideas 
are used to derive difference schemes: one is a finite-difference approach based on nodal 
positions for the unknowns; and the other is a finite-volume approach based on cell
centered positions for the unknowns. The second approach is the most difficult to pro
gram, so this paper only considers that approach. 

The stencil loader is the code that computes the coefficients of the difference equations 
for the PDE and BCs. The stencil loader has code for: evaluating metrics; transforming 
the coefficients of the PDE and BCs; averaging of coefficients; calculating stencils; calcu
lating the residue; 'and evaluating fluxes. In general, the symbol-manipulation programs 
are designed to write FORTRAN code in any spatial dimension. This is important be
cause it helps in debugging both the symbol and FORTRAN code. Unfortunately, we 
were not .able to accomplish this for some of the boundary code. 

Although the use of grid generation greatly simplifies the geometry, there are still 
significant programming problems left. In three dimensions, the geometry becomes a 
unit cube. In the finite volume approach, the unit cube is divided into cells and then 
quantities in the interior of the region can be located at cell centers, cell face centers, 
cell edge centers, and cell corners. In addition, the boundary conditions are given on 
the six faces of the unit cube, and auxiliary conditions must be given along the twelve 
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edges and at the eight corners of the unit cube. The FORTRAN code will contain loops 
for calculating quantities at each class of points. It is a unique feature of this work that 
symbol-manipulation tools were developed for writing such loops. 

This project required a substantial symbol-manipulator programming effort. However, 
this approach was very successful, producing essentially error-free FORTRAN code with a 
reasonable programming effort. The FORTRAN code produced is now being incorporated 
into groundwater-flow modeling programs. (This will be discussed further in section 11.) 

What is important in this effort is that the numerical algorithm was designed so that 
a symbol manipulator could be used to handle all of the programming complexities, that 
is, the numerical grid-generation technology along with transforming the BVP reduces 
all geometric problems to algebraic problems. The user must still must describe the ge
ometry, that is, provide points on the boundary of the region (the user interface and 
grid-generation codes help with this task). The algorithm is independent of the bound
ary description. However, transforming the BVP to a unit cube and the use of general 
boundary conditions requires the FORTRAN code to contain many loops and many types 
of loops, all of which are written using a symbol manipulator. Moreover, the symbol code 
that writes loops for computations on the boundary must keep track of which direction 
points to the interior of the cube. As far as we know, this is the first time a symbol 
manipulator has been used to construct such complex numerical-programming logic. 

This paper uses concepts from the theory of PDEs, numerical analysis and symbolic 
computing, and thus may present some difficulty for the reader who is not familiar with 
all of these areas. The text by Birkhoff and Lynch (1984) provides excellent background 
material on PDEs and the numerical analysis used in this paper. A MACSYMA Reference 
Manual (1988) is needed for reading the latter part of this paper. 

2. The Boundary Value Problem 

The goal is to solve the boundary value problem 

Lf = g in n, 

of 
a an + f3 f = 'Y on an 

for f where n is a region in m dimensional Euclidean space Rm and an is the boundary 
of n (see figure 1). The operator Lis defined by 

Lf(x) = .t a~; (u;,;(x) ( 8~.J(x))) •,;=1 . J 

and the normal flux is defined by 

where the matriX(]' is symmetric (ui,j = Uj,i) and n = (nt, n2, • • • 1 nm) is the unit outer 
normal to an. As usual X= (xl, X2, .. ·, Xm) E Rm, f = f(x), g = g(x), h = h(x), 
a= a(x), f3 = f3(x), 1 = 1(x) and so forth. 
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n 
/an 

Figure 1. The physical region. 

