
Symbolic and Numerical
Computation for

Artificial Intelligence
edited by

Bruce Randall Donald
Department of Computer Science

Cornell University, USA

Deepak Kapur
Department of Computer Science

State University of New York, USA

Joseph L. Mundy
AI Laboratory

GE Corporate R&D, Schenectady, USA

Academic Press
Harcourt Brace Jovanovich, Publishers

London San Diego New York
Boston Sydney Tokyo Toronto

ACADEMIC PRESS LIMITED
24--28 Oval Road

London NW1

US edition published by
ACADEMIC PRESS INC.

San Diego, CA 92101

Copyright © 1992 by
ACADEMIC PRESS LIMITED

This book is printed on acid-free paper

All Rights Reserved
No part of this book may be reproduced in any form, by photostat, microfilm or any other

means, without written permission from the publishers

A catalogue record for this book is available from the British Library

ISBN 0-12-220535-9

Printed and Bound in Great Britain by
The University Press, Cambridge

Chapter 13

An Interactive Symbolic-Numeric Interface to
Parallel ELLPACK for Building General PDE

Solvers

Sanjiva Weerawarana, Elias N. Houstis, John R. Rice t

Department of Computer Science

Purdue University

West Lafayette, IN 47907

In this paper we describe an interactive symbolic-numeric interface framework (editor)
to the ELLPACK partial differential equation (PDE) system for building PDE solvers
for a much broader range of applications. The domain of applicability of ELLPACK and
its parallel version(/ /ELLPACK) is restricted to second order linear elliptic boundary
value problems. This editor allows the specification of nonlinear initial and boundary
value PDE problems. The editor applies hybrid symbolic-numeric techniques at the
PDE problem level to automatically reduce them to a sequence of linear elliptic PDEs.
The result of this preprocessing is recorded in the form of an ELLPACK program.
Several examples are presented to demonstrate the functionality and applicability of
this interface framework, and the efficiency of the underlying solution methods.

1. Introduction

ELLPACK is a high level software environment for specifying linear elliptic second
order boundary value problems and their solvers. The solvers are built out of an extensive
library of modules that correspond to the various phases of the numerical processes
for these types of PDE problems. A detailed description of the ELLPACK system for
sequential machines is given in Rice and Boisvert (1985). The system is currently being
extended to accommodate PDE problems which may be nonlinear, second order in space
and parabolic or hyperbolic in time. The extension also includes facilities to specify or
select pairs of parallel algorithms and architectures. We use an object-oriented knowledge
framework (editor) interface which allows the user to specify:

• linear/nonlinear PDE boundary /initial value problems in a natural form,

t This research was supported in part by AFOSR 88-0234, ARO grant DAAG29-83-K-0026, NSF
grant CCF-8619817 and ESPRIT project GENESIS.

304 S. Weerawarana, E.N. Houstis and J.R. Rice

Pictures, Text,

Numbers, ... ,
Problem Spec.

Items Invokes
Terminal

Attachments

Supplies

Data to

Other Frames

Figure 1. Structure of an object-oriented knowledge framework in the interface.

• the PDE domain geometry and boundary conditions in a graphical and textual
form,

• parameters such as grid and the mapping of the underlying computation to the
specified machine,

• linear elliptic PDE solvers using a menu for the many choices of individual compo-
nents,

• displays of performance data collected,
• visualization of the computed solution,
• displays showing the efficiency of a method with respect to a known data base of

performance data.

Figure 1 shows the structure of a framework and its corresponding editor. A gen­
eral discussion of the object-oriented knowledge framework methodology is presented
in Forbe et al. (1989). Figure 2 shows part of the hierarchy of these frameworks for
the I IELLPACK application, while their complete description is given in Houstis et al.
(1989, 1990a). The remaining editors of the interface are those invoked after execution
to display solutions, performance data, etc.

The output of this object-oriented software environment is a control program written
in the very high level I /ELLPACK language which in turn is translated into a FORTRAN

Interactive Symbolic-Numeric PDE Interface to Parallel ELLPACK 305

Figure 2. Hierarchy of editors in the/ /ELLPACK preprocessing/solution interface.

control program. Even though the / /ELLPACK control program is in a• very high level
language, it is quite long in typical applications, of the order of several hundred lines.
The resulting FORTRAN control program is much longer still. See Houstis et al. (1990b)
for a complete example of/ /ELLPACK control program as well as a discussion of its
syntax and use.

This paper is concerned with the development of the PDE specification framework
which uses symbolic/numeric processing to handle the PDE problem extensions to de­
termine some of the input functions and carry out any preprocessing required. Figure 3
shows a view of the user interface of this framework. It uses the MAXIMA t symbolic
computing system+ to symbolically transform the PDE problem into a form that is
solvable using / /ELLPACK. After performing several mathematical transformations, a
/ /ELLPACK program to solve the transformed problem is generated and forwarded to
the/ /ELLPACK programming environment for further processing.

t MAXIMA is the Austin Kyoto Common Lisp version of DOE Macsyma (MACSYMA, 1977).
:j: Such symbolic computing systems are also known as "computer algebra systems".

306 S. Weerawarana, E.N. Houstis and J.R. Rice

stopping Time: ;"i·a·:ii .. j
o,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.u,•o•o•~rro•,.,._.,.;.,.,/

Tima step (del tat) : [~:::~:::::::::::::~:::::::::~::::::::::::::::::::;

r~t~~~ at[?.:::::::::::::::::::::::::::~:~::~::.:~::::~~:::::::::::::::::::;

Initial Guess: [~.:.:.:.:.:.:~~~:.·.::::.:.:::.::.:.:.::.:.::.:.:.:.:.:.:.:.:~.!

