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Chapter 12 

Symbolic and Parallel Adaptive Methods 
for Partial Differential Equations 

Joseph E. Flaherty, Messaoud Benantar, Rupak Bif;lwast 

Department of Computer Science 

Rensselaer Polytechnic Institute 

Troy, NY 12180 

Peter K. Moore 

Department of Mathematics 

Tulane University 

New Orleans, Louisiana 70118 

In order to enhance the use of adaptive mesh refinement and order enrichment methods 
for partial differential equations by practising scientists and engineers, we have developed 
a symbolic interface to the numerical software. Partial differential equations and data 
are described in a natural high-level language. FORTRAN code, required by the various 
numerical procedures for evaluating functions, Jacobians, etc. is automatically generated 
and properties of the system, such as linearity and symmetry, are deduced. 

Parallel procedures for adaptive techniques are of high interest given the need to solve 
problems of increasing complexity. We describe techniques for solving two-dimensional 
vector systems of elliptic and hyperbolic partial differential equations on shared-memory 
parallel computers. Linear algebraic systems resulting from the finite element discretiza
tion of an elliptic problem using a hierarchical piecewise polynomial basis on a finite
quadtree-structured mesh are solved by a conjugate gradient technique with a symmetric 
successive over-relaxation preconditioner. System assembly and solution are processed 
in parallel with computations scheduled on noncontiguous quadrants of the tree in or
der to minimize process synchronization. Coloring unstructured meshes that result from 
quadtrees is far simpler than coloring more general meshes, and we describe a linear 
time complexity coloring procedure that uses a maximum of six colors. 

Hyperbolic systems are approximated by an explicit finite volume technique and 
solved by a recursive local mesh refinement procedure on a tree-structured grid. Com
putational procedures that sequentially traverse the tree while processing solutions on 
each grid in parallel, that process solutions at the same tree level in parallel, and that 
dynamically assign processors to nodes of the tree have been developed and applied to 
an example that illustrates their performance. 

f This research was partially supported by the U. S. Air Force Office of Scientific Research, Air Force 
Systems Command, USAF, under Grant Number AFOSR-90-0194; by the SDIO /IST under management 
of the U. S. Army Research Office under Contract Number DAAL03-90-G-0096; and by the National 
Science Foundation under Grant Numbers CDA-8805910 and CCR-8920694. 
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1. Introduction 

Partial differential equations that arise in scientific and engineering applications typ
ically feature solutions that develop, evolve, and decay on diverse temporal and spatial 
scales. The Fokker-Planck equation of mathematical physics may be used to illustrate 
this phenomena. Perspective renditions of its solution u as a function of two spatial ar
guments x and y are shown at four times t in figure 1 (Moore and Flaherty, 1990). A 
single "spike'' in the probability density arising from an initial Maxwell-Boltzmann dis
tribution evolves into the two spikes shown as time progresses. Traditional fixed-step and 
fixed-order finite difference and finite element techniques for solving such problems would 
either require excessive computing resources or fail to adequately resolve non-uniform be
havior. By automatically refining, coarsening, or relocating meshes and by varying the 
order of numerical accuracy, adaptive methods offer greater efficiency, reliability, and 
robustness. 

Adaptive software for ordinary differential equations has existed for some time and 
procedures that vary both mesh spacing and order of accuracy are in common use for 
both initial (Gear, 1971) and boundary (Ascher et al., 1988) value problems. Only very 
special problems would warrant hand-coding a method. The situation is far more difficult 
for partial differential equations due to the great diversity of phenomena that can occur; 
however, some production-ready adaptive software has appeared (Bank, 1990) for elliptic 
problems. The state-of-the-art for transient problems lags behind that for elliptic systems 
but some projects are under way (Flaherty et al., 1989). Adaptive strategies will either 
have to be retrofitted into an existing software system for solving partial differential 
equations, or have to be coupled with pre- and post-processing software tools before 
widespread use occurs. A complete adaptive package that is, for example, intended for 
use by individuals who have limited experience with scientific computing would have to 
contain the following sub-systems: 

1 a computer algebra interface so that partial differential equations, boundary conditions, 
etc. may be described in relatively natural terms; 

2 a geometric modeling interface for describing the computational domain n; 
3 an automatic discretization interface that can introduce a computational mesh on n; 
4 solution procedures to solve the partial differential equations; 
5 error estimation procedures that provide local and/or global measures of solution ac

curacy; 
6 enrichment strategies that improve solution resolution where needed by refining the 

mesh, altering the solution procedure, etc.; 
7 vector or parallel solution capabilities for increased performance; and 
8 visualization tools to analyze and interpret the results. 

Of this group, we briefly review adaptive enrichment strategies and error estimation 
in section 2, describe a symbolic computational interface using MAPLE in section 3, and 
focus on parallel solution procedures for elliptic and hyperbolic systems in sections 4 and 
5, respectively. 

Parallel procedures are becoming increasingly important both as hardware systems 
become available and as problem complexity increases. The efficiency afforded by adap
tive strategies, furthermore, cannot be ignored in a parallel computational environment 
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Figure 1. Solution u(x, y, t) of the Fokker-Planck equation (Moore and Flaherty, 1990) at times t = 4 
(upper left), 10 (upper right), 20 (lower left), and 100 (lower right). Solutions having magnitudes 

greater than 0.1 have been omitted in order to emphasize fine-scale structure. 
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procedure adaptive_pDE..solve ( tol: real); 
begin 

Select an approximation space; 
repeat 

Compute a solution; 
Estimate the error of the solution; 
if error > tol then Enrich the approximation space 

until error < tol 
'end {adaptive_po:&.solve}; 

Figure 2. Top-level structure of an adaptive procedure for solving partial differential equations. 

since the demand to model nature more accurately is always beyond hardware capa
bilities. Fortunately, adaptive software utilizes hierarchical (tree) data structures that 
have many embedded parallel constructs. "Coloring" the elements of a mesh so as to 
avoid memory contention on a shared-memory computer is far simpler when an under
lying tree structure is present, than for more general unstructured grids. The six-color 
procedure described in section 4 for the finite element solution of elliptic problems on 
quadtree-structured grids displays a high degree of parallelism when piecewise linear 
approximations are used. The same procedure, unfortunately, does not do as well with 
higher-order piecewise polynomial approximations; however, an element edge coloring 
procedure may improve performance. 