In the development of numerical algorithms, it is useful to introduce the flux vector 

F = (F1, F2, · · ·, Fm) 

where 

Fi = Fi(x) = f (ui,j(x) (~t(x))) 
i=l 8x3 

Now, the differential operator can be written as a divergence of the flux vector: 

m {) 

Lf(x) =Lax· Fi(x) 
i=l ' 

and the normal flux is the inner product of the flux vector with the normal 

of m 

7) = LniFi. 
n i=l 

3. The Transformation 

The first step in the solution algorithm requires the BVP to be transformed to gen
eral coordinates. The new coordinates are called logical variables, and are labeled e = 
(6' 6, ... 'em)· It will be assumed that the transformation is boundary conforming and 
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1 

/ 
an 

1 
~1 

Figure 2. The transformation. 

that a unit box 0 is transformed to the physical region n (see figure 2). Thus, the 
transformation has the form 

x = x(~) 
and the boundaries of the physical region are given by the union of the images of the sets 
where ~i = 0 or ~i = 1, 1 :S i :S m. It is important for the algorithm that all quantities 
that involve the transformation be written as explicit functions of ~. For more details, 
see Steinberg and Roache (1991). 

The algorithm uses several metric quantities: the Jacobian matrix 

ox. 
3 = < Ji ,j ) = < ae: ) ' 

the Jacobian 

J = determinant(:!), 

and the cofactor matrix 

K = (Ki,j) = J :J-1 

of the Jacobian matrix. Thus Ki,j is ( -1)i+j times the determinant of the minor of Jj,i· 
The cofactor matrix plays a central role in transforming the BVP\ 

The chain rule can now be used to transform the BVP to the logical variables. However, 
the form of the transformed BVP is not unique because of an identity, called the metric 
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identity (Steinberg and Roache, 1991), that allows the chain rule to be written in two 
different forms, usually called the chain rule form and the conservation form. To maintain 
symmetry of the differential operator, both forms of the chain rule are used. 

4. The Transformed BVP 

The transformed BVP has the same form as the original BVP: 

Lj = u in n, 
_af+af--a- 1-' = 'Y on on 

where 

and 

and where i(e) = f(x(e)), and a( e)= J g(x(e)). The formula for a is given below; jj = {3 
and')' = 'Y· 

As stated above, it is convenient to introduce a flux vector 
~ 

ft = (F1, ft2, · · ·, Fm), 

where 

F; = ~ s;,i ( 0~i f) 
J 

and then the differential operator can be again written as divergence: 

Because the logical region is a box in m-dimensional space, its boundary is a union of 
2m faces given by ei = 0 or ei = 1 (see figures 2 and 4). Thus, the boundary condition 
can be written on each face. The i-th coordinate planes are given by e; = const, so the 
unit normal ii; to the i-th plane has components all zero, except that the i~th component 
is one. Consequently, the flux normal to the i-th coordinate plane is given by F;. 

To write the boundary conditions, introduce the coefficients af, (Jf, and 'Yf, where 
k = 0, 1 and 1 ~ i ~ m. These coefficients have the same values as a, (3, and 'Y on the 
part of 80 where ei = k. The outward flux at the boundary e; = k is given by 

~! =(-1)k+lft;. 
un; 



Now, the transformed boundary condition can be written 

-k aj -k - -k 
a; 0 ~ + /3; f = 'Yi , 

n; 

where 
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{3-~ = {3~ .;;~ = ""~ 
I I ' /1 -/1 

and where S; is a column of J(, 

Note that the transformed BVP depends only on the cofactor matrix and the Jacobian. 

5. Finite Differences 

The transformation, the PDE, and the BCs are discretized using standard central 
differences. The differencing of the transformation is discussed in the next section. The 
difference scheme for the PDE was designed so that the approximation is: 

1 a second-order approximation to the continuum; 
2 symmetric; 
3 nearest neighbor; and 
4 constants as solutions of the homogeneous problem. 

The symmetry is for the PDE only, and does not include the boundary conditions. The 
first three properties involve only the differencing of the transformed operator, while 
the fourth property involves the metric identity (for more information, see Steinberg and 
Roache, 1991). The differencing of the PDE near the boundary and the differencing of the 
BCs involve ghost points. The term ghost is used to indicate that the points lie outside 
the physical region; this terminology is also applied to cells. 

The differences in this section are given in continuum form, while in the next section 
they are given for discrete data. This is an important aspect of coupling the numerical 
algorithm with the symbol manipulation program. For example, the continuum notation 
is appropriate for doing a Taylor series analysis of truncation error, while the discrete 
formulation is used for writing FORTRAN code. MACSYMA utilities were written to 
translate between the continuum and discrete formulations. 