Figure 3. User interface of the/ /ELLPACK PDE specification editor.

The methodology used to handle nonlinear and time-dependent terms is presented in
section 2. The functionality of this framework and its implementation are discussed in
section 3. Finally, in section 4 we present numerical results which indicate the efficiency
of the high level PDE solvers created.

2. High Level Nonlinear and Time-dependent PDE Solvers

In this section we formulate a high level preprocessing methodology for solving non­
linear initial/boundary value problems of the form

aUt+ (3 Utt = F(t,rn, y, z, u, U:u, Uy, Uz, U:u:!J, Uyy, Uzz, U:uy, U:uz, Uyz) = Fu

including, for example, in a simpler case,

C¥Ut + f3Utt Co+ C1 U + C2 U:u + C3 Uy + C4 Uz + C5 U:u:u + C6 Uyy + C7Uzz +
Cg U:uy + Cg U:uz + C10 Uyz

Lu

(2.1)

(2.2)

Interactive Symbolic-Numeric PDE Interface to Parallel ELLPAOK 307

Problems (2.1) and (2.2) are defined on (0, T] x n with 0 C ~3 and are subject to
boundary conditions

Gu =: G(t, x, y, z, u, Ux, Uy, Uz) = '!f;(t)

or, again in the simpler case,

Bu = do + d1 u + d2 Ux + ds Uy = 0

on the boundary of n, and initial conditions at t = 0

u(O,x,y,z) = ¢(x,y,z).

(2.3)

(2.4)

(2.5)

The coefficients c; and d; may depend on (x, y, z) and yet the problem remains in
the class of linear PDEs that / /ELLPACK currently assumes. The coefficients of L
and B could be functions of the solution u, making a semi-linear problem not in the
class that f /ELLPACK currently assumes. The parameters ex and f3 are chosen to make
the equation (2.1) elliptic (ex= 0,{3 = 0), parabolic (ex = 1,{3 = 0) and hyperbolic
(a=0,f3=1).

2.1. NONLINEAR PDE SOLVERS

The traditional way to handle nonlinear PDE problems numerically is to discretize
them first with an appropriate method and then solve the corresponding nonlinear al­
gebraic' equations. A non-traditional alternative is to apply a nonlinear methodology
directly on the continuous PDE equations and boundary conditions. This approach re­
duces the original nonlinear PDE problem to a sequence of linear PDEs which must be
solved by iteration starting with some initial guess. Under certain general assumptions
we can show that the two approaches are equivalent. Another advantage of the second
approach is the ability to utilize existing linear PDE solvers without any modification.
Its disadvantage is that the user has to define and implement the nonlinear process at the
program control (PDE operator) level and carry out the symbolic processing required.
Rice has tested this methodology (Rice, 1983; Rice and Boisvert, 1985) ·by constructing
special ELLPACK templates, which implement nonlinear and time-dependent high level
solvers by embedding FORTRAN code into ELLPACK. In order to separate the user from
the PDE problem specification and PDE preprocessing/solution phases, we have devel­
oped a knowledge-based editor whi~4 automatically generates these templates from given
specifications and carries out the needed symbolic processing. The/ /ELLPACK system
already has a natural interface to MAXIMA and / /ELLPACK and now implements two
of the most often used nonlinear approaches, the Picard and Newton's iterations. Their
formulation at the PDE problem level has appeared in Rice and Boisvert (1985). For
completeness, we present it here.

2.1.1. PICARD ITERATION FOR NONLINEAR PROBLEMS

In order to apply Picard iteration, one rewrites the equations F(u) = 0 and G(u) = 0
into the form L(u)u = f(u), and B(u)u = g(u) and then uses the iteration

308 S. Weerawarana, E.N. Houstis and J.R. Rice

l"i.~:i~···~~~~~·~····"'''"'''"'''"''""'""''"'''"'''"''''"''"'''''''''"''''''''"''"''""'''""'''"''''''""'''''''''"""''""''"'''""'''''"''""''"~~i~"'

r~~·~~~; .. ~;· .. ~~~;~~~;~·~i.;.: ... :.-.:r ~~~~~~ .. ~~;~;~~~~~~·~ ·

" Discretization Method: f'w'""s:p;;"j~t'"'st~j:'""'"""G'"·~

.. !PDE Ope~ato~ Edito~·. . • • • Indexing Method: c···········A;··;;, 5.'!
l r····u'''j DE] []JL] ~ !1§U ("u~~·j Solution Method: r······--·;~~~'bi"si""""''''r€}
f 1:~ + Uyy = U"2 * (x"2+y"2) * e"(-x*y) !

