
Symbolic and Numerical
Computation for

Artificial Intelligence
edited by

Bruce Randall Donald
Department of Computer Science

Cornell University, USA

Deepak Kapur
Department of Computer Science

State University of New York, USA

Joseph L. Mundy
AI Laboratory

GE Corporate R&D, Schenectady, USA

Academic Press
Harcourt Brace Jovanovich, Publishers

London San Diego New York
Boston Sydney Tokyo Toronto

ACADEMIC PRESS LIMITED
24--28 Oval Road

London NW1

US edition published by
ACADEMIC PRESS INC.

San Diego, CA 92101

Copyright © 1992 by
ACADEMIC PRESS LIMITED

This book is printed on acid-free paper

All Rights Reserved
No part of this book may be reproduced in any form, by photostat, microfilm or any other

means, without written permission from the publishers

A catalogue record for this book is available from the British Library

ISBN 0-12-220535-9

Printed and Bound in Great Britain by
The University Press, Cambridge

Mathematical Modeling,

Symbolic and Numerical Systems

/

Chapter 11

Basic Requirements for the Automatic Generation of
FORTRAN Code

Stanly Steinbergt

Department of Mathematics and Statistics

University of New Mexico

Albuquerque, New Mexico 87131

The design of a numerical algorithm has a critical impact on the possibility of using
computer symbol manipulation techniques to implement the algorithm in a numerical
programming language. This paper describes a finite-difference discretization of a general
elliptic partial-differential operator that is used to approximate a general boundary-value
problem involving such operators. The boundary-value problems are posed in complex
regions in three dimensions. Samples of generated FORTRAN code, some of the basic
symbol manipulation tools, and portions of the special purpose symbol code used for
generating the FORTRAN are given. This technology was used to produce thirty pages
of FORTRAN code for a three-dimensional problem; the resulting code contained only
one error.

1. Introduction

Part of a project to build a modeling program for porous media flow in a complex three
dimensional underground region required the generation of FORTRAN code for solving
a boundary value problem (BVP) for a linear, second-order, symmetric, elliptic, partial
differential equation (PDE) with Robin (mixed) boundary conditions (BCs). Because of
the nature of the porous media, the coefficients of the second derivatives in the PDE form
a general symmetric matrix with discontinuous entries. The problem that was modeled
required a mixture of Dirichlet and Neumann boundary conditions so, to cover all cases,
full Robin boundary conditions were implemented. A significant part of the FORTRAN
code was generated using symbol manipulation (MACSYMA Reference Manual, 1988).
The size of the symbol manipulation effort can be estimated from the fact that the
generated code for the three-dimensional case is just under thirty pages long.

The complexity in this project comes from the general coefficients of the PDE, the

t This work was partially supported by the Office of Naval Research, Sandia National haboratories,
the Army Research Office, and the Air Force Weapons Laboratory.

260 S. Steinberg

general boundary conditions, and the underlying geometry. Numerical grid-generation
techniques (Thompson et al., 1985; Steinberg and Roache, 1986a) are used to handle
the complex geometry. The new code was integrated into an existing modeling program,
so the modules from that program which handle the input of the geometry, input of
parameters for the PDE and BCs, output of numerical results, and graphics were used
in this project. Most of the remaining code was written using MACSYMA.

Both numerical algorithm design and the building of symbol manipulation tools (Stein
berg and Roache, 1987) played a critical role in this project, so both will be described
here. The numerical algorithm has the following major parts:

1 generate a transform.ation of the given region to a unit box using boundary con
forming coordinates (Thompson et al., 1985; Steinberg and Roache, 1986a);

2 transform the PDE and BCs to the new coordinate system;
3 calculate the stencils for (coefficients of) the difference approximations of the PDE

and BCs; and
4 solve the resulting system of algebraic equations.

'
The grid-generation problem in step 1 has been solved previously (Steinberg and

Roache, 1986a) and the required FORTRAN code was generated using MACSYMA
(Steinberg and Roache, 1987). Some previous work had been done on generating finite
difference code (Steinberg and Roache, 1988); a main point of this project was to extend
this work to finite-volume formulations and general boundary conditions and to generate
code for steps 2 and 3. An extensive theoretical background for this work is given in
Steinberg and Roache (1991). In step 4, the algebraic equations are solved using a semi
coarsening multigrid algorithm of Dendy et al. (1989) (SOR and line SOR are also used).
In the papers (Steinberg and Roache, 1986b, 1987, 1988; Florence et al., 1987; Liska and
Drska, 1990), related work on the use of symbol manipulators to generate FORTRAN is
presented.