Both half-step and full-step differences and averages are needed in the algorithm. The 
definitions are given in two variables (the generalization to m variables is clear). The 
half-step differences and averages are 

6 J(C: ) = J<e + [).e/2, 11)- J<e- [).e/2, 11) 
e .. '11 [).e ' 
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while full-step differences and averages are 

v (c )_u(e+~e,rJ)-u(e-~e,rJ) 
{u "' 17 - 2~e ' 

The partial differential operator contains two distinct types of terms: diagonal and off
diagonal. It is assumed that the off-diagonal terms occur in symmetric pairs. Diagonal 
terms have the form 

; (a(e,rJ);(f(e,rJn), 

while the off-diagonal terms have the form 

, :e (b(e,rJ):11 (u(e,rJn) + : 11 (b(CrJ):e<u(e,TJ))) 
The diagonal terms are differenced using 

:e (a(e,11) :eu(e,11n) ~ 6d(J-LEa(e,11))(6d(e,11))), 

while the diagonal terms are differenced using 

:e (b(e,rJ):11 (u(e,rJn) ~vdb(e,rJ)(V11 u(e,rJ))). 

6. Discrete Data 

Two types of grids are used in this work: node on boundary and cell edge on bound
ary. The first grid corresponds to a finite-difference approach to the discretization, while 
the second grid corresponds to a finite-volume approach to the discretization. Both ap
proaches produce finite-difference schemes. The second approach is somewhat more com
plicated, from the symbol manipulation point of view, than the first approach, so the 
second approach is described below. The given and computed quantities can have nodal, 
cell-centered, or cell face-centered positions. 

To obtain an edge on boundary grid, the unit box is divided into cells (see figure 3 
for a two-dimensional example). To simplify the notation, this discussion is restricted to 
two dimensions (again, the generalization to m dimensions is clear). If the unit cube is 
divided into cells M by N cells, then the nodes are given by 

i j ei = M , 17i = N , 0 ::; i ::; M , 0 ::; j ::; N . 

To include the ghost cells, extend the index ranges to -1 ::; i ::; M + 1 and -1 ::; j ::; N + 1. 
The cell centers {including ghosts) are given by 

• 1 e·- ~ + 2 
a-M' -1::; i::; M, 
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• • • • 

• • • • 

• • • • 

• • • • 

Figure 3. Edge on boundary grid. 

The horizontal face centers (no ghosts) are given by 

j 
rlJ=N' 

while the vertical face centers are given by 

To translate the difference algorithms to FORTRAN, the given and computed quan
tities must be stored in arrays. The following conventions are used. The coordinates of 
the transformation are taken as nodal quantities 

x(i,j) +- x(~, t), 
while the solution values are taken as cell centered quantities 

. 1 • 1 

!( . ') ,-( z + 2 J + 2 ) 
z,J +- M ' N . 
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The fluxes are face centered, and thus come in two types: 

and 

. . - i+! j 
F1(~,J) t- F1( /i1' N) 

. '+ 1 
"' ( · ') i> ( ~ J 2) r2 ~,J f-.t'2 M'~ · 

Differences are now computed using the formulas given in the previous section. For 
example, the ~ derivative of the x coordinate at cell centers is given by 

ox 
{)~ ~ DEfJ.flx(~, 'fJ)' 

while the vertical face-centered derivatives off are computed using 

aj -
{)~ ~ 8{/(~, 'fJ) 

and 
aj -
O'fJ ~ p(D11 f(~, TJ). 

The horizontal face-centered differences have similar formulas. Also, the ~ derivative of 
F\ and the 1J derivative of F2 are cell-centered quantities given by half-step differences. 
Complete formulas for differencing the transformation, PDE and BCs are given in Stein
berg and Roache (1991). MACSYMA utilities are used to translate from the continuum 
difference formulas just given and the required formulas on discrete data stored in arrays. 