Solution to force:f l
:J

~ Linearization Information
~ Time Discretization Information

~ Generate //ELLPACK Program

~~~~'l~·~r-1::;::~. 'r.~;,~:S" ""'·~·~··· I ... JJ ..... l .. ,:,.l ... i·.·' 

f pde * 1 Is not tl~e-d~pendent, :.: 
f. pde t+ 1 is non-linear. ~ ..... 
f: Generating progra"•• i ~::::~ 
r (DB) DONE i !'''!! 
i' (C7) " i ! i 
lii.!:~;::::::;;:::::~:::::::::::::::::~::::::~:::::::::::::;~:::::;:::::::::::::::~:;::::~;:::::E::::~:::~:::~::~;:::::~::::;;;;::;~:;:::::::~::::::::::::::~::::::;:::::~:::~~~:::::::;~:::::::~:;::::~::::::::::::::::::~::~~~~:::0.:::~:::::0..~~~::::::~:; 1~1 

Figure 4. A semi-linear PDE problem specified in the PDE specification editor. This display occurs in 
the/ /ELLPACK-MAXIMA part of this editor. 

L(u,~:)uk+l = f(u.~:), 
B(u,~:)uk+l = g(u,~:). 

Note that L(u)u is the operator L(u) applied to the function u and not an ordinary 
multiplication. The coefficients of L and the function f can be nonlinear functions of 
the partial derivatives of u. The coefficients of the boundary operator B and function g 
can depend on u. The attractiveness of this method is its simplicity. Its weakness is that 
convergence cannot be predicted a priori. Picard's nonlinear process can be described as 
follows: 

Guess u(O) 
repeat 

Solve L(uk)uk+l = f(u.~:), and B(uk)uk+l = g(uk) 
Set Uk+l := u,~: 

until converged. 

Next we consider some_ examples to demonstrate the formulation of this method in the 
/ /ELLPACK environment. Figure 4 shows the PDE specification editor for the problem 

u~~ + Uyy = u2 (a:2 + y2)e-xy 

defined on the unit square subject to the boundary conditions 

u = u2 +g 

(2.6) 

(2.7) 



Interactive Symbolic-Numeric PDE Interface to Parallel ELLPACK 309 

OPTIONS. 
11 time = .true, 
clockwise = .true. 
xplot3d 

DECLARATIONS. 
parameter (tol=O.Ol) 
pa.ra.meter (niters=lO.O) 

EQUATION. 
UXX+UYY = U(X,Y) 002°(X**2+Y* 0 2)*EXP(-X*Y) 

BOUNDARY. 
enter a. boundary here, 

GRID. 
enter a. grid here. 

TRIPLE. 
set (u =zero) 

FORTRAN. +both. 
llLEVL = 1 
do 20 I = 1 ,niters 

DISCRETIZATION. 
enter discretization method here, 

INDEXING. 
enter indexing method here. 

SOLUTION. 
enter solution method here. 

OUTPUT. 
MAX (ERROR) 

FORTRAN. +both. 
test for convergence: 

if (R1NRM2 .It. to!) then 
go to 30 

endif 
llLEVL = 0 

20 continue 
print •, 'fa.iled to converge!' 
go to 50 

30 continue 
print*, 'converged in 1

1 I, 1 iterations' 
50 continue 

END. 

Figure 5. Template of a/ /ELLPACK program for Picard's method for (2.6), (2.7). Later stage of the 
solution process may add greatly to this program. 

where g is a function that makes u = exy the true solution of the boundary value problem. 
The Picard iteration template generated by this interface editor is shown in figure 5. In 
spite of the simplicity of Picard's method, it is not always very effective. The number of 
required iterations for convergence can be very large. 

2.1.2. THE NEWTON'S ITERATION FOR SOLVING NONLINEAR PROBLEMS 

A superior alternative to Picard iteration is the well-known Newton's method. For its 
formulation we consider the general PDE problem (2.1), (2.3) with a= 0 = {3. The idea 
of the method is to approximate F(u) = 0 and G(u) = 0 with their linear counterparts 

F(uo) + F'(uo)(ul- uo) 0 

G(uo) + G'(uo)(ul- uo) 0 

and then iteratively solve these linear problems. The linear counterparts are the Frechet 
derivatives of the operators F and G with respect to the function u and its derivatives. 



310 S. Weerawarana, E.N. Houstis and J.R. Rice 

r··.Ei'i;·······.M;~;_;;···.······--····w····················································--·············································--············································w··m·······m·····--···························--·····--·········--··· 

F""'"'«« .... ~~ .. ~ .... «-: .. ~~ .... «":";~":7.o;-;o: ......... ••••••••• «~~~~~~ .......................... ................ "7.~ •• 

i! Humber of' Operators: p."""i Global Inf'ormation: 

~ .. :. . ......... ..l Discretization Method: f'"'"S:ii.~i~t··st~~··········:;s·J· 
" . ~ ...................................... . 
j PDE Operator Editor: Indexing Method: r·········""····.wo···;;;···j·;····--···················;;:5···'! 

1 []] @D Q!ii] f"u!l·;;···i [§] U§J solution Method: r::::::::{e~;x::~c:::::::::§] 
1

1 ~·~,,~~,~-·~.:· ... ~:~~,~~:~N,:N,:<:~,•,•,•:,.,,?,:,._..,.,•,•NNNm,•,•m,:<.•.w.w,•,•,,J 
~ 
~ 
~ 

j iil Linearization Information 
!, lliJ Time Discl"etization Information 

I ~fut ~:::lt ----~0~~\;tar iiJ Generate //ELLPACK Pl"ogram 

I ~!~~~~ir::~:::: u: ~·:;~: "~--·· 1.\ r1. 

~ pde H 1 Is non-linear, . 
~ Generating progra~.. ~ ~ 