Transient hyperbolic problems may generally be solved using explicit numerical tech
niques which greatly simplify processor communication. Experiments, reported in section 
5, with a variety of tree traversal strategies on an adaptive mesh refinement finite dif
ference scheme for hyperbolic systems (Arney and Flaherty, 1990), indicate that the 
dynamic load _balancing scheme of assigning grid-vertex computations at a given tree 
level to processors as they become available, provided the best parallel performance. 
Static load balancing strategies, that either traverse the tree of grids serially while pro
cessing solutions on each grid in parallel, or traverse the tree in parallel while processing 
solutions on grids at the same tree level, are also discussed in section 5. These alterna
tives to dynamic processor assignment may provide better performance on hierarchical 
memory computers. 

2. Adaptive Procedures 

A skeleton of a generic adaptive procedure is depicted in figure 2. An initial crude ap
proximate solution generated on a coarse mesh with, perhaps, a low-order finite difference 
or finite element method, is enriched until a prescribed accuracy level is attained. Basic 
enrichment strategies, termed h-, p-, and r-refinement, may be used alone or in combi
nation. With an h-refinement ·strategy, the computational mesh is refined or coarsened 
in regions of n that require more or less resolution (Bank, 1990; Arney and Flaherty, 
1990). Sample meshes (Moore and Flaherty, 1990), used in conjunction with the adaptive 
h-refinement solution of the aforementioned Fokker-Planck equation, are shown in figure 
3. Observe that (i) fine meshes are only introduced beneath the spikes in the solution, 
(ii) the problem is solved on successively smaller domains at each iteration of the solu
tion procedure, and (iii) fine meshes are created and destroyed as the solution evolves. 
The order of accuracy of a finite difference or finite element solution scheme is varied 
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Figure 3. Sequence of adaptive meshes (Moore and Flaherty, 1990) at t = 4 (upper left), 10 (upper 
right), 20 (lower left), and 100 (lower right) used to obtain the solutions shown in figure 1. 
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in different regions of the problem domain, while the mesh is held fixed when using a 
p-refinement enrichment scheme (Babuska et al., 1981). With r-refinement, a fixed topol
ogy mesh is redistributed so as to concentrate it in regions requiring more resolution or 
to follow dynamic phenomena (Arney and Flaherty, 1986). 

Combining enrichment strategies can often produce dramatic increases in efficiency. 
The particular combination of h- and p-refinement, for example, has been shown to 
yield exponential convergence rates in certain situations (Babuska and Rank, 1986). 
While no combination is likely to exceed this dramatic convergence rate, other heuristic 
approaches might be more appropriate in certain situations. This is especially so with 
transient problems where r-refinement in combination with h-refinement has worked well 
on problems featuring isolated dynamic structures (Arney and Flaherty, 1990, 1986; 
Adjerid and Flaherty, 1986). Problems with discontinuous solutions, such as shock waves, 
might best use h- or r-refinement in the vicinity of the discontinuity while using p
refinement in regions where solutions are smooth. Research on such strategies is just 
beginning and there is much more to be learned. 

Enrichment indicators, which are frequently estimates of the local discretization er
ror of the numerical scheme, are used to control the adaptive process. Resources (finer 
meshes, higher-order methods, etc.) are introduced in regions having large enrichment 
indicators and deleted from regions where indicators are low. Using estimates of the dis
cretization error as enrichment indicators also enables the calculation of local and global 
accuracy measures which should become a standard part of every scientific computation. 
Assignment of resources based on local error information seems natural; however, the 
optimality of this strategy can rarely be established. 

Estimates of the local discretization error are typically obtained by using either h- or 
p-refinement. Thus, one uses the difference between solutions computed either on two 
meshes or with two distinct orders of accuracy to furnish an error estimate. Both ap
proaches provide accurate assessments of errors in many cases; however, used as is, they 
are very expensive. Costs to obtain error estimates could be as much as four times the 
solution cost for a two-dimensional problem. Special "superconvergence" points, where 
solutions converge faster than they do globally, can be used to significantly reduce com
putational cost (Adjerid and Flaherty, 1986). Babuska and Yu (1990) discovered a di
chotomy between the errors of finite element solutions obtained using odd or even piece
wise polynomial bases. Dominant errors of odd-order approximations occur near element 
edges, while those of even-order approximations occur in element interiors. Thus, error 
estimates can be obtained by neglecting errors in element interiors or on element edges 
for odd- or even-order approximations, respectively. Under certain limiting hypotheses, 
Babuska and Yu (1990) proved that error estimates computed in this manner are asymp
totically exact, as mesh spacing tends to zero for linear elliptic problems. Adjerid et a/. 
(1990) established similar methods and analyses for parabolic systems. 

3. Symbolic Problem Description 

Consider the nonlinear second-order vector initial-boundary value problem 

M(x, t)ut + f(x, t, u, vu) = 'V. D(x, t, u) 'V u, X En, t > 0, (3.1) 
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u = u 0
, x E n u an, t = o, (3.2) 

u; = cf(x,t), X E anf, (Duv)i = c{"(x,t), X E an{", t > 0, 

i = 1, 2, ... , m, (3.3) 

where u, f, c, and uO are m-vectors; M and D are m x m matrices; t denotes time; x 
is a position vector on the one-, two, or three-dimensional problem domain n; V is the 
gradient or divergence operator; an= anf u an{"' i = 1, 2, ... , m, is the boundary of n; 
and vis a unit outer normal vector to an. Numerical software for solving systems having 
the generality of (3.1-3.3) do not exist; however, with some simplifying assumptions, 
(3.1-3.3) can be reduced to a more standard elliptic, parabolic, or hyperbolic form for 
which software exists. With M = 0, D positive definite, and (3.2) ignored, for example, 
(3.1-3.3) will be elliptic. Similarly, (3.1-3.3) is either parabolic or hyperbolic, respectively, 
when M and D are positive definite or when D = 0. 