It is important to note that the ghost points play a role in both the boundary and 
interior differences. For example, consider the lower horizontal boundary 'fJ = 0, that is, 
j = 0 in two dimensions. The flux at a point ( i + ! , 0) involves both points with j = ! 
and j = -~.The points with negative j values are ghost points. This flux is used in the 
boundary condition and the flux-balance equations for the first interior cell. It is even 
more interesting to note that the flux on the vertical cell wall at ( i, ! ) involves the ghost 
points (i ± !, -!).Finally, the values of jon the boundary are computed using central 
averages of values at a ghost point and a first interior point. The boundary conditions 
are second order accurate. 

7. Global Geometry 

The global geometry is.relatively simple in one and two dimensions, but substantially 
more complicated in three dimensions, so the three-dimensional case is described below 
(see figure 4). Note that a cube in three dimensions has: 

1 interior; 
6 faces; 

12 edges; and 
8 corners. 
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Figure 4. Logical space in 3D. 

The stencil loader part of the FORTRAN code calculates various quantities using loops 
that pass over all interior nodes, interior cell-face centers, or cell corners. Similar loops 
must be constructed for the boundary faces, boundary edges, and bound~ry corners (see 
figure 4). Some of the loops use the ghost points while others do not. Another unique 
feature of the symbol code written for this project is that it has the capabilities of writing 
such loops. Section 8 gives examples of such loops. 

8. FORTRAN Samples 

In this section, some samples of the three-dimensional FORTRAN code generated 
by MACSYMA are presented; the samples are presented in a special font, essentially 
as MACSYMA produced them (some editing has been done for compactness of print
ing). The techniques used to generate the code are discussed in section 9. The three
dimensional code has 125 declarations: 32 real; 75 array; and 14 integer (all variables are 
declared). Also, the code contains 39 loops. The generation of code this size is, clearly, a 
complex task. 

There are a number of useful things that MACSYMA can do besides compute formulas. 
First, certain parts of comment statements can be computed along with the formulas. 
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This is very helpful for human readers of the code. Second, it is easy to keep track of all 
variables introduced by MACSYMA and then use these in the declaration statements. 
When this is combined with the FORTRAN default variable type being undeclared, 
errors are much easier to detect. Also, MACSYMA computes the upper and lower values 
for array dimensions, and then it builds array declarations using this information. The 
following FORTRAN fragments illustrate these points. For example, the upper and lower 
limits on the i index have been computed by MACSYMA. 

c The arrays of grid points. 
c Stored at corners: i1-1 <= i <= il+2, etc. 

real x(i1d:ild, j1d:jld, k1d:kld) 

A numerical grid gives a correspondence between points in physical space and the 
indices that lie in a box in a space which has the same number of dimensions as the 
physical space. In the finite-volume approach, physical space is divided into cells and the 
coordinates of the transformation are tabulated at the corners of the cells. The solution 
values are tabu!ated at the centers of cells in the interior of the region, while the fluxes 
are tabulated at cell face centers. In the interior of the region, loops must be constructed 
for calculations over cell corners, cell centers, and cell face centers. Similar loops must 
be generated for the faces, edges, and corners of the box. Samples of such loops follow: 

c Loop is over cell centers. 
do 1 k = k1 - 1 kl + 1 
do 1 j = j1 - 1 • jl + 1 
do 1 i = i1 - 1 • il+ 1 

c Loop is over face centers. 
do 21 k = k1-1,kl+1 
do 21 j = j 1-1,jl+1 
do 21 i = i1,il+1 

c Loop is over face centers. 
i = i1 
do 611 j = j1 ,jl 
do 611 k = k1 ,kl 

c Loop is over edge centers. 
j = j1 - 1 
k = k1 - 1 
do 9111 i = i1, il 

Formulas for derivatives of the transformation, computing metrics, averaging, evaluat
ing the stencils, etc. must be produced. A few samples are listed below: 

c The derivatives of the coordinate change. 
xi = ( x(i+1,j+1,k+1)+x(i+1,j+1,k)+x(i+1,j,k+1)+x(i+1,j,k)-