!!&;;;,~:f::::~::,;,;;;;;,;;,;;,;~;i:~::;:;::;~:f:~;f:~~::;::~:::~~:::::::::~::;:~f::~::::::f::::::::::::::~~::::;:::::0;::;::f:;:~:::;:::;~:~::~::::::~::::;~~:::~;~~:::;~:~,;;,;~;pf'::l 
Figure 6. The nonlinear problem (2.8) in the PDE specification editor in preparation for applying 

Newton's method. 

While the mathematical foundations of such differentiation is complex, its mechanics 
are similar to ordinary differentiation. The corresponding symbolic/numeric process that 
implements Newton's method can be described as follows: 

Compute Fre'chet derivatives L(u), B(u) of F(u) and G(u) 
repeat 

Solve L(uo)u = -(F(uo)- L(uo)uo), and B(uo)u = -(G(uo)- B(uo)uo) 
Set uo := u 

until converged. 

To illustrate the application of this method consider the problem 

F(u) = U 111111 + u2 Uyy- eu- f = 0 

defined on the unit square and subject to boundary conditions 

· G(u) = u + u2 uy- g = 0 

on x = 0 and 

G( u) = u - g' = 0 

(2.8) 

(2.9) 

(2.10) 

on the rest of the boundary. The functions/, g, and g' are selected such that u(x, y) = 
sin( 1r x) cos( 1r y) is the true solution. Figure 6 displays this PDE problem in the PDE 
specification editor and figure 7 shows the template generated for Newton's method from 
the PDE specification framework. 



Interactive Symbolic-Numeric PDE Interface to Parallel ELLPACK 311 

OPTIONS, 
11 time = .true:. 
clockwise = ,true. 
xplot3d 

DECLARATIONS. 
pa.rameter (tol=O.O.S) 
parameter (niters=lO) 

EQUATION. 
UXX+U(X,Y)••2•UYV+(2•U(X,Y)•UYY(X,Y)-EXP(U(X,Y)))•U = U(X,Y) & 

•(2•U(X,Y)•UYY(X,Y)-EXP(U(X,Y)))+EXP(U(X,Y))-RS(X,Y) 

BOUNDARY. 
u = true(x,y) on x = 0 
u = true(x,y) on x = 1 
u = true(x,y) on y = 0 
u = hue(x,y) on y = 1 

GRID. 
20 x points 
20 y points 

TRIPLE. 
set (u = zero) 

FORTRAN. +both. 
llLEVL = 1 
do 20 1 = 1 ,nit era 

DISCRETIZATION. 
5 point sta.r 

INDEXING. 
&B is 

SOLUTION. 
jacobi si (itma.x=200) 

OUTPUT. 
MAX (ERROR) 

FORTRAN. +both. 
illevl = 0 

20 continue 

SUBPROGRAMS. +both. 

function true (x,y) 
pi= abn (1.0) 
TRUE = SIN(PI•x)•COS(PI*Y) 
return 
end 

function RS (X, Y) 
pi = atan (1.0) 
RS = EXP(SIN(PI•X)*COS(PI•Y))+PI••2•SIN(PI•X)••a•COS(PI•Y)••a 

1 +PI••2•SIN(PI•x)•coS(PI•Y) 
return 
end 

END. 

Figure 7. Template of a/ /ELLPACK program for Newton's method applied to (2.8).1nternally, the 
system creates the linearized PDE problem which is solved repeatedly in the FORTRAN DO-loop 20. 

2.2. TIME SEMI-DISCRETIZATION SOLVERS 

In this section we consider a semi-discretization procedure for solving initial/boundary 
value problems. The procedure can be viewed as opposite to method of lines, since the 
time-discretization is done first and the original problem is reduced to a sequence of 
linear or nonlinear time-independent PDEs on the various time levels. In the case of a 
parabolic PDE (a= 1, f3 = 0) and Crank-Nicholson discretization, (2.1) is reduced to 

D..t 
u(t)- u(t- ~ t) = 2 { F(u) lu=u(t) +F(u) lu=u(t-~t)} · (2.11) 



312 S. Weerawarana, E.N. Houstis and J.R. Rice 

Note that we have suppressed the space variables and derivatives of u in the above 
equation. Assuming that the solution and its derivatives are known at thet-A t level, 
then the nonlinear PDE with respect to u(t) is solved over the domain Q with boundary 
conditions 

G(u(t)) = ,P(t). 

To illustrate this approach, we consider the equation 

Ut = )rfl(u)ux)x + v (¢(u)uv)y - f(u)ux- g(u)uy + h 
un un 

·defined on (0, T] X (unit square) subject to Dirichlet boundary conditions 

u = true(t, x, y) 

on the boundary of Q and initial conditions u = true(O, x, y). 

(2.12) 

(2.13) 

The equation is parametrized with respect to v, </J, n, j, and g. The function his chosen 
so that a given function true(t; x, y) is the solution of the PDE problem. The appendix 
shows the template for solving (2.13) with v = 1, t/J( u) = e-u, n = 2, f = g = u2 and 
true(t, x, y) = t + x + y. 

3. A Symbolic/Numeric Interface for Nonlinear/Time-dependent PDEs 

We have developed a PDE specification editor that is an interface between MAXIMA 
and / /ELLPACK. This editor implements some of the methodologies described. earlier 
to transform a nonlinear and/or time-dependent PDE into a sequence of elliptic PDEs 
that are accepted by / /ELLPACK. It is implemented in C and Lisp as an independent 
tool that uses simple protocols to communicate with MAXIMA and/ /ELLPACK. The 
graphical interface is built on top of the X Window System using the Motif widget set. 

3.1. USER SPECIFICATION OF THE PDE OPERATOR 

The PDE specification editor produces a / /ELLPACK program template that is fur­
ther specialized by other editors of the / /ELLPACK Programming Environment. The 
only required information that the user must provide to the editor is the actual PDE 