The numerical algorithms are derived by first transforming the BVP to boundary
conforming coordinates and then discretizing the resulting PDE and the BCs. Two ideas
are used to derive difference schemes: one is a finite-difference approach based on nodal
positions for the unknowns; and the other is a finite-volume approach based on cell
centered positions for the unknowns. The second approach is the most difficult to pro
gram, so this paper only considers that approach.

The stencil loader is the code that computes the coefficients of the difference equations
for the PDE and BCs. The stencil loader has code for: evaluating metrics; transforming
the coefficients of the PDE and BCs; averaging of coefficients; calculating stencils; calcu
lating the residue; 'and evaluating fluxes. In general, the symbol-manipulation programs
are designed to write FORTRAN code in any spatial dimension. This is important be
cause it helps in debugging both the symbol and FORTRAN code. Unfortunately, we
were not .able to accomplish this for some of the boundary code.

Although the use of grid generation greatly simplifies the geometry, there are still
significant programming problems left. In three dimensions, the geometry becomes a
unit cube. In the finite volume approach, the unit cube is divided into cells and then
quantities in the interior of the region can be located at cell centers, cell face centers,
cell edge centers, and cell corners. In addition, the boundary conditions are given on
the six faces of the unit cube, and auxiliary conditions must be given along the twelve

Generating FORTRAN 261

edges and at the eight corners of the unit cube. The FORTRAN code will contain loops
for calculating quantities at each class of points. It is a unique feature of this work that
symbol-manipulation tools were developed for writing such loops.

This project required a substantial symbol-manipulator programming effort. However,
this approach was very successful, producing essentially error-free FORTRAN code with a
reasonable programming effort. The FORTRAN code produced is now being incorporated
into groundwater-flow modeling programs. (This will be discussed further in section 11.)

What is important in this effort is that the numerical algorithm was designed so that
a symbol manipulator could be used to handle all of the programming complexities, that
is, the numerical grid-generation technology along with transforming the BVP reduces
all geometric problems to algebraic problems. The user must still must describe the ge
ometry, that is, provide points on the boundary of the region (the user interface and
grid-generation codes help with this task). The algorithm is independent of the bound
ary description. However, transforming the BVP to a unit cube and the use of general
boundary conditions requires the FORTRAN code to contain many loops and many types
of loops, all of which are written using a symbol manipulator. Moreover, the symbol code
that writes loops for computations on the boundary must keep track of which direction
points to the interior of the cube. As far as we know, this is the first time a symbol
manipulator has been used to construct such complex numerical-programming logic.

This paper uses concepts from the theory of PDEs, numerical analysis and symbolic
computing, and thus may present some difficulty for the reader who is not familiar with
all of these areas. The text by Birkhoff and Lynch (1984) provides excellent background
material on PDEs and the numerical analysis used in this paper. A MACSYMA Reference
Manual (1988) is needed for reading the latter part of this paper.

2. The Boundary Value Problem

The goal is to solve the boundary value problem

Lf = g in n,

of
a an + f3 f = 'Y on an

for f where n is a region in m dimensional Euclidean space Rm and an is the boundary
of n (see figure 1). The operator Lis defined by

Lf(x) = .t a~; (u;,;(x) (8~.J(x))) •,;=1 . J

and the normal flux is defined by

where the matriX(]' is symmetric (ui,j = Uj,i) and n = (nt, n2, • • • 1 nm) is the unit outer
normal to an. As usual X= (xl, X2, .. ·, Xm) E Rm, f = f(x), g = g(x), h = h(x),
a= a(x), f3 = f3(x), 1 = 1(x) and so forth.

262 S. Steinberg

n
/an

Figure 1. The physical region.

In the development of numerical algorithms, it is useful to introduce the flux vector

F = (F1, F2, · · ·, Fm)

where

Fi = Fi(x) = f (ui,j(x) (~t(x)))
i=l 8x3

Now, the differential operator can be written as a divergence of the flux vector:

m {)

Lf(x) =Lax· Fi(x)
i=l '

and the normal flux is the inner product of the flux vector with the normal

of m

7) = LniFi.
n i=l

3. The Transformation

The first step in the solution algorithm requires the BVP to be transformed to gen
eral coordinates. The new coordinates are called logical variables, and are labeled e =
(6' 6, ... 'em)· It will be assumed that the transformation is boundary conforming and

Generating FORTRAN 263

1

/
an

1
~1

Figure 2. The transformation.

that a unit box 0 is transformed to the physical region n (see figure 2). Thus, the
transformation has the form

x = x(~)
and the boundaries of the physical region are given by the union of the images of the sets
where ~i = 0 or ~i = 1, 1 :S i :S m. It is important for the algorithm that all quantities
that involve the transformation be written as explicit functions of ~. For more details,
see Steinberg and Roache (1991).