1 x(i,j+f,k+1)-x(i,j+1,k)-x(i,j,k+1)-x(i,j,k) )/hi/4.0 

c Compute the metric quantities. 
vk11 = y2*z3-y3*z2 
vjac = vk13*x3+vk12*x2+vk11*x1 

c The transformed coefficients. 
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a11(i,j,k) = ( vk31**2*vsig33+2*vk21*vk31*vsig23+vk21**2*vsig22 
1 +2*vk11*vk31*vsig13+2*vk11*vk21*vsig12+vk11**2*vsig11)/vjac 

c The stencil formulas. 
c The coefficient of f(i- 1, j, k) 

stn011(i,j,k) = ah11(i,j,k)/h1**2 
c The coefficient of f(i - 1, j - 1, k) 

stn001(i,j,k) = (a12(i,j-1,k)+a12(i-1,j,k))/(h1*h2)/4.0 
c The coefficient of f(i, j, k) 

stn111(i,j,k) = -stn211(i,j,k)-stn121(i,j,k)-stn112(i,j,k) 
1 -stn110(i,j,k)-stn101(i,j,k)-stn011(i,j,k) 

9. Basic Symbol Tools 

There is no symbol manipulator which provides all of the basic tools needed for FOR
TRAN code generation and analysis. In particular, tools are needed for manipulating 
finite-difference equations (FDEs) in both the continuum and discrete settings. Simple 
tools were built for: (i) basic finite difference formulas; (ii) transforming the PDE and 
BCs; (iii) converting a PDE to a continuum FDE; (iv) converting a continuum FDE to 
a discrete FDE; (v) collecting coefficients and building stencil formulas; and (vi) writing 
FORTRAN code. Here is an example of a central difference formula. The lines labeled 
with c_ are MACSYMA input lines, those labeled with dn are MACSYMA output lines. 

(c_7) cd(f(x),x,1,1/2); 

f (x + -¥) - f (x- -¥) 
dx 

Tools are needed for both algorithm generation and algorithm checking. The most 
elementary check is a truncation error analysis. The code generated by MACSYMA was 
checked by this method; it took about six cpu hours on a Sun 3 workstation to check the 
three-dimensional code. The Taylor series computation, used in the check, requires the 
use of the newdiff option from the Partial Differentiation Package in MACSYMA (see 
the MACSYMA Reference Manual, 1988). An example of a truncation error calculation 
follows: 

(c_11) expression : cd(f(x),x,1,1/2)-diff(f(x),x,1); 

f(x+d"')-f((x-d"')) of 
2 2 (x) 

dx ox 

(c_12) taylor(expression,dx,0,4); 

!!!.1_ (x) dx 2 ~ (x) dx4 
/):);3 + &x' + .. , 

24 1920 
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The conclusion is that the central difference is a second-order approximation of the first 
derivative. 

One of the basic tools needed for stencil generation is a list of all of the nearest neigh
bors of a point in n-dimensions. The function displace generates a list of the differential 
displacements of the nearest neighbors of a point. 

(c_i) displace([x,y],1); 

(d1) [[-dx, -dy], [-dx, 0], [-dx, dy], [0, -dy], [0, 0), [0, dy], [dx, -dy], [dx, 0), [dx, dy]] 

It is particularly useful to develop algorithms in continuum notation (as is used in the 
previous example) and then convert this notation to an index notation. The function 
index_note was written to do this. 

(c_14) expression : expand(ca(cd(f(x,y),x,1,1),y,1,1)); 

( ) 
f(x+dx,y+dy) f(x+dx,y-dy) f(x-dx,y+dy) f(x-dx,y-dy) 

d14 4 dx + 4 dx - 4 dx - .:........:--4-d:-x---'-

(c_16) index_note(expression,[x,y],[i,j],1); 

f(i+1,j+1) f(i+1,j-1) f(i-1,j+1) f(i-1,j-1) 
4 h1 + 4 h1 - 4 h1 - 4 h1 . 

The fortran function can be used to convert the previous expression to FORTRAN 
syntax. A more compact form of the expression is obtained by using the factor or ratsimp 
functions. 

10. The Symbol Programs 

The symbol manipulation programs follow the theoretical discussion given in the pre
vious sections of this paper; see Steinberg and Roache (1991) for more details. Thus, 
once the basic tools are understood, the main symbol manipulation programs are easily 
understood. In this section, several basic utility programs are listed and described. (The 
comments in the symbol programs have been deleted and replaced by descriptions.) The 
symbol manipulation programs use three list of variables. In three dimensions they are: 
physical= [x,y,z], logical= [e.~,(], and index= [i,j,k). Because the index vari
ables i,j,and k are used in the FORTRAN code, the symbol code uses the variables ii, 
jj, and so forth, to index loops. 