operator. If the PDE is nonlinear, then the editor will ask for additional information 
to generate code for the iterative solution of the linearized PDE. Similarly, additional 
information is requested if the PDE is time-dependent; Other parameters of the the gen­
erated program (such as operator discretization method, and algebraic system indexing 
and solving methods) can also be specified via menu item selection. 

The PDE operator editor window is a simple Emacs-like edit buffer where the PDE 
operator is entered. A sy~tem of PDEs can be specified by changing the number of PDEs 
from the default value of one. Another edit window allows one to specify a function that 
the PDE must be made to satisfy. This is achieved by perturbing the PDE by adding 
a term which forces the modified PDE to exactly (i.e. analytically) satisfy the specified 
function. This feature is extremely useful when one is attempting to debug a discretization 



Interactive Symbolic-Numeric PDE Interface to Parallel ELLPACK 313 

method, for example. We used this feature extensively during the development of this 
interface to verify· correctness of the generated code. 

The other main component of the editor is the MAXIMA window. This is the trace 
window for MAXIMA and is not for direct user input. All communication between MAX­
IMA and the editor are echoed to this window so that progress can be monitored. Also, 
this window provides access to MAXIMA (for those users who are familiar with it) to 
manipulate the PDE problem data as needed. 

Once the operator is defined, the user asks the editor to generate a I IELLPACK pro­
gram by clicking on the Generate //ELLPACK Program button. At this time, the PDE is 
sent to MAXIMA for symbolic processing. MAXIMA interprets the operator and decides 
whether it is nonlinear, time-dependent etc. If the operator is nonlinear, a message is sent 
to the editor requesting it to ask for more information from the user and then forward 
the additional information to MAXIMA. Finally, the generated //ELLPACK program is 
sent to the editor which forwards it to the //ELLPACK programming environment. A 
similar transaction takes place in the case of parabolic/hyperbolic PDEs. 

3.2. LINEARIZATION AND TIME DISCRETIZATION METHODOLOGY 

If the given operator is found to be nonlinear, then it is linearized in the manner out­
lined in section 2.1.2 using MAXIMA's symbolic differentiation capability. If the operator 
is time-dependent, then the time-derivatives are discretized using one of several methods 
(for example, Crank-Nicholson discretization). Additional information for linearization 
and/or time-discretization is requested from the user by sending a message from MAX­
IMA to the editor. The editor then opens a window and gets the information from the 
user. 

If the PDE is found to be nonlinear, a message is sent to the editor requesting it to 
ask the user for more information. The information that is requested currently includes 
the tolerance (to be used to check whether a satisfactory solution has been found), the 
maximum number of iterations to perform before aborting, the norm to' use to check for 
convergence and finally the initial guess. We plan to integrate knowledge-based assistance 
into this editor to automatically provide values for these parameters based on experience 
and other empirical data, if the user so desires. 

For time-dependent PDEs, we allow the user to select one of several time-discretization 
methods, though it is always possible to define any discretization scheme directly using 
MAXIMA's symbolic manipulation capabilities. As I /ELLPACK's data structures only 
provide convenient mechanisms for 2-stage time-discretizations, we currently limit the 
user to them. We are examining convenient implementation methods for k-stage tech­
niques also. The other parameters that are involved with the time-discretization stage 
are the starting time (t0), the solution uo at time to, the ending time (tend), and the 
time step. As with nonlinear PDEs, we expect to integrate knowledge-based assistance 
to select the time step needed to obtain some requested tolerance. 

Once all the necessary parameters are specified, a I /ELLPACK program is generated. 
For nonlinear problems, this program iteratively improves an initial guess until some 
convergence criteria has been met. For time-dependent problems, the program steps 
along the time axis solving an elliptic problem at each step. If the operator is both time-



314 S. Weerawarana, E.N. Houstis and J.R. Rice 

dependent and nonlinear, then the outer loop iterates over time while the inner loop 
iterates to solve the linearized elliptic PDE at each time step. The generated program 