Numerical procedures for solving (3.1-3.3) require the translation of the equations and 
data from their familiar mathematical form to a potentially complex language required 
by the software. Mathematical entities, such as J acobians, are unessential to a user of 
the numerical software but, nevertheless, must be calculated for many implicit methods. 
Analytic J acobians are often preferred to numerical approximations for reasons of effi
ciency and accuracy. Mistakes are easily made and difficult to find. We have developed a 
symbolic interface pdefront to our adaptive numerical software that alleviates these dif
ficulties. Properties of particular systems can be deduced by pdefront, thereby reducing 
CPU time and storage of the numerical code. Our procedures are similar in spirit to 
those of Steinberg and Roache (1985, 1986, 1988a, 1988b) who have been using symbolic 
means to generate FORTRAN code for finite difference approximations for some time. 

The pdefront system is written in a combination of C and MAPLE for Sun workstations. 
Equations are entered in a simple scalar mode. Users may either select problem-specific 
names for variables or use the default choices t, x, y, z, u[1], u[2], ... , u[m]. FORTRAN 
77 subroutines are automatically generated for evaluating the function~ f, D, etc. and 
the initial and boundary data. The appropriate adaptive numerical codes may also be 
executed. 

Let us illustrate a typical pdefront session with an example. 

Example 1. Consider the one-dimensional reaction-diffusion problem (Adjerid and Fla
herty, 1986). 

+ D -d/T Ct ce = c.,.,, L 'T' D -d/T - T 
.Lt- a ce - "'"'' 0 <X< 1, 

c(x,O) = T(x,O) = 1, 0 < x < 1, 

c.,(O, t) = T.,(O, t) = 0, c(1, t) = T(1, t) = 1, t > 0. 

t > 0, (3.4) 

(3.5) 

(3.6) 

After declaring the system to be parabolic and defining the dependent variable names, 
constants and parameters are defined for this example as a = 1, L = 0.9, d = 20, and 
D = 1/4ed. Equation (3.4) is entered in the manner shown in figure 4. The definitional 
language uses MAPLE-like conventions for functions and simple operators. For exam
ple, dif(c, t) denotes Ct and exp( -d/T) is e-d/T. Any initial or boundary conditions 
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(define doma1n) [define equation I (generate I (execute I @ill C§IiD (manual] (typeset) G!illJ 
Entry Mode: lill!li1ll!llli 
System Type : lil!t'jl!l!fl)rn Hyperbolic Elliptic 
So 1 uti on Method : II!l! LAM 
Spatial Dimension : Ill 20 30 

Output File: \ 

nter the endpoints of the spatial domain 
he left endpoint is : 

o.o 
he right endpoint is : 

1.0 
nter the initial time : 
.0 
~ash definition completed, select another menu item 
nter the constants used in the equations in the form: 
:=nunber; 
fter the 1 ast constant h1 t return 
:=1. 0; 
:=0.9; 

d:=20. 0; 
D:=exp(d)/4.0; 

he default names of the independent variables are: t,x 
nter your choice of names in the same order as above separated by commas 

or choose the default by simply typing <Return) 

he default names of the dependent variables are: u[l],u[2],u[3), ... 
nter your choice of names separated by commas or select the default names by typing (return> 

c, T 
nter tha aqua t ions in tha equation system mods 
nd each equation with a\\;"" 

~fter the last equation hit raturn 
di f(c, t)+D•c•exp( -d/T)=di f(di f(c ,x) ,x); 
L •dif(T, t)-a•D•c•axp( -d/T):dif(dif(T, x), x); 

Enter the i nit 1 a 1 conditions in tha form u[ i]=f(x); 
After the last initial condition hit return 
c=L 0; 
=1.0; 

Enter the boundary conditions for tha boundary x 0. OOOOOOa+OO 
1n tha form .a•u[1]+b*d1f(u[1],x)=f(t); 
After the 1 ast boundary condit 1 on hit return 
dif(c,x):O. 0; 
Enter tha time intarval ovar which this boundary condition holds in the form 
tl ( t ( t2; whare either inaquality is optional 

o<t; 

Figure 4. Sample pdefront session for the reaction-diffusion system of Example 1. 



SUBROUTIIE FU(X,T,U,UX,D,IU) 
IMPLICIT REAL•8 (A-H,O-Z) 
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D(1,1) = 0.1212912989D9•DEXP(-0.200D2/U(2)) 
D(1,2) = 0.242682597800D10•U(1)/U(2)••2•DEXP(-2.00D2/U(2)) 
D(2,1) = -0.1212912989D9•DEXP(-0.200D2/U(2)) 
D(2,2) = -0.242582597800D10•U(1)/U(2)••2•DEXP(-2.00D2/U(2)) 
RET URI 
EID 

Figure 5. FORTRAN code generated for the Jacobian fu(x, t, u, \1, u) of Example 1. 

are entered subsequent to entering the differential equation. The boundary 80 can be 
segmented in time so that discontinuous temporal boundary data can be prescribed. At 
present, there is no interface to geometrical modeling or mesh generation software, so n 
is restricted to be rectangular. FORTRAN subroutines are generated for all functions, 
Jacobians, and initial and boundary conditions that are required by the particular nu
merical software package once the problem-specific data has been entered. FORTRAN 
generated code for the Jacobian fu, which is required by all of our procedures for solving 
parabolic problems, is shown in figure 5. 

Implicit finite difference or finite element discretizations of (3.1-3.3) lead to nonlinear 
algebraic systems which we solve by a modified Newton method. Until recently, our coding 
treated the algebraic problem as being nonlinear even when (3.1-3.3) were linear. This 
generally results in some loss of efficiency. For example, if a direct linear equation solver 
were being used in conjunction with the Newton iteration, then the modified Newton 
method would converge in one step. However, such convergence would not be detected 
until a second right side of the Newton system was generated. If linearity were known 
a priori, then this additional and possibly costly assembly step could, be avoided. We 
automatically detect linearity by using capabilities within MAPLE. For example, the 
partial differential equation (3.1) is linear if both f(x, t, u, vu) and D(x, t, u) are linear 
functions ofu and \7U. Our algorithm declares (3.1) to be linear when (i) the dependent 
variable u is not an argument of nonlinear functions like sine and exp, and (ii) there are 
no combinations of dependent variables in algebraic expressions. Some linear functions 
may be declared as being nonlinear with this technique, but this inefficiency should occur 
infrequently. 