The algorithm uses several metric quantities: the Jacobian matrix

ox.
3 = < Ji ,j) = < ae:) '

the Jacobian

J = determinant(:!),

and the cofactor matrix

K = (Ki,j) = J :J-1

of the Jacobian matrix. Thus Ki,j is (-1)i+j times the determinant of the minor of Jj,i·
The cofactor matrix plays a central role in transforming the BVP\

The chain rule can now be used to transform the BVP to the logical variables. However,
the form of the transformed BVP is not unique because of an identity, called the metric

264 S. Steinberg

identity (Steinberg and Roache, 1991), that allows the chain rule to be written in two
different forms, usually called the chain rule form and the conservation form. To maintain
symmetry of the differential operator, both forms of the chain rule are used.

4. The Transformed BVP

The transformed BVP has the same form as the original BVP:

Lj = u in n,
_af+af--a- 1-' = 'Y on on

where

and

and where i(e) = f(x(e)), and a(e)= J g(x(e)). The formula for a is given below; jj = {3
and')' = 'Y·

As stated above, it is convenient to introduce a flux vector
~

ft = (F1, ft2, · · ·, Fm),

where

F; = ~ s;,i (0~i f)
J

and then the differential operator can be again written as divergence:

Because the logical region is a box in m-dimensional space, its boundary is a union of
2m faces given by ei = 0 or ei = 1 (see figures 2 and 4). Thus, the boundary condition
can be written on each face. The i-th coordinate planes are given by e; = const, so the
unit normal ii; to the i-th plane has components all zero, except that the i~th component
is one. Consequently, the flux normal to the i-th coordinate plane is given by F;.

To write the boundary conditions, introduce the coefficients af, (Jf, and 'Yf, where
k = 0, 1 and 1 ~ i ~ m. These coefficients have the same values as a, (3, and 'Y on the
part of 80 where ei = k. The outward flux at the boundary e; = k is given by

~! =(-1)k+lft;.
un;

Now, the transformed boundary condition can be written

-k aj -k - -k
a; 0 ~ + /3; f = 'Yi ,

n;

where

Generating FORTRAN 265

{3-~ = {3~ .;;~ = ""~
I I ' /1 -/1

and where S; is a column of J(,

Note that the transformed BVP depends only on the cofactor matrix and the Jacobian.

5. Finite Differences

The transformation, the PDE, and the BCs are discretized using standard central
differences. The differencing of the transformation is discussed in the next section. The
difference scheme for the PDE was designed so that the approximation is:

1 a second-order approximation to the continuum;
2 symmetric;
3 nearest neighbor; and
4 constants as solutions of the homogeneous problem.

The symmetry is for the PDE only, and does not include the boundary conditions. The
first three properties involve only the differencing of the transformed operator, while
the fourth property involves the metric identity (for more information, see Steinberg and
Roache, 1991). The differencing of the PDE near the boundary and the differencing of the
BCs involve ghost points. The term ghost is used to indicate that the points lie outside
the physical region; this terminology is also applied to cells.

The differences in this section are given in continuum form, while in the next section
they are given for discrete data. This is an important aspect of coupling the numerical
algorithm with the symbol manipulation program. For example, the continuum notation
is appropriate for doing a Taylor series analysis of truncation error, while the discrete
formulation is used for writing FORTRAN code. MACSYMA utilities were written to
translate between the continuum and discrete formulations.

Both half-step and full-step differences and averages are needed in the algorithm. The
definitions are given in two variables (the generalization to m variables is clear). The
half-step differences and averages are

6 J(C:) = J<e + [).e/2, 11)- J<e- [).e/2, 11)
e .. '11 [).e '

266 S. Steinberg

while full-step differences and averages are

v (c)_u(e+~e,rJ)-u(e-~e,rJ)
{u "' 17 - 2~e '

The partial differential operator contains two distinct types of terms: diagonal and off
diagonal. It is assumed that the off-diagonal terms occur in symmetric pairs. Diagonal
terms have the form

; (a(e,rJ);(f(e,rJn),

while the off-diagonal terms have the form

, :e (b(e,rJ):11 (u(e,rJn) + : 11 (b(CrJ):e<u(e,TJ)))
The diagonal terms are differenced using

:e (a(e,11) :eu(e,11n) ~ 6d(J-LEa(e,11))(6d(e,11))),

while the diagonal terms are differenced using

:e (b(e,rJ):11 (u(e,rJn) ~vdb(e,rJ)(V11 u(e,rJ))).