is a I IELLPACK program which includes all necessary FORTRAN code. For example, 
FORTRAN functions are generated to compute derivatives of the initial conditions. 

3.3. PDE SPECIFICATION EDITOR - MAXIMA INTERFACE 

MAXIMA is a large, Lisp-based, interactive system that expects the user to type 
in expressions to be evaluated and printed. MAXIMA can be programmed in a high 
level language (MACSYMA, 1977) and in Lisp. In the PDE Specification Editor, MAX­
IMA runs as a separate process, possibly on a different host machine. The processes are 
connected via three sockets (Lefller et al., 1986); one to the standard input stream of 
MAXIMA, one to the standard output and standard error streams, and the other to a 
special connection to pass messages between MAXIMA and the editor. The MAXIMA 
functions we have implemented communicate with the editor using this third connection 
in a simple prot~col. 

The user does not deal with MAXIMA directly but, instead, deals with the PDE 
Specification Editor. The editor provides very high level access to the transformations 
discussed earlier via menu choices and button clicks. 

The PDE operator is entered symbolically in the PDE Operator Editor window. Sim­
ilarly, the forcing solution (if any) is entered in another window. When the user clicks 
on the Generate / /ELLPACK Program button, messages are sent from the editor to 
MAXIMA giving it the necessary commands. If more information is needed, MAXIMA 
sends messages to the editor asking for the additional information. If what MAXIMA is 
asking for is not known, then the user is queried for the additional information. Once the 
information is available, it is forwarded to MAXIMA as another message. Finally, the 
generated I IELLPACK program is sent to the editor as a message from MAXIMA. 

3.4. FORTRAN CODE GENERATION FROM MAXIMA 

The I IELLPACK language allows one to use arbitrary FORTRAN functions (for 
boundary conditions, the PDE operator etc.) that are defined in a separate segment 
of the I IELLPACK file. This feature is used in the programs generated by the PDE 
Specification Editor to implement the true solution forcing capability, for example. 

MAXIMA has simple FORTRAN code generation capabilities to generate FORTRAN 
code for expressions. We have extended this into a rudimentary code generation capability 
to generate the FORTRAN code we currently need (including loops, control structures 
and subprograms), using "print" statements. Since this technique does not allow one 
to manipulate the generated code, we will be integrating an automatic code generation 
system, GENCRAY (Weerawarana and Wang, 1989), to provide a flexible code generation 
capability. 

The ability to manipulate generated FORTRAN code is very useful when dealing with 
PDEs that are both nonlinear and time-dependent, for example. Furthermore, since we 



Interactive Symbolic-Numeric PDE Interface to Parallel ELLPACK 315 

iterations iierrorlloo 

1 6.767E-02 
2 1.001E-02 
3 1.466E-03 
4 2.527E-04 
5 5.215E-06 
6 3.806E-05 
10 ~ 3.329E-05 

Table 1. The convergence of Picard's method for PDE (2.8) (with 
L( u) = Uxa: + u 2 * Uyy) defined on the unit square with Dirichlet boundary conditions 
and true solution u(x, y) = sin(1r x) cos('rr y). The computation uses ~x = ~y = 0.05. 

iterations llerrorlloo 

1 1.804E-02 
2 8.486E-04 
3 3.749E-05 
4 3.663E-05 
5 3.725E-05 

10 3.710E-05 

'fable 2. The convergence of Newton's method for PDE (2.8) defined on the unit 
square with Dirichlet boundary conditions and true solution u(x,y) = sin(1rx)cos(1ry). 

The computation uses ~x = ~y = 0.05. 

intend to extend this editor to handle systems of PDEs as well, we need the ability to 
manipulate generated FORTRAN or/ /ELLPACK code conveniently. 

4. Numerical Examples 

Tables 1 and 2 indicate the error of five-point star approximations in the solution 
of PDE problem (2.8), coupled with Picard and Newton iterations, respectively. The 
approximations are computed using a 20x20 grid and measured in the L 00 norm. The 
numerical results confirm that the Picard method needs more iterations to reach the 
actual level of discretization error. This is in agreement with the theoretical behavior of 
the two methods. 

The solution of the PDE problem (2.13) was selected so that it will coincide with 
the discrete approximation on a 10x10 grid. In table 3, we list the discretization error 
measured in the L00 norm. These results indicate that no accuracy is lost due to the 
linearization procedure used, and that the error remains at the single precision round-off 
error after several iterations and time levels. 

In both PDE problems we have assumed Dirichlet boundary conditions and the Jacobi­