Knowledge of a symmetric discrete operator could be used to save storage, reduce 
computing time, and create additional solution possibilities. Assuming an implicit tem
poral integration method, the pdefront software will determine the linearized operator 
resulting from the finite difference or finite element discretization of (3.1-3.3) and the use 
of Newton iteration to be symmetric if (i) f is independent of ux and fu is symmetric 
and (ii) D is independent of u and is symmetric. Once again, some symmetric J acobians 
may be classified as being nonsymmetric by this test, but this should occur rarely. (The 
actual pdefront system permits separate diffusion matrices D1 and D2 to multiply the x 
and y components of vu in (3.1-3.3). In this case, the symmetry test is applied to each 
component.) 
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4. Parallel Solution of Linear Systems Using Quadtree Structures 

With the goal of describing a strategy for solving linear algebraic systems resulting 
from the finite element discretization of elliptic or parabolic systems, let us simplify 
(3.1-3.3) to the following linear two-dimensional elliptic system: 

- (D(x, y)u.,].,- (D(x, y)uy]y + Q(x, y)u = f(x, y), (x, y) E 0, (4.1) 

u; = cf(x,y), (x,y) E 80f, (Duv)i = cf(x,y), (x,y) E 80f, 

i=1,2, ... ,m. (4.2) 

The diffusion D and source Q are, respectively, positive definite and positive semi-definite 
m X m matrices. 

The Galerkin form of ( 4.1-4.3) consists of determining u E H1 satisfying 

A(v, u) + (v,f) = ~ lanf v;cf ds, Vv E HJ, 

where 

(4.3) 

A(v, u) = forv?;Du., + v~Duy + vTQu] dxdy, (v, u) = fo vT udxdy. (4.4) 

As usual, the Sobolev space H 1 consists of functions having first partial derivatives in 
L 2 • The subscripts E and 0 further restrict functions to satisfy the essential boundary 
conditions (4.2 & 4.3) and trivial versions of (4.2 & 4.3), respectively. Finite element 
solutions of ( 4.4 & 4.5) are constructed by approximating H 1 by a finite dimensional 
subspace sN,p and determining u E s;·P such that 

A(V, U)+ (V,f) = fl V;cf,ds, VV E S~·P. 
i=l anr 

(4.5) 

Selecting SN,p as a space of continuous piecewise p th-degree hierarchical polynomials (Sz
abo and Babuska, 1990) with respect to the partition of 0 into triangular finite elements 
described in section 4.1, substituting these approximations into ( 4.6), and evaluating the 
integrals by quadrature rules yields a sparse, symmetric, positive-definite, N-dimensional 
linear system of ,the form 

KX=b, (4.6) 

where X is an N-vector of Galerkin coordinates. 

4-.1. FINITE QUADTREE MESH STRUCTURE 

Meshes of triangular or quadrilateral elements are created automatically on n by using 
the finite quadtree procedure (Baehmann et al., 1987). With this technique, 0 is embed
ded in a square "universe" that may be recursively quartered to create a set of disjoint 
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squares called quadrants. Data associated with quadrants is managed using a hierarchical 
tree structure with the original square universe regarded as the root and with smaller 
quadrants created by subdivision regarded as offspring of larger ones. Quadrants inter
secting an are recursively quartered until a prescribed spatial r~solution of n has been 
obtained. At this stage, quadrants that are leaf nodes of the tree and intersect n U an are 
further divided into small sets of triangular or quadrilateral elements. Severe mesh gra
dation is avoided by imposing a maximal one-level difference between quadrants sharing 
a common edge. This implies a maximal two-level difference between quadrants sharing 
a common vertex. A final "smoothing" of the triangular or quadrilateral mesh improves 
element shapes and further reduces mesh gradation near an. ' 

A simple example involving a domain consisting of a rectangle and a quarter circle, as 
shown in figure 6, will illustrate the finite quadtree process. In the upper left portion of 
the figure, the square universe containing the problem domain is quartered creating the 
one-level tree structure shown at the upper right. Were this deemed to be a satisfactory 
geometrical resolution, a mesh of five triangles could be created. As shown, the triangular 
elements are associated with quadrants of the tree structure. In the lower portion of figure 
6, the quadrant containing the circular arc has been quartered and the resulting quadrant 
intersecting the circular arc has been quartered again creating the three-level tree shown 
in the lower right portion of the figure. A triangular mesh generated on this tree structure 
is also shown. 

Arbitrarily complex two-dimensional domains may be discretized in this manner and 
generally produce unstructured grids; however, the underlying tree of quadrants remains 
regular. Adaptive mesh refinement is easily accomplished by subdividing appropriate 
leaf-node quadrants and generating a new mesh of triangular or quadrilateral elements 
locally; thus, unifying the mesh generation and adaptive solution phases of the problem 
under a common tree data structure. 

4.2. LINEAR SYSTEM SoLUTION STRATEGIES 

Preconditioned conjugate gradient (PCG) iteration is an efficient means of solving the 
linear algebraic systems (4.7) that result from the finite element discretization of self
adjoint elliptic partial differential systems (Axelsson and Barker, 1984). The key steps in 
the PCG procedure (Ortega, 1988) involve (i) matrix-vector multiplication ofthe form 

q=Kp 

and (ii) solving linear systems of the form 

Kd=r, 

(4.7) 

(4.8) 

where r and p are the residual vector and conjugate search direction, respectively. The 
preconditioning matrix K may be selected to reduce computational cost. The element
by-element (EBE) and symmetric successive over-relaxation (SSOR) preconditionings 
are in common use and seem appropriate for use with quadtree structured grids. The 
EBE preconditioning is an approximate factorization of the stiffness matrix K into a 
product of elemental matrices. If the grid has been "colored" so as to segregate non
contiguous elements, then ( 4.9) can be solved in parallel on elements having the same 
color. Since the matrix-vector multiplication ( 4.8) can also be performed in an element-
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Figure 6. Finite quadtree mesh generation for a domain consisting of a rectangle and a quarter circle. 
One-level and three-level tree structures and their associated meshes of triangular elements are shown 

at the top and bottom of the figure, respectively. 
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by-element fashion, the entire PCG solution can be done in parallel on non-contiguous 
elements. While this simple approach has been used in several applications (Gustafsson 
and Lindskog, 1986; King and Sonnad, 1987; Nour-Omid and Parlett, 1985), we found 
the SSOR preconditioning to be more efficient in every instance (Benantar et al., 1990) 
and, therefore, we shall not discuss EBE preconditionings further. 