6. Discrete Data

Two types of grids are used in this work: node on boundary and cell edge on bound
ary. The first grid corresponds to a finite-difference approach to the discretization, while
the second grid corresponds to a finite-volume approach to the discretization. Both ap
proaches produce finite-difference schemes. The second approach is somewhat more com
plicated, from the symbol manipulation point of view, than the first approach, so the
second approach is described below. The given and computed quantities can have nodal,
cell-centered, or cell face-centered positions.

To obtain an edge on boundary grid, the unit box is divided into cells (see figure 3
for a two-dimensional example). To simplify the notation, this discussion is restricted to
two dimensions (again, the generalization to m dimensions is clear). If the unit cube is
divided into cells M by N cells, then the nodes are given by

i j ei = M , 17i = N , 0 ::; i ::; M , 0 ::; j ::; N .

To include the ghost cells, extend the index ranges to -1 ::; i ::; M + 1 and -1 ::; j ::; N + 1.
The cell centers {including ghosts) are given by

• 1 e·- ~ + 2
a-M' -1::; i::; M,

Generating FORTRAN 267

• • • •

• • • •

• • • •

• • • •

Figure 3. Edge on boundary grid.

The horizontal face centers (no ghosts) are given by

j
rlJ=N'

while the vertical face centers are given by

To translate the difference algorithms to FORTRAN, the given and computed quan
tities must be stored in arrays. The following conventions are used. The coordinates of
the transformation are taken as nodal quantities

x(i,j) +- x(~, t),
while the solution values are taken as cell centered quantities

. 1 • 1

!(. ') ,-(z + 2 J + 2)
z,J +- M ' N .

268 S. Steinberg

The fluxes are face centered, and thus come in two types:

and

. . - i+! j
F1(~,J) t- F1(/i1' N)

. '+ 1
"' (· ') i> (~ J 2) r2 ~,J f-.t'2 M'~ ·

Differences are now computed using the formulas given in the previous section. For
example, the ~ derivative of the x coordinate at cell centers is given by

ox
{)~ ~ DEfJ.flx(~, 'fJ)'

while the vertical face-centered derivatives off are computed using

aj -
{)~ ~ 8{/(~, 'fJ)

and
aj -
O'fJ ~ p(D11 f(~, TJ).

The horizontal face-centered differences have similar formulas. Also, the ~ derivative of
F\ and the 1J derivative of F2 are cell-centered quantities given by half-step differences.
Complete formulas for differencing the transformation, PDE and BCs are given in Stein
berg and Roache (1991). MACSYMA utilities are used to translate from the continuum
difference formulas just given and the required formulas on discrete data stored in arrays.

It is important to note that the ghost points play a role in both the boundary and
interior differences. For example, consider the lower horizontal boundary 'fJ = 0, that is,
j = 0 in two dimensions. The flux at a point (i + ! , 0) involves both points with j = !
and j = -~.The points with negative j values are ghost points. This flux is used in the
boundary condition and the flux-balance equations for the first interior cell. It is even
more interesting to note that the flux on the vertical cell wall at (i, !) involves the ghost
points (i ± !, -!).Finally, the values of jon the boundary are computed using central
averages of values at a ghost point and a first interior point. The boundary conditions
are second order accurate.

7. Global Geometry

The global geometry is.relatively simple in one and two dimensions, but substantially
more complicated in three dimensions, so the three-dimensional case is described below
(see figure 4). Note that a cube in three dimensions has:

1 interior;
6 faces;

12 edges; and
8 corners.

Generating FORTRAN 269

Figure 4. Logical space in 3D.

The stencil loader part of the FORTRAN code calculates various quantities using loops
that pass over all interior nodes, interior cell-face centers, or cell corners. Similar loops
must be constructed for the boundary faces, boundary edges, and bound~ry corners (see
figure 4). Some of the loops use the ghost points while others do not. Another unique
feature of the symbol code written for this project is that it has the capabilities of writing
such loops. Section 8 gives examples of such loops.

8. FORTRAN Samples

In this section, some samples of the three-dimensional FORTRAN code generated
by MACSYMA are presented; the samples are presented in a special font, essentially
as MACSYMA produced them (some editing has been done for compactness of print
ing). The techniques used to generate the code are discussed in section 9. The three
dimensional code has 125 declarations: 32 real; 75 array; and 14 integer (all variables are
declared). Also, the code contains 39 loops. The generation of code this size is, clearly, a
complex task.

There are a number of useful things that MACSYMA can do besides compute formulas.
First, certain parts of comment statements can be computed along with the formulas.