SI method was used to solve the linear finite difference equations. 



316 S. Weerawarana, E.N. Houstis and J.R. Rice 

time llerrorlloo after k Newton iterations 
level k - 1 k - 2 k - 3 k - 5 

llt 
21lt 
31lt 
51lt 
101lt 
501lt 

3.576E-07 
4.172E-07 
5.960E-07 
5.960E-07 
9.536E-07 
1.192E-05 

5.960E-07 
5.960E-07 
5.960E-07 
7.152E-07 
1.192E-06 
1.096E-05 

4.768E-07 
5.960E-07 
5.960E-07 
7.152E-07 
1.192E-06 
1.001E-05 

4.172E07 
4.768E-07 
5.960E-07 
5.960E-07 
1.430E-06 
1.049E-05 

Table 3. The Crank-Nicholson/5-point star numerical solution of PDE (2.13) defined 
· on the unit square with Dirichlet boundary conditions and true solution 

u(:v, y) = t + :v + y. The computation uses .6.:v = .6.y = 0.1, and !::it = 0.1. 

5. Conclusions 

We have described in this paper an integrated symbolic/numeric interface to //ELL­
PACK that is used to develop high level PDE solvers for nonlinear and time-dependent 
PDE problems. We discussed the mathematicalformulationofthe linearization and time­
discretization schemes and also their implementation in the / /ELLPACK PDE Specifi­
cation Framework. The numerical examples presented gave evidence to the applicability 
of our methods on certain classes of PDEs. 

Several observations can be made about the approach we used. First, it is clear that 
the application of hybrid symbolic-numeric methods yields both development time and 
computation time-effective results. Such methods allow the use of the proper tool for 
each task; for example, the use of a computer algebra system to perform symbolic differ­
entiation and the use of a numerical simulation system to solve an elliptic PDE. 

Many aspects of the editor we described were affected by the lack of proper infrastruc­
ture in various software. For example, the development of software packages as closed 
systems makes it very difficult to interface them to other systems. This is evidenced in 
the ad hoc method that we had to use to interface MAXIMA and the editor. What we 
need are software systems that have not only a user interface, but also a functionally 
equivalent programming interface. Another problem is the inability of computer algebra 
systems to generate and manipulate numeric code conveniently~ This problem is partially 
handled by code ganeration systems such as GENCRAY and GENTRAN (Gates, 1986), 
but more work needs to be done to allow convenient manipulation of numeric code inside 
computer algebra systems. 

References 

M.C. Dewar (1990), "IRENA: an integrated symbolic and numerical computation environment", Proc. 
AOM-SIGSAM 1989 Int. Symp. Symbolic and Algebraic Computation, ACM Press, NY, 171-179. 

B.W.R. Forbe, A.D. Rusell and S.F. Stremer (1989), "Object-oriented knowledge frameworks", Eng. 
Oomput., 5, 79-89. 

B.L. Gates (1986), "A numerical code generation facility for reduce", Proc. A OM SYMSA 0 '86, Water­
loo, Ontario, 94-99. 

E.N. Houstis, J .R. llice, N.P. Chrisochoides, H.C. Karanthanasis, P.N. Papachiou, M.K. Samartzis, E.A. 
Vavalis and K.Y. Wang (1989), Parallel (/ /) ELLPAOK PDE Solving System, CAPO Technical 



Interactive Symbolic-Numeric PDE Interface to Parallel ELLPACK 317 

Report CER-89-20, Dept. of Comput. Sci., Purdue University, West Lafayette, IN. 
E.N. Houstis, J.R. Rice, N.P. Chrisochoides, H. C. Karanthanasis, P.N. Papachiou, M.K. Samartzis, E.A. 

Vavalis, K.Y. Wang and S. Weerawarana {1990a), "/ /ELLPACK: a numerical simulation program­
ming environment for parallel MIMD machines", Proc. 1~990 Int. Conf. Supercomputing, ACM 
Press, NY, 96-107. 

E.N. Houstis, J.R. Rice, N.P. Chrisochoides, S.B. Kim, T. Ku, K.Y. Wang and S. Weerawarana 
(1990b), //ELLPACJ( User's Guide, CSD-TR-1039, Dept. of Comput. Sci., Purdue University, 
West Lafayette, IN. 

S.J. LefHer, R.S. Fabry, W.N. Joy and P. Lapsley (1986), An Ad'Vanced 4.8BSD Interprocess Communi-· 
cation Tutorial, Dept. of Elect. Eng. and Comput. Sci., University of California, Berkeley. 

MACSYMA Reference Manual (1977), Version 9, The Mathlab Group, Laboratory for Comput. Sci., 
MIT, Cambridge, MA. 

J.R. Rice (1983), "Building elliptic problem solvers with ELLPACK", Elliptic Problem Soi'Vers II, G. 
Birkhoff and A. Schoerstadt, eds., Academic Press, Orlando, Fl, 3-27. 

J.R. Rice and R.F. Boisvert {1985), Soi'Ving Elliptic Problems Using ELLPACK, Springer Series in 
Computational Math., 2, Springer-Verlag, NY. 

P.S. Wang (1986), "FINGER: a symbolic system for automatic generation of numerical programs in 
finite element analysis", J. Symbolic Computation, 2, 305-316. 

P.S. Wang (1988), An Introduction to Berkeley UNIX, Wadsworth Publishing Co., Belmont, California. 
S. Weerawarana and P.S. Wang (1989), "GENCRAY: a portable code generator for CRAY FORTRAN, 