SOR and SSOR iteration has been used for the parallel solution of five-point difference 
approximations of Poisson's equation on rectangular meshes by numbering the discrete 
equations and unknowns in "checkerboard" order (Adams and Ortega, 1982). With this 
ordering, unknowns at "red" mesh points are only coupled to those at "black" mesh 
points and vice versa; thus, solutions at all red points can proceed in parallel. This step 
may be followed by a similar solution at all black points. Adams and Ortega (1982) 
extend this two-color ordering to multicolor orderings on rectangular grids using several 
common finite element and finite difference stencils. Multi color orderings for unstructured 
meshes are far more difficult since nodal connectivity and difference stencils for high
degree polynomial approximations can be quite complex. The computational effort can 
be reduced when using quad tree-structured grids by considering multicolor orderings for 
block SSOR preconditionings at the quadrant level. To be specific, partition the stiffness 
matrix K by quadrants as 

K=D-L-LT (4.9) 

where 

[ K1,1 

Kq,Q], L =- [ ~'·' ]· D= K2,2 0 
( 4.10) 

Kq,1 Kq,2 0 

Nontrivial entries in a diagonal block Ki,i arise from Galerkin coordinates that are con
nected through the finite element basis to other unknowns in quadrant i. Nontrivial 
contributions to block Ki,j of the lower triangular matrix L arise when the support of 
the basis associated with a Galer kin coordinate in quadrant i intersects quadrant j. 

Using an SSOR preconditioning, the solution of ( 4.9) would be computed according to 
the two-step procedure 

xn+l/2 = w(Lxn+l/2 + LTxn + r) + (1- w)xn, (4.11) 

xn+l = w(LTXn+l + LXn+l/2 + r) + (1- w)Xn+l/2, n = 1, 2, ... , M. (4.12) 

Thus, each block SSOR iteration consists of two block SOR steps; one having the reverse 
ordering of the other. Typically, M = 3 SSOR steps are performed between each PCG 
step. 

Suppose that the Q quadrants of a finite quadtree structure are separated into 'Y 
disjoint sets. Then, using the symmetric 7-color block SSOR ordering, we would sweep the 
quadrants in the order Ct, C2 , ... , C-y, C-y, C-y_ 1 , •.. , C1 , where Ci is the set of quadrants 
having color i. Because quadrants rather than nodes are colored, a node can be connected 
to other nodes having the same color. Thus, the forward and backward SOR sweeps may 
differ for a color Ci, i = 1, 2, ... , 'Y· During an SOR sweep, unknowns lying on quadrant 
boundaries are updated as many times as the number of quadrants containing them. 
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4.3. COLORING FINITE QUADTREE STRUCTURES 

Coloring the regular quadrants of a finite quadtree is far simpler than coloring the 
elements of a mesh. Differences in the small number of elements within quadrants having 
the same color may cause some load imbalance and this effect will have to be investigated. 
Naturally, coloring procedures that use the fewest colors increase data granularity and 
reduce the need for process synchronization. At the same time, the cost of the coloring 
algorithm should not be the dominant computational cost. With these views in mind, 
we developed an eight-color procedure that has linear time complexity (Benantar et al., 
1990). This procedure only required a simple breadth-first traversal of the quadtree, but 
performance never exceeded that of the six-color procedure which is described in the 
following paragraphs. Four-color procedures are undoubtedly possible, but we have not 
formulated any. Their complexity, unlike the eight- and six-color procedures, may be 
nonlinear. 

With the aim of constructing a quadtree coloring procedure using a maximum of six 
colors, let us define a binary directed graph called a "quasi-binary tree" from the finite 
quadtree using the following recursive assertive algorithm. 

1. The root of the quadtree corresponds to the root of the quasi-binary tree. 
2. Every terminal quadrant is associated with a node in the quasi-binary tree; however, 

not every quasi-binary tree node must correspond to a quadrant. 
3. In the planar representation of the quad tree, nodes across a common horizontal edge 

are connected in the quasi-binary tree. 
4. When a quadrant is divided, its parent node in the quasi-binary tree becomes the 

root of a subtree. 

Planar representations of simple quad trees and their quasi-binary tree representations 
are illustrated in figure 7. The leftmost quadtree illustrates root-node and offspring con
struction of the quasi-binary tree. Connection of nodes across horizontal edges is shown 
with and without quadrant division in all three illustrations. Subtree definitions according 
to assertion 4 are shown in the center and rightmost quadtrees. 

From figure 7, we see that column-order traversal of a finite quadtree is the depth-first 
traversal of its associated quasi-binary tree. Let us define six colors divided into three sets 
a, b, and c of two disjoint colors that alternate through the columns in a column-order 
traversal of the quadtree. Whenever left and right quasi-binary tree branches merge, 
column-order traversal continues using the color set associated with the left branch. Two 
of the three color .streams, say a and b, are passed to a node of the quasi-binary tree. 
At each branching, the color stream a and the third color stream c are passed to the 
left offspring while the streams a and b in reverse order are passed to the right offspring. 
Additional details and a correctness proof of this algorithm will appear (Flaherty and 
Benantar, 1990). 

Computational experiments (Benantar et al., 1990) demonstrate the excellent paral
lelism that may be obtained by the six-color SSOR PCG procedure with piecewise linear 
finite element approximations. However, higher-order polynomial bases create additional 
possibilities for processor load imbalance with coloring at the quadrant level. Let us illus
trate this with a simple problem that was solved using a 16-processor Sequent Balance 
21000 shared-memory parallel computer. Parallelism on this system is supported through 

J 
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Figure 7. Planar representations of three quadtrees and their associated quasi-binary trees. 

the use of a parallel programming library that permits the creation of parallel processes 
and enforces synchronization and communication using barriers and hardware locks. 

Example 2. Consider the Dirichlet problem 

Uxx + Uyy = f(x, y), (x, y) E f!, 

u=O, (x,y)Eof!, 

(4.13) 

(4.14) 

with n = {(x, y)l- 3 < x, y < 3}. We solved this problem on a 400-element mesh using 
piecewise linear, quadratic, and cubic approximations. Adaptive p-refinement with the 
polynomial degree p restricted to be 1, 2, or 3 was also performed. Parallel speed up and 
processor idle time resulting from the need to synchronize at the completion of each color 
are shown in figure 8. 