270 S. Steinberg

This is very helpful for human readers of the code. Second, it is easy to keep track of all
variables introduced by MACSYMA and then use these in the declaration statements.
When this is combined with the FORTRAN default variable type being undeclared,
errors are much easier to detect. Also, MACSYMA computes the upper and lower values
for array dimensions, and then it builds array declarations using this information. The
following FORTRAN fragments illustrate these points. For example, the upper and lower
limits on the i index have been computed by MACSYMA.

c The arrays of grid points.
c Stored at corners: i1-1 <= i <= il+2, etc.

real x(i1d:ild, j1d:jld, k1d:kld)

A numerical grid gives a correspondence between points in physical space and the
indices that lie in a box in a space which has the same number of dimensions as the
physical space. In the finite-volume approach, physical space is divided into cells and the
coordinates of the transformation are tabulated at the corners of the cells. The solution
values are tabu!ated at the centers of cells in the interior of the region, while the fluxes
are tabulated at cell face centers. In the interior of the region, loops must be constructed
for calculations over cell corners, cell centers, and cell face centers. Similar loops must
be generated for the faces, edges, and corners of the box. Samples of such loops follow:

c Loop is over cell centers.
do 1 k = k1 - 1 kl + 1
do 1 j = j1 - 1 • jl + 1
do 1 i = i1 - 1 • il+ 1

c Loop is over face centers.
do 21 k = k1-1,kl+1
do 21 j = j 1-1,jl+1
do 21 i = i1,il+1

c Loop is over face centers.
i = i1
do 611 j = j1 ,jl
do 611 k = k1 ,kl

c Loop is over edge centers.
j = j1 - 1
k = k1 - 1
do 9111 i = i1, il

Formulas for derivatives of the transformation, computing metrics, averaging, evaluat
ing the stencils, etc. must be produced. A few samples are listed below:

c The derivatives of the coordinate change.
xi = (x(i+1,j+1,k+1)+x(i+1,j+1,k)+x(i+1,j,k+1)+x(i+1,j,k)-

1 x(i,j+f,k+1)-x(i,j+1,k)-x(i,j,k+1)-x(i,j,k))/hi/4.0

c Compute the metric quantities.
vk11 = y2*z3-y3*z2
vjac = vk13*x3+vk12*x2+vk11*x1

c The transformed coefficients.

Generating FORTRAN 271

a11(i,j,k) = (vk31**2*vsig33+2*vk21*vk31*vsig23+vk21**2*vsig22
1 +2*vk11*vk31*vsig13+2*vk11*vk21*vsig12+vk11**2*vsig11)/vjac

c The stencil formulas.
c The coefficient of f(i- 1, j, k)

stn011(i,j,k) = ah11(i,j,k)/h1**2
c The coefficient of f(i - 1, j - 1, k)

stn001(i,j,k) = (a12(i,j-1,k)+a12(i-1,j,k))/(h1*h2)/4.0
c The coefficient of f(i, j, k)

stn111(i,j,k) = -stn211(i,j,k)-stn121(i,j,k)-stn112(i,j,k)
1 -stn110(i,j,k)-stn101(i,j,k)-stn011(i,j,k)

9. Basic Symbol Tools

There is no symbol manipulator which provides all of the basic tools needed for FOR
TRAN code generation and analysis. In particular, tools are needed for manipulating
finite-difference equations (FDEs) in both the continuum and discrete settings. Simple
tools were built for: (i) basic finite difference formulas; (ii) transforming the PDE and
BCs; (iii) converting a PDE to a continuum FDE; (iv) converting a continuum FDE to
a discrete FDE; (v) collecting coefficients and building stencil formulas; and (vi) writing
FORTRAN code. Here is an example of a central difference formula. The lines labeled
with c_ are MACSYMA input lines, those labeled with dn are MACSYMA output lines.

(c_7) cd(f(x),x,1,1/2);

f (x + -¥) - f (x- -¥)
dx

Tools are needed for both algorithm generation and algorithm checking. The most
elementary check is a truncation error analysis. The code generated by MACSYMA was
checked by this method; it took about six cpu hours on a Sun 3 workstation to check the
three-dimensional code. The Taylor series computation, used in the check, requires the
use of the newdiff option from the Partial Differentiation Package in MACSYMA (see
the MACSYMA Reference Manual, 1988). An example of a truncation error calculation
follows:

(c_11) expression : cd(f(x),x,1,1/2)-diff(f(x),x,1);

f(x+d"')-f((x-d"')) of
2 2 (x)

dx ox

(c_12) taylor(expression,dx,0,4);

!!!.1_ (x) dx 2 ~ (x) dx4
/):);3 + &x' + .. ,

24 1920

272 S. Steinberg

The conclusion is that the central difference is a second-order approximation of the first
derivative.