Proc. ACM-SIGSAM 1989 Int. Symp. Symbolic and Algebraic Computation, ACM Press., NY, 
186-191. 



318 S. Weerawarana, E.N. Houstis and J.R. Rice 

Appendix:/ /ELLPACK program template for solving (2.13) 

OPTIONS. 
11time = .true. 
clockwise = .true. 
xplot3d 

DECLARATIONS. 
real tol 
integer niters 
common /saveu/ unkn($i1ngrx,$i1ngry) 

GLOBAL. 
real t, deltat, alpha, tstart, tstop 
integer nstep, nsteps 
common Jtimedep/ t,deltat, nstep, alpha 

EQUATION. 
ALPHA*EXP(-U(X,Y))/U(X,Y)**2*UXX+ALPHA*EXP(-U(X,Y))/U(X,Y)**2*UYY+ & 

ALPHA*(-2*EXP(-U(X,Y))*UX(X,Y)/U(X,Y)**2-U(X,Y)**2)*UX+ALPHA*(- & 
2*EXP(-U(X,Y))*UY(X,Y)/U(X,Y)**2-U(X,Y)**2)*UY+(ALPHA*(-2*(EXP( & 
-U(X,Y))*UYY(X,Y)-EXP(-U(X,Y))*UY(X,Y)**2)/U(X,Y)**3+(EXP(-U(X, & 
Y))*UY(X,Y)**2-EXP(-U(X,Y))*UYY(X,Y))/U(X,Y)**2-2*U(X,Y)*UY(X,Y & 
)-2*(EXP(-U(X,Y))*UXX(X,Y)-EXP(-U(X,Y))*UX(X,Y)**2)/U(X,Y)**3+( & 
EXP(-U(X,Y))*UX(X,Y)**2-EXP(-U(X,Y))*UXX(X,Y))/U(X,Y)**2-2*U(X, & 
Y)*UX(X,Y))-1/DELTAT)*U = EXP(-U(X,Y))*((-ALPHA*U(X,Y)-2*ALPHA) & 
*UYY(X,Y)+(ALPHA*U(X,Y)+ALPHA)*UY(X,Y)**2-2*ALPHA*U(X,Y)**4*EXP & 
(U(X,Y))*UY(X,Y)+(-ALPHA*U(X,Y)-2*ALPHA)*UXX(X,Y)+(ALPHA*U(X,Y) & 
+ALPHA)*UX(X,Y)**2-2*ALPHA*U(X,Y)**4*EXP(U(X,Y))*UX(X,Y)+PDERS( & 
X,Y)*U(X,Y)**2*EXP(U(X,Y))+ALPHA*FORCE(X,Y)*U(X,Y)**2*EXP(U(X,Y & 
)))/U(X,Y)**2 

BOUNDARY. 

GRID. 

u=true(x,y) on x=O 
u=true(x,y) on x=1 
u=true(x,y) on y=O 
u=true(x,y) on y=1 

10 x points 
10 y points 

TRIPLE. 
set (u = tOsol) 

FORTRAN. 
call save (ritabl, i1ngrx*i1ngry) 



Interactive Symbolic-Numeric PDE Interface to Parallel ELLPACK 

11cstc = .false. 
alpha= 0.5 
tstart = 0.0 
tstop = 5.0 
deltat = 0.1 
nsteps = int ((tstop-tstart)/deltat + 0.5) 
deltat = (tstop - tstart)/nsteps 

do 100 nstep = 1, nsteps 
t = tstart + nstep*deltat 

TRIPLE. 
set u by blending 

FORTRAN. 
niters = 10 · 
tol = 0.005 
do 300 i = 1, niters 
print *• 'time=',t,' ·,iteration=·', i 

DISCRETIZATION. 
5 point star 

INDEXING. 
as is 

SOLUTION. 
band ge 

OUTPUT. 
max (error) 

FORTRAN. 
i1levl = 0 

* test for convergence 
if (R1NRMI .lt. tol) then 

go to 301 
endif 

300 continue 
print *• 'failed to converge!' 
go to 302 

301 continue 
print *• 'converged in', i, ' iterations.' 

302 continue 

FORTRAN. 

319 



320 S. Weerawarana, E.N. Houstis and J.R. Rice 

call q35pvl 
call save (r1tabl, i1ngrx*i1ngry) 

100 continue 

SUBPROGRAMS. +both. 

subroutine save (arr, len) 
real arr(1) 
common /saveu/ unkn($i1ngrx*$i1ngry) 
do 101 i = 1,len 

unkn(i) = arr(i) 
101 continue 

return 
end 

function PDERS(x,y) 
real t, deltat, alpha, tstart, tstop 
external u1 
integer nstep, nsteps 
common /timedep/ t,deltat, nstep, alpha 
t = t - deltat 
if (nstep .eq. 1) then 

PDERS = (ALPHA-1.0)*(-UO(X,Y,5)*UO(X,Y,6)**2-UO(X,Y,4)*UO(X,Y,6) 
1 **2+(UO(X,Y,3)*EXP(-UO(X,Y,6))-UO(X,Y,5)**2*EXP(-UO(X,Y,6)))/ 
2 UO(X,Y,6)**2+(UO(X,Y,1)*EXP(-UO(X,Y,6))-UO(X,Y,4)**2*EXP(-UO( 
3 X,Y,6)))/UO(X,Y,6)**2-FORCE(X,Y))-UO(X,Y,6)/DELTAT 
else 

PDERS = (ALPHA-1.0)*((EXP(-U1(X,Y,6))*U1(X,Y,3)-EXP(-U1(X,Y,6))* 
1 U1(X,Y,5)**2)/U1(X,Y,6)**2-U1(X,Y,6)**2*U1(X,Y,5)+(EXP(-U1(X, 
2 Y,6))*U1(X,Y,1)-EXP(-U1(X,Y,6))*U1(X,Y,4)**2)/U1(X,Y,6)**2-U1 
3 (X,Y,6)**2*U1(X,Y,4)-FORCE(X,Y))-U1(X,Y,6)/DELTAT 

end if 
t = t + deltat 
return 
end 

function UO(x,y,ideriv) 
real t, deltat, alpha, tstart, tstop 
integer nstep, nsteps 
common /timedep/ t,deltat, nstep, alpha 
if (ideriv .eq. 1) then 

uo = 0 
else if (ideriv .eq. 2) then 

uo = 0 
else if (ideriv .eq. 3) then 

uo = 0 
else if (ideriv .eq. 4) then 

uo = 1 I 

J 



END. 

Interactive Symbolic-Numeric PDE Interface to Parallel ELLPACK 321 

else if (ideriv .eq. 6) then 
uo = 1 

else if (ideriv .eq. 6) then 
UO = Y+X 

endif 
return 
end 

function TOSOL (x,y) 
TOSOL = UO(X,Y,6) 
return 
end 

function ui(x,y,ideriv) 
common /saveu/unkn($i1ngrx*$i1ngry) 
u1 = r1qd2i(x, y, unkn, ideriv) 
return 
end 

function FORCE(x,y) 
real tol 
integer niters 
real t, deltat, alpha, tstart, tstop 
integer nstep, nsteps 
common /timedep/ t,deltat, nstep, alpha 
FORCE = -EXP(-Y-X-T)*(2*Y**4*EXP(Y+X+T)+8*X*Y**3*EXP(Y+X+T)+8*T*Y* 

1 *3*EXP(Y+X+T)+12*X**2*Y**2*EXP(Y+X+T)+24*T*X*Y**2*EXP(Y+X+T)+12 
2 *T**2*Y**2*EXP(Y+X+T)+Y**2*EXP(Y+X+T)+8*X**3*Y*EXP(Y+X+T)+24*T* 
3 X**2*Y*EXP(Y+X+T)+24*T**2*X*Y*EXP(Y+X+T)+2*X*Y*EXP(Y+X+T)+8*T** 
4 3*Y*EXP(Y+X+T)+2*T*Y*EXP(Y+X+T)+2*X**4*EXP(Y+X+T)+8*T*X**3*EXP( 
6 Y+X+T)+12*T**2*X**2*EXP(Y+X+T)+X**2*EXP(Y+X+T)+8*T**3*X*EXP(Y+X 
6 +T)+2*T*X*EXP(Y+X+T)+2*T**4*EXP(Y+X+T)+T**2*EXP(Y+X+T)+2)/(Y+X+ 
7 T)**2 
return 
end 

function true (x,y) 
real tol 
integer niters 
real t, deltat, alpha, tstart, tstop 
integer nstep, nsteps 
common /timedep/ t,deltat, nstep, alpha 
TRUE = Y+X+T 
return 
end 


	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321