Parallel performance degrades as polynomial degree increases, with the adaptive strat
egy having the poorest performance. Adaptive algorithms typically have serial logic which 
limits speed up. Of course, speed up is not the only measure of complexity, and an adap
tive solution strategy could require less CPU time to solve the problem to a given level 
of accuracy. Nevertheless, additional research is necessary to improve performance with 
high-order and adaptive strategies. 

Using a hierarchical basis, all Galerkin coordinates for polynomial degrees higher than 
one are associated with mesh points that are either along element edges or within el
ements. Thus, the Galerkin coordinates for continuous piecewise linear approximations 
are the only ones associated with element vertices. Parallel performance could, therefore, 
be improved by coloring element edges rather than quadrants and we have designed a 
three-color procedure having linear time complexity to do this (Flaherty and Benan
tar, 1990). Since hierarchical bases add incremental corrections as the polynomial degree 
is increased, one could conceive an algorithm where quadrant coloring is used with the 
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Figure 8. Parallel speed up (left) and processor idle time (right) for the finite element solution of 
Example 2 using piecewise linear, quadratic, and cubic approximations as well as adaptive p-refinement. 

piecewise linear portion of the approximation, and edge coloring is used for higher-degree 
approximations. 

5. Parallel Solution of Hyperbolic Systems 

Let us once again reduce the general system (3.1-3.3) to the two-dimensional system 
of conservation laws 

Ut + f:u(x, y, t, u) + gy(x, y, t, u) = 0, (x, y) En, t > 0, 

with the initial conditions 

u(x, y, 0) = u0(x, y), (x, y) E 0 U 80. 

At present, n is also restricted to be rectangular. 

(5.1) 

(5.2) 

Our research is based on an adaptive hr-refinement algorithm (Arney and Flaherty, 
1990). We forgo mesh motion at present and briefly describe an h-refinement procedure 
that utilizes their strategy. The problem (5.1 & 5.2) is solved on a coarse rectangular "base 

15 
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mesh" for a sequence of base-mesh time slices of duration Ll.tn, n = 0, 1, ... ,by an explicit 
finite difference, finite volume, or finite element scheme. For a base-mesh time step, say 
from tn to tn+l = tn + Ll.tn, a discrete solution is generated on the base mesh along with 
a set of local enrichment indicators which, in this case, are refinement indicators. Cells 
of the mesh where refinement indicators at tn+l fail to satisfy a prescribed tolerance 
are identified and grouped into rectangular clusters. After ensuring that clusters have an 
adequate percentage of high-refinement-indicator cells, and subsequently enlarging the 
clusters by a one-element buffer to provide a transition between regions of high and low 
refinement indicators, cells of the base mesh are bisected in space and time to create 
finer meshes that are associated with each rectangular cluster. Local problems are solved 
on the finer meshes and the refinement procedure is repeated until refinement indicators 
satisfy the prescribed unit-step criteria. After finding an acceptable solution on the base 
mesh, the integration continues with, possibly, a new base-mesh time step Ll.tn+l· 

Data management involves the use of a tree structure with nodes of the tree corre
sponding to meshes at each refinement level for the current base-mesh time step. The 
base mesh is the root of the tree and finer grids are regarded as offspring of coarser ones. 
This structure is somewhat different from the tree of quadrants described in section 4. 

With an aim of maintaining generality at the possible expense of accuracy and perfor
mance, we discretize (5.1 & 5.2) using the Richtmyer two-step version of the Lax-Wendroff 
method (Richtmyer and Morton, 1967), which we describe for a one-dimensional problem 
having no y dependence. Let us introduce a mesh on n having spacing Ll.xj = Xj+l- Xj 
and let the discrete approximation of u(xj, tn) be denoted as Uj. Predicted solutions 
are generated at cell centers by the Lax-Friedrichs scheme, i.e. 

un+l/2 1 (un un) Ll.tn (rn rn) 
Hl/2 = 2 Hl + i - 2Ll.x. Hl - i · 

J 

This provisional solution is then corrected by the leapfrog scheme 

(5.3) 

ut.t+l = u~ - 2Ll.tn (r~+l/2 - f~+l/2) . (5.4) 
J J Ll.Xj + Ll.Xj-l J+l/2 J-l/2 

Following Arney et a/. (1990) and Arney and Flaherty (1990), refinement indicators are 
selected as estimates of the local discretization error obtained by Richardson's extrap
olation (h-refinement) on a mesh having half the spatial and temporal spacing of the 
mesh used to generate the solution. Fine-mesh solutions generated as part of this error 
estimation process may subsequently be used on finer meshes when refinement is neces
sary. Initial and boundary data for refined meshes is determined by piecewise bilinear 
polynomial interpolation from acceptable solutions on the finest available meshes. 

5.1. PARALLEL CoMPUTING MoDELS 

Parallel procedures are developed for the adaptive h-refinement solution scheme de
scribed above using a ?-processor concurrent read exclusive write (CREW) shared
memory MIMD computer. We consider both static and dynamic strategies for balancing 
processor loading. As the names imply, with static load balancing, processors are as
signed tasks a priori with the goal of having them all terminate at approximately the 
same time; whereas with dynamic load balancing, available processors are assigned tasks 
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from a task queue. Two possible static load balancing techniques come to mind: (i) serial 
depth-first traversal of the tree of grids with solutions on each grid generated in paral
lel and (ii) parallel generation of solutions on all grids that are at the same tree level. 
With the depth-first traversal procedure, each grid is divided into P subregions and a 
processor is assigned to each subregion. With the parallel tree traversal procedure, the 
P processors are distributed among all grids at a particular tree level so as to balance 
loading. Thus, parallelism occurs both within a grid and across the breadth of the tree 
with this strategy. In all cases, the parallel solution process proceeds from one base-mesh 
time step to the next. 