One of the basic tools needed for stencil generation is a list of all of the nearest neigh
bors of a point in n-dimensions. The function displace generates a list of the differential
displacements of the nearest neighbors of a point.

(c_i) displace([x,y],1);

(d1) [[-dx, -dy], [-dx, 0], [-dx, dy], [0, -dy], [0, 0), [0, dy], [dx, -dy], [dx, 0), [dx, dy]]

It is particularly useful to develop algorithms in continuum notation (as is used in the
previous example) and then convert this notation to an index notation. The function
index_note was written to do this.

(c_14) expression : expand(ca(cd(f(x,y),x,1,1),y,1,1));

()
f(x+dx,y+dy) f(x+dx,y-dy) f(x-dx,y+dy) f(x-dx,y-dy)

d14 4 dx + 4 dx - 4 dx - .:........:--4-d:-x---'-

(c_16) index_note(expression,[x,y],[i,j],1);

f(i+1,j+1) f(i+1,j-1) f(i-1,j+1) f(i-1,j-1)
4 h1 + 4 h1 - 4 h1 - 4 h1 .

The fortran function can be used to convert the previous expression to FORTRAN
syntax. A more compact form of the expression is obtained by using the factor or ratsimp
functions.

10. The Symbol Programs

The symbol manipulation programs follow the theoretical discussion given in the pre
vious sections of this paper; see Steinberg and Roache (1991) for more details. Thus,
once the basic tools are understood, the main symbol manipulation programs are easily
understood. In this section, several basic utility programs are listed and described. (The
comments in the symbol programs have been deleted and replaced by descriptions.) The
symbol manipulation programs use three list of variables. In three dimensions they are:
physical= [x,y,z], logical= [e.~,(], and index= [i,j,k). Because the index vari
ables i,j,and k are used in the FORTRAN code, the symbol code uses the variables ii,
jj, and so forth, to index loops.

The block of code listed below is from the transformation function, which is used to
generate FORTRAN code for the evaluation of derivatives of the coordinate transfor
mation. Here cd is a central difference, ca is a central average, and It is a left translate.
All other functions are standard MACSYMA utilities. The variable transformation has
previously been constructed from the physical, logical lists and has as its value a list:

[x(e.~.(),y(e.~.(),z(e.~.c~

real : [],
formulas : [] ,
for ii thru nn do for jj thru nn do (

tempi : concat(physical[ii], jj),
real : endcons(tempi, real),

Generating FORTRAN 273

temp2 : cd(transformation[ii], logical[jj], i, il2),
for kk thru nn do if kk # jj then

temp2 : ca(temp2, logical[kk], i, il2),
for kk thru nn do

temp2 lt(temp2, logical[kk], il2),
I* Simplify the derivatives. •I

temp2 factor(temp2),
formulas endcons(tempi = temp2, formulas),

end_ii_jj_do),

The formulas list is used to hold the formulas that are later converted to FORTRAN.
To understand the first loop, assume that ii = 1, jj = 1, and physical= [x, y]. Then
tempi= x1, real= [x1], and temp2 has as its value the central-difference formula (see
above) for the derivative of the x coordinate with respect to its first argument. Because
of the nature of the finite-volume formulation, the derivative must be averaged in all
variables, except the one in which it is differenced, and then all variables must be trans
lated by one half-step. This is accomplished in the two kk loops. After transformations
is called, the list of formulas in formulas is translated to index notation, then to FOR
TRAN notation, and finally the code is printed into a file. This produces the formula for
xi given in a previous example.

MACSYMA is used to convert the differential equation to a difference equation by
substituting differences for derivatives. In the finite-volume formulation, different differ
ences are used for the diagonal and off-diagonal terms in the PDE, so this is not totally
trivial. In our programs, the solution of the PDE is called /, so the previous operations
produce a finite-difference operator called expression. In one dimension, expression is a
linear combination of J(e - de), J(e), and f(e +de). It is the job of the make_stencils
function to collect the coefficients of the various f values in expression, which are the
formulas for the stencils. After translation to index notation and to FORTRAN, formulas
such as those for stn011, stnOOi, and stniii, as shown above, are produced. A listing
of part of the make_stencil program follows:.