The block of code listed below is from the transformation function, which is used to 
generate FORTRAN code for the evaluation of derivatives of the coordinate transfor
mation. Here cd is a central difference, ca is a central average, and It is a left translate. 
All other functions are standard MACSYMA utilities. The variable transformation has 
previously been constructed from the physical, logical lists and has as its value a list: 

[x(e.~.(),y(e.~.(),z(e.~.c~ 



real : [], 
formulas : [] , 
for ii thru nn do for jj thru nn do ( 

tempi : concat(physical[ii], jj), 
real : endcons(tempi, real), 
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temp2 : cd(transformation[ii], logical[jj], i, il2), 
for kk thru nn do if kk # jj then 

temp2 : ca(temp2, logical[kk], i, il2), 
for kk thru nn do 

temp2 lt(temp2, logical[kk], il2), 
I* Simplify the derivatives. •I 

temp2 factor(temp2), 
formulas endcons(tempi = temp2, formulas), 

end_ii_jj_do), 

The formulas list is used to hold the formulas that are later converted to FORTRAN. 
To understand the first loop, assume that ii = 1, jj = 1, and physical= [x, y]. Then 
tempi= x1, real= [x1], and temp2 has as its value the central-difference formula (see 
above) for the derivative of the x coordinate with respect to its first argument. Because 
of the nature of the finite-volume formulation, the derivative must be averaged in all 
variables, except the one in which it is differenced, and then all variables must be trans
lated by one half-step. This is accomplished in the two kk loops. After transformations 
is called, the list of formulas in formulas is translated to index notation, then to FOR
TRAN notation, and finally the code is printed into a file. This produces the formula for 
xi given in a previous example. 

MACSYMA is used to convert the differential equation to a difference equation by 
substituting differences for derivatives. In the finite-volume formulation, different differ
ences are used for the diagonal and off-diagonal terms in the PDE, so this is not totally 
trivial. In our programs, the solution of the PDE is called /, so the previous operations 
produce a finite-difference operator called expression. In one dimension, expression is a 
linear combination of J(e - de), J(e), and f(e +de). It is the job of the make_stencils 
function to collect the coefficients of the various f values in expression, which are the 
formulas for the stencils. After translation to index notation and to FORTRAN, formulas 
such as those for stn011, stnOOi, and stniii, as shown above, are produced. A listing 
of part of the make_stencil program follows:. 

I* Create a list of all possible differential displacements. •I 
list : displace(variables, width), 

I* Collect the coefficients of the differences of 
function in the expression. •I 

expression: expand(expression), 
for jj thru length(list) do ( 

place : function, 
for ii thru length(variables) do 

place : subst(variables[ii]+list[jj][ii], variables[ii], place), 
parts : bothcoeff(expression, place), 
full : name, 
for ii thru length(variables) do ( 
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temp: width+ coeff(list[jj] [ii], concat(d, variables[ii])), 
full : concat(full, temp), 

end_ii_do), 
full : apply(full, variables), 
parts[1] : ratsimp(parts[1]), 
if not(parts[1] = 0) then ( 

real : endcons(full , real), 
stencils endcons([full, parts[1], place], stencils) 

) else ( 
stn_zero endcons([full, place], stn_zero) ), 

expression : expand(parts[2]), 
end_jj_do), 

This is a computation in logical space, therefore, in two dimensions variables = [e, 77] 
and for a nearest neighbor stencil width = 1. The action of displace was given above; a 
typical entry in list is a list of two displacements. So, assume list[jj] =[-de, -d7]] and 
function= f(/f., 77). After the first pass through the ii loop place= f(e- de, 7J- d7J). 
Then parts is a list containing the coefficient of place in expression and the rest of 
expression. 