Serial depth-first traversal of the tree leads to a highly structured algorithm that has 
a straight-forward design because the same procedure is used on all grids. Balancing 
processor loading on rectangular grids is nearly perfect with an explicit finite difference 
scheme like (5.3 & 5.4), and similar behavior could be expected for geometrically complex 
regions. Load imbalance occurs due to differences in the time required to compute initial 
data. Other than at t = 0, initial data is determined by interpolating solutions from 
the finest grid at the end of the previous base-mesh time step to the present grid. Tree 
traversal, required to determine the correct solution values for the interpolation, would 
generally take different times in different regions due to variations in tree depth. This 
defect might be remedied by using a different domain decomposition. 

The serial depth-first traversal procedure becomes inefficient when P is of the order 
of the number of elements in a grid. This situation can be avoided by refining grids by 
more than a binary factor, thus maintaining a shallow tree depth. However, each cluster 
would then contain a greater percentage of low-refinement-indicator cells, thus lowering 
the (serial) efficiency of the procedure. The inefficiency cited here should not be a factor 
on data-parallel computers and the serial tree-traversal procedure might also be viable 
there. 

A parallel tree-traversal procedure requires complex scheduling to assign processors 
to grids. One possibility is to estimate the work remaining to reduce error estimates to 
prescribed tolerances, and to assign processors to subgrids so as to balance this load. 
Were such a heuristic technique successful, the parallel tree traversal procedure would 
not degrade in efficiency when the number of elements on a grid is O(P). 

Consider a situation where Q processors are used to obtain a solution on a grid at tree 
level /- 1 and suppose that refinement indicators dictate the creation of L grids Gt,i, 
i = 1, 2, ... , L, at level/. Further assume that 

1 the prescribed local refinement tolerance at level/- 1 is Tt-l; 

2 the areas of Gt,i are Mt,i, i = 1, 2, ... , L; 
3 estimates E1,i of the discretization error are available for Gt,i, i = 1, 2, ... , L; and 
4 the convergence rate of the numerical scheme is known as a function of the local mesh 

spacing. 

The Richtmyer two-step scheme (5.3 & 5.4) has a quadratic convergence rate which we 
use to illustrate the load balancing technique. 

In order to satisfy the prescribed accuracy criterion, Gt,i should be refined by a factor 
of (Et,;/Tt-1)2 • The time step on Gt,i must be reduced by a factor of Et,;/Tt-1 in order to 
satisfy the Courant condition (Richtmyer and Morton, 1967). Hence, the expected work 

.I 
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W1,i to find an acceptable solution on G1,i is 

W1,i = M1,i [ El,i] 
3 

1"/-1 
(5.5) 

The Q available processors should be allocated so as to balance the time to complete the 
expected work on each of the L grids at level/. Thus, assign Qi, i = 1, 2, ... , L, processors 
so that 

W1,1 W1,2 W1,L --=--= ... =--, 
Q1 Q2 QL 

(5.6) 

The quality of load balancing using this approach will depend on the accuracy of the 
discretization error estimate. Previous investigations (Arney and Flaherty, 1990; Arney 
et al., 1990) revealed 'that error estimates were generally better than 80 percent of the 
actual error for a wide range of mesh spacings and problems. Equation (5.5) can be used 
to select refinement factors other than binary and, indeed, to select different refinement 
levels for different meshes at a given tree level. This consideration combined with over
refinement to a tolerance somewhat less than the prescribed tolerance should maintain 
a shallow tree depth and enhance parallelism at the expense of grid optimality. 

Simple dynamic load balancing can take full advantage of the CREW shared-memory 
MIMD environment. One just maintains a queue of mesh points at a given tree level and 
computes solutions at these points as processors become available. Balancing processor 
loads ori geometrically complex regions is as simple as on rectangular regions because 
mesh points are processed on a first-come-first-serve basis independently of the grid to 
which they belong. Non-uniformities in initial data also introduce no problems and neither 
does the relationship of P to the number of cells in a grid. Finally, complex processor 
scheduling based on accurate error estimates is avoided. This strategy, however, might 
not be appropriate for hierarchical or distributed memory computers. 

5.2. AN ADAPTIVE H-REFINEMENT STRATEGY 

Binary refinement of space-time grids may be optimal in using the fewest mesh points; 
however, tree depth tends to be large and this introduces serial overhead into a parallel 
procedure. As previously suggested, serial overhead can be reduced by keeping tree depth 
shallow and to do this we perform M-ary instead of binary refinement. The value of M is 
chosen adaptively for different clusters so that the prescribed tolerance is satisfied after 
one refinement step. Thus, let r0 be a prescribed local discretization error tolerance and 
choose M for grid G1,i as the first even integer greater than E1,i/ro. Having a good 
a priori knowledge of the work required on each cluster, processors can be distributed 
among the grids according to (5.6) to effectively balance loading. Of course, the refine
ment tolerance may not be satisfied after performing one M-ary refinement. Should this 
occur, we perform additional levels of 2-ary refinement until tolerances are satisfied. The 
terms "binary" and "2-ary" refinement have been used to distinguish differences in our 
methods of checking the refinement condition. With binary refinement, the refinement 
condition is checked after each of the two finer time steps and with 2-ary refinement the 
condition is only checked after the second time step. As a result, the fine grids remain 
unchanged for both of the two finer time steps with 2-ary refinement. 
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Figure 9. CPU time (left) and parallel speed up (right) for Example 3. Solutions are computed on 
uniform meshes without adaptivity using static (top) and dynamic (bottom) load balancing. 
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Figure 10. CPU time (left) and parallel speed up (right) for Example 3 using dynamic load balancing 
and adaptive h-refinement with either local binary refinement (top) or M-ary followed by 2-ary 

refinement (bottom). 
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The efficiency of this mesh refinement strategy and of the serial depth-first traversal 
and dynamic balancing techniques are appraised in an example. Performance of the 
parallel traversal procedure was not as good as either of these schemes and results are 
not presented for it. As in section 4, a 16-processor Sequent Balance 21000 computer 
was used for the experiment. CPU time and parallel speed up are used as performance 
measures. 

Example 3. Consider the linear scalar differential equation 

Ut + 2ux + 2uy = 0, 0 < x, y < 1, t > 0, (5.7) 
' 

with initial and Dirichlet boundary data specified so that the exact solution is 

1 
u(x, y, t) = '2 [1- tanh(lOOx- lOy- 180t + 10)]. (5.8) 

The solution (5.8) is a relatively steep but smooth wave that moves at an angle of 45 
degrees across the square domain as time progresses. 