I* Create a list of all possible differential displacements. •I
list : displace(variables, width),

I* Collect the coefficients of the differences of
function in the expression. •I

expression: expand(expression),
for jj thru length(list) do (

place : function,
for ii thru length(variables) do

place : subst(variables[ii]+list[jj][ii], variables[ii], place),
parts : bothcoeff(expression, place),
full : name,
for ii thru length(variables) do (

274 S. Steinberg

temp: width+ coeff(list[jj] [ii], concat(d, variables[ii])),
full : concat(full, temp),

end_ii_do),
full : apply(full, variables),
parts[1] : ratsimp(parts[1]),
if not(parts[1] = 0) then (

real : endcons(full , real),
stencils endcons([full, parts[1], place], stencils)

) else (
stn_zero endcons([full, place], stn_zero)),

expression : expand(parts[2]),
end_jj_do),

This is a computation in logical space, therefore, in two dimensions variables = [e, 77]
and for a nearest neighbor stencil width = 1. The action of displace was given above; a
typical entry in list is a list of two displacements. So, assume list[jj] =[-de, -d7]] and
function= f(/f., 77). After the first pass through the ii loop place= f(e- de, 7J- d7J).
Then parts is a list containing the coefficient of place in expression and the rest of
expression.

Next, assume full = stn. After the ii loop full = stnOO, that is, the name for
the lower left stencil. Next full = stnoo(e, 7J). The conditional checks to see if the
coefficient is zero; if not, add full to the list of real variables and, if COEFFICIENT is
the coefficient just computed, then add

[stnOO(e, 7J), COEFFICIENT, f(e- de, 7J- d17)]

to the list of stencils. This list is converted to index notation and then to FORTRAN,
finally resulting in the following comment and code being inserted into the FORTRAN
code.

c The coefficient of f(i - 1, j - 1)
stnOO(i,j) = (a12(i,j-1)+a12(i-1,j))/(h1*h2)/4.0

11. Conclusions

When numerical algorithms are appropriately designed, then the use of a symbol ma
nipulation program to convert the algorithm to FORTRAN code is effective and efficient.
For some time, symbol manipulators have been used to derive formulas for numerical
computations and convert such formulas to FORTRAN notation. This technology was
used to great advantage in this project. The use of a symbol manipulator to construct
variable declarations, comments, and loops is a novel aspect of this project.

The formulas in the FORTRAN code that calculate the stencils were read back into the
symbol manipulator where they were used to reconstruct the finite-difference operator.
A truncation-error analysis was then performed on the difference operator, confirming
that it was second order accurate. Such an analysis essentially eliminates the possibilities
of errors in the formulas (and none were ever found). In this process, some information
from the FORTRAN comments was used, so even they were checked.

The first symbol manipulation programs were used to write FORTRAN code based

I

I
l
I

'!

I

I
!

I
. I
'

r

Generating FORTRAN 275

on the finite-difference formulation. Most of the symbol code was developed for the »
dimensional case, but it was tested for increasing dimension. At the point when the cor
rect two-dimensional FORTRAN was finally generated, substantially more development
time was required via the symbol manipulation route than would be required for hand
coding the FORTRAN. However, now that much of the work for the three-dimensional
case was done, by the time the three-dimensional FORTRAN was running, the symbol
manipulation route was more efficient than hand coding. The next project was to write
a finite-volume formulation code. Much of the symbol code that was written before was
reusable, so the symbol manipulation route was substantially more efficient than hand
coding. The final symbol code is about one and one-half times as large as the three
dimensional finite-volume FORTRAN code.

Certainly, accuracy is more important than efficiency. An important aspect of using
a symbol manipulator to write FORTRAN is that errors in the symbol code typically
produce FORTRAN code that is obviously incorrect, and thus, errors are easy to detect.
For example, a sign error in the symbol code will typically appear in many places in
the FORTRAN code, making it far easier to detect than a single typo. Thus, when one
believes that the symbol manipulator is generating correct FORTRAN code, there are
very few errors left.

Of course, all of the codes were rigorously tested numerically (Roache et al., 1990) and
some additional errors were found. The testing is done one dimension at a time. For the
finite-volume approach, during the numerical testing, no errors were found in the one
dimensional code, three errors were found in the two dimensional code, and one error
was found in the three dimensional code. All errors were easy to find and of the type
where a FORTRAN statement is not in the correct loop or a loop index had an incorrect
limit.

Because the FORTRAN code is written symbolically, then symbolically tested using
a truncation error analysis, and then thoroughly tested numerically, we believe that the
probability of any remaining errors is extremely small.

