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Chapter 14 

Symbolic/Numeric Techniques 
in Modeling and Simulation 

Richard Zippelt 

Department of Computer Science 

Cornell University 

Ithaca, NY 14853 

Modeling and simulating collections of physical objects that are subject to a wide variety 
of physical forces and interactions is exceedingly difficult. The construction of a single 
simulator capable of dealing with all possible physical processes is completely impracti
cal and, it seems to us, wrong-headed. Instead, we propose to build custom simulators 
designed for a particular collection of physical objects, where a particular set of physical 
phenomena are involved. For such an approach to be practical, an environment must 
be provided that facilitates the quick construction of these simulators. In this paper we 
describe the essential features of such an environment and describe in some detail how a 
general implementation of the weighted residual method, one of the more general classes 
of numerical integration techniques, can be used. 

1. Introduction 

We are interested in building software systems that simulate reality-especially when 
several different physical phenomena are involved in the simulation. Depending on the 
nature of the objects in a scene, their behavior may be governed by rigid body dynamics, 
fluid flow, quantum mechanics or other families of laws. The forces that act on these 
objects are gravitation and electromagnetism for macroscopic systems, and weak and 
strong interactions for systems at atomic scales. In addition, many observable proper
ties of physical systems, including superconductivity, semiconductors and chemistry, are 
manifestations of statistical averages of detailed lower level behavior. These macroscopic 
phenomena are usually simulated through their own models, it being prohibitively ex
pensive to simulate from first principles. 

t This research was supported in part by the Advanced Research Projects Agency of the Department 
of Defense under Office of Naval Research Contract N00014-88-K-0591, the National Science Foundation 
through grant IRI-9006137, the Office of Naval Research through contract N00014-89-J-1946 and in 
part by the U.S. Army Research Office through the Mathematical Science Institute of Cornell University. 
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Figure 1. Simulation architecture. 
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Besides the computational costs, the complexity of dealing with all physical phenomena 
and mechanisms makes such a simulator ferociously difficult to build. Rather than build 
such a general purpose simulator we propose a new approach: to build special purpose 
simulators tuned for a particular configuration of physical objects and where a particular 
set of physical phenomena are involved. Such a simulator should be less complex than a 
general purpose simulator, which must be prepared for any eventuality. The specialized 
simulator will have only to consider a known system of equations with known parameters. 
It will consist of more straight-line code and will have fewer conditions, and thus should 
be easier to tune for high performance/parallel computer architectures. However, each 
new problem configuration requires the creation of a new simulator. 

To make this endeavor practical, we are combining a wide array of techniques from 
artificial intelligence, computer algebra and compiler technology to provide an environ
ment that vastly simplifies the process of building special purpose simulators. In effect, 
one builds a "simulator generator" that crafts a custom simulator for a particular con
figuration of physical objects, or. scene. Such a system generates the particular set of 
differential equations that model the scene and converts these equations into a piece of 
code for the explicit equations that apply to the problem, as shown in figure 1. This 
approach has a number of advantages: 

• More sophisticated mathematical techniques can be used to generate the systems 
of equations to be solved. 

o Conformal mapping techniques can be applied to the non-linear differential 
equations to simplify and regularize boundary conditions. 

o Averaging and perturbation techniques can be applied to reduce the order of 
the equations. _ 

• Numerical techniques specialized to the equations being solved can be used. 
• Software can be retargeted to different computer architectures relatively easily. 

This new approach to simulation and modeling is replete with new problems to be 
studied and new technologies that need to be developed and applied. In this paper we 
sketch a general framework for simulation generation and consider some of the com-
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ponents in detail. It should be noted that we are sketching a simulation and analysis 
framework that is to be used not only for Newtonian mechanics