Adaptive refinement is controlled by using an approximation of the local discretization 
error in the L1 norm as a refinement indicator. Exact errors for this scalar problem are 
also measured in L 1 as 

lie(·,·, t)lh = J foiPu(x, y, t)- U(x, y, t)l dxdy, (5.9) 

where U(x, y, t) is a piecewise constant representation of the discrete solution, P u (x, y, t) 
is a projection onto the space of piecewise constant functions obtained by using values 
at cell centers. 

Our first experiment involves the solution of (5.7 & 5.8) for 0 < t:::; 0.35 on 10 x 10, 
25 X 25, and 45 X 45 uniform grids having initial time steps of 0.017, 0.007, and 
0.004, respectively. No spatial refinement was performed and the static and dynamic load 
balancing strategies were used. CPU times and parallel speed-ups for each base mesh and 
each load balancing technique are shown in figure 9. Speed-up with 15 processors and 
the static load balancing technique (shown in the upper portion of figure ~) are in excess 
of 51, 75 and 87 percent of ideal with the 10 X 10, 25 x 25, and 45 X 45 base meshes, 
respectively. Speed-up increases dramatically with the finer meshes due to smaller data 
granularity. Similar speed-up data for the three base meshes with the dynamic load 
balancing technique (shown in the lower portion of figure 9) are 53, 77, and 90 percent 
of ideal. The static load balancing strategy takes slightly more time than the dynamic 
technique, except in the uni-processor case where they are identical, because of load 
imbalances on the P subdomains due to differences in the times required to generate 
initial and boundary data. 

Our second experiment involves solving (5.7 & 5.8) for 0 < t:::; 0.35 on a 10 x 10 base 
mesh having an initial time step of 0.017, using dynamic load balancing and adaptive 
h-refinement with either binary refinement or M-ary followed by 2-ary refinement. Re
finement tolerances of 0.012, 0.006, and 0.003 were selected. The resulting CPU times 
and parallel speed-ups for each adaptive strategy are presented in figure 10. Maximum 
speed-ups shown in the upper portion of figure 10 for the binary refinement strategy 
are in excess of 82, 86, and 72 percent of ideal for tolerances of 0.012, 0.006, and 0.003, 
respectively. Initially, parallel performance improves as the tolerance is decreased due to 



300 J.E. Flaherty, M. Benantar, R. Biswas and P.K. Moore 

the finer data granularity; however, the performance ultimately degrades due to the serial 
overhead incurred when managing a more complex data structure. Maximum speed-ups 
for the more sophisticated M-ary followed by 2-ary refinement strategy shown in the 
lower portion of figure 10 are in excess of 88, 82, and 73 percent of ideal for the three 
decreasing tolerances. Speed-ups for this refinement strategy are only marginally bet
ter than those for the binary refinement technique, but the CPU times for the M-ary 
strategy are much less than those for the binary refinement strategy. For example, CPU 
times with 15 processors and a tolerance of 0.003 were 226.11 and 182.73 for the bi
nary and M-ary strategies, respectively. Maintaining a shallow tree has clearly increased 
performance. 

Speed-up is not an appropriate measure of the complexity required to solve a problem 
to a prescribed level of accuracy. Tradeoffs occur between the higher degree of parallelism 
possible with a uniform mesh solution and the greater sequential efficiency of an adaptive 
procedure. In order to gauge the differential, we generated uniform mesh and adaptive 
mesh solutions of (5.7 & 5.8) on various processor configurations and to varying levels 
of accuracy for both static serial tree traversal and dynamic load balancing strategies. 
Computations on uniform grids ranged from a 5 x 5 mesh to a 45 x 45 mesh. All adap
tive computations used a 10 x 10 base mesh, M-ary followed by 2-ary refinement, and 
tolerances ranging from 0.012 to 0.003. 

Results for the global L 1 error as a function of CPU time are presented in figure 11 for 
computations performed on 1, 4, 8, and 15 processor systems. Static and dynamic load 
balancing strategies are shown in the upper and lower portions of the figure, respectively. 
For each strategy, the upper set of curves, displaying non-adaptive results, are much less 
efficient and converging at a much slower rate than the adaptive solutions shown in the 
lower set of curves. The adaptive solutions are converging at a rate of approximately 
1.4 relative to CPU time while the non-adaptive solutions are converging at a rate of 
approximately 0.4. These results demonstrate a strong preference for adaptive methods 
for all but the largest tolerances. 

6. Future Investigations 

The strategies and software described herein are far from being complete. Ongoing 
work with pdefront will provide symbolic interfaces to more of our software. Interfacing 
pdefront and the finite quadtree mesh generation system is a primary concern. With a 
substantial collection of algorithmic ideas and strategies for generating meshes, obtaining 
solutions, adaptive enrichment, and error estimation, we need a more effective way of 
organizing our software in order to determine optimal combinations of procedures for 
particular circumstances. The notion of a software laboratory as used by Kapur and 
Zhang (1988) appears to be suitable for our intentions. 

High-order and hp-refinement strategies have the highest convergence rates on serial 
processors. Successful use of adaptive strategies in parallel environments depends heavily 
on the efficient implementation of these procedures on shared- and distributed-memory 
computers. The edge coloring procedure alluded to in section 4 should provide some im
provement over existing strategies on shared-memory systems, but no procedure is avail
able for using hp-refinement on data-parallel computers. High-order and hp-refinement 
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techniques are being added to our collection of methods for solving hyperbolic systems 
using the finite element methods (Cockburn and Shu, 1989). The p-hierarchical Legendre 
polynomial basis embedded in these methods should also furnish error estimates simi
lar to those that we have developed for parabolic systems (Adjerid et al., 1990). These 
techniques are far more efficient than Richardson's extrapolatior{. 

Our h-refinement procedure for hyperbolic systems could be improved by beginning 
each base-mesh time step with an adaptively chosen mesh that utilizes known nonuni
formities in the solution discovered during the previous base-mesh time step. Processors 
would still have to be scheduled to balance loads in this case, and procedures for doing 
this are unavailable. Finally, parallel procedures for distributed memory systems and 
procedures for three-dimensional problems are of great interest. 
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