This project has emphasized the construction of mathematically corr,ect code. What
is really needed is numerically correct code. Certainly, having no mathematical or pro
gramming errors is a critical first step. However, it is also important to have the formulas
arranged so that numerical errors and operation counts are minimized. There is an excel
lent operation-count optimizer in MAPLE. Char et al. (1988) and van Hulzen et al. (1989)
have produced operation-count optimizers for Reduce. The optimization of the operation
count generally reduces numerical errors. We do not know of any symbol-manipulation
work that directly addresses the problem of numerical errors. In the applications of this
work, the generated FORTRAN code accounts for a small percentage of the execution
time of a much larger program, so little effort was put into optimizing the code, aside
from keeping the generated code simple and organizing the loops to take advantage of the
way FORTRAN stores arrays. The numerical testing was done using approximately six
decimal-digit arithmetic. Over a wide range of problems, the floating-point errors were
in agreement with what would be predicted from the number of operations performed,
and were well below the level of the numerical errors in other parts of the program.

276 S. Steinberg

Acknowledgments

Closely related material has been presented at: The Second International Conference
on Expert Systems for Numerical Computing, Purdue University, West Lafayette, April
1990; The IV International Conference on Computer Algebra and its Applications in
Physical Research, Joint Institute for Nuclear Research, Dubna, Russia, May, 1990; In
ternational Seminar on Computer Algebra and Applications in Mechanics, Novosibirsk,
August, 1990; The Symposium on Symbolic Computations and Their Impact on Me
chanics at the ASME Annual Winter Meeting, Dallas, November 1990; ACM-SIGNUM,
Albuquerque, November, 1990; and in the minisymposium: The Generation of Numerical
Code Using Symbol Manipulation, 13th IMACS World Congress on Computation and
Applied Mathematics, Trinity College, Dublin, Ireland, July, 1991.

The author wishes to thank Dr. Patrick Roache and the company, Ecodynamics Re
search Associates, Inc., of which he is president, for the opportunity to apply the tech
niques described in this paper to "real" problems. Dr. Roache and the author had many
important interactions as these applications were worked out.

References

G. Birkhoff and R.E. Lynch (1984), Numerical Solution of Elliptic Problems, SIAM, Philadelphia.
B.W. Char, K.O. Geddes, G.H. Gonnet, M.B. Monagan and S.M. Watt (1988), MAPLE Reference

Manual: Fifth Edition, WATCOM Publications Limited, Waterloo, Ontario, Canada.
J.E. Dendy, S.F. McCormick, J.W. Ruge, T.F. Russell and S. Schaffer (1989), "Multigrid methods for

three-dimensional petroleum reservoir simulation", SPE paper 18409, presented at the lOth SPE
Symp. on Reservoir Simulation, Houston, TX.

M. Florence, S. Steinberg and P.J. Roache (1987), "Generating subroutine codes with MACSYMA",
Proc. 6th Int. Conf. Math. Modeling, St. Louis, MO.

J.A. van Hulzen, B.J.A. Hulshof, B.L. Gates and M.C. van Heerwaarden (1989), "A code optimization
package for REDUCE", Pro c. Int. Symp. Symbolic Algebraic Computation, G.H. Gonnet, ed., ACM
Press, NY, 163-176.

R. Liska and L. Drska (1990), "FIDE: a REDUCE package for automation of Finite difference method
for solving PDE", Proc. Int. Symp. Symbolic Algebraic Computation, Tokyo, 169-176.

MACSYMA Reference Manual (1988), version 13, Symbolics, Inc.
P.J. Roache, P.M. Knupp, R.L. Blaine and S. Steinberg (1990), "Experience with benchmark test cases

for groundwater flow", Proc. Forum on Benchmark Test Cases for Computational Fluid Dynamics,
ASME Fluids Eng. Division Spring Conf., Toronto, Canada.

S. Steinberg and P.J. Roache (t986a), "Variational grid generation", Num. Math. P. Diff. Eqns. 2,
71-96.

S. Steinberg and P.J. Roache (1986b), "Using MACSYMA to write FORTRAN subroutines", J. Symbolic
Computation, 2, 213-216. '

S. Steinberg and P.J. Roache (1987), "A toolkit of symbolic' manipulation programs for variational
grid generation", Proc. Coupling Symbolic and Numeric Computing in Knowledge-Based Systems
Workshop, Boeing Comput. Services, Seattle, WA, 103-116.

S. Steinberg and P.J. Roache (1988), "Automatic generation of finite-difference code", Symbolic Com
putation in Fluid Mechanics .and Heat Transfer, HTD-105, AMD- 97, H.H. Bau, T. Herbert and
M.M. Yovanovich, eds., The Heat Transfer Division and the Applied Mechanics Division, ASME,
Chicago, IL.

S. Steinberg and P.J. Roache (1991), "Discretizing symmetric operators in general coordinates", in
preparation.

J.F. Thompson, A.U.A. Warsi and C.W. Mastin (1985), Numerical Grid Generation, North Holland,
NY.

I

I
I
I
j

I

	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276