Next, assume full = stn. After the ii loop full = stnOO, that is, the name for 
the lower left stencil. Next full = stnoo(e, 7J). The conditional checks to see if the 
coefficient is zero; if not, add full to the list of real variables and, if COEFFICIENT is 
the coefficient just computed, then add 

[stnOO(e, 7J), COEFFICIENT, f(e- de, 7J- d17)] 

to the list of stencils. This list is converted to index notation and then to FORTRAN, 
finally resulting in the following comment and code being inserted into the FORTRAN 
code. 

c The coefficient of f(i - 1, j - 1) 
stnOO(i,j) = (a12(i,j-1)+a12(i-1,j))/(h1*h2)/4.0 

11. Conclusions 

When numerical algorithms are appropriately designed, then the use of a symbol ma
nipulation program to convert the algorithm to FORTRAN code is effective and efficient. 
For some time, symbol manipulators have been used to derive formulas for numerical 
computations and convert such formulas to FORTRAN notation. This technology was 
used to great advantage in this project. The use of a symbol manipulator to construct 
variable declarations, comments, and loops is a novel aspect of this project. 

The formulas in the FORTRAN code that calculate the stencils were read back into the 
symbol manipulator where they were used to reconstruct the finite-difference operator. 
A truncation-error analysis was then performed on the difference operator, confirming 
that it was second order accurate. Such an analysis essentially eliminates the possibilities 
of errors in the formulas (and none were ever found). In this process, some information 
from the FORTRAN comments was used, so even they were checked. 

The first symbol manipulation programs were used to write FORTRAN code based 
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on the finite-difference formulation. Most of the symbol code was developed for the »
dimensional case, but it was tested for increasing dimension. At the point when the cor
rect two-dimensional FORTRAN was finally generated, substantially more development 
time was required via the symbol manipulation route than would be required for hand 
coding the FORTRAN. However, now that much of the work for the three-dimensional 
case was done, by the time the three-dimensional FORTRAN was running, the symbol 
manipulation route was more efficient than hand coding. The next project was to write 
a finite-volume formulation code. Much of the symbol code that was written before was 
reusable, so the symbol manipulation route was substantially more efficient than hand 
coding. The final symbol code is about one and one-half times as large as the three
dimensional finite-volume FORTRAN code. 

Certainly, accuracy is more important than efficiency. An important aspect of using 
a symbol manipulator to write FORTRAN is that errors in the symbol code typically 
produce FORTRAN code that is obviously incorrect, and thus, errors are easy to detect. 
For example, a sign error in the symbol code will typically appear in many places in 
the FORTRAN code, making it far easier to detect than a single typo. Thus, when one 
believes that the symbol manipulator is generating correct FORTRAN code, there are 
very few errors left. 

Of course, all of the codes were rigorously tested numerically (Roache et al., 1990) and 
some additional errors were found. The testing is done one dimension at a time. For the 
finite-volume approach, during the numerical testing, no errors were found in the one 
dimensional code, three errors were found in the two dimensional code, and one error 
was found in the three dimensional code. All errors were easy to find and of the type 
where a FORTRAN statement is not in the correct loop or a loop index had an incorrect 
limit. 

Because the FORTRAN code is written symbolically, then symbolically tested using 
a truncation error analysis, and then thoroughly tested numerically, we believe that the 
probability of any remaining errors is extremely small. 

This project has emphasized the construction of mathematically corr,ect code. What 
is really needed is numerically correct code. Certainly, having no mathematical or pro
gramming errors is a critical first step. However, it is also important to have the formulas 
arranged so that numerical errors and operation counts are minimized. There is an excel
lent operation-count optimizer in MAPLE. Char et al. (1988) and van Hulzen et al. (1989) 
have produced operation-count optimizers for Reduce. The optimization of the operation 
count generally reduces numerical errors. We do not know of any symbol-manipulation 
work that directly addresses the problem of numerical errors. In the applications of this 
work, the generated FORTRAN code accounts for a small percentage of the execution 
time of a much larger program, so little effort was put into optimizing the code, aside 
from keeping the generated code simple and organizing the loops to take advantage of the 
way FORTRAN stores arrays. The numerical testing was done using approximately six 
decimal-digit arithmetic. Over a wide range of problems, the floating-point errors were 
in agreement with what would be predicted from the number of operations performed, 
and were well below the level of the numerical errors in other parts of the program. 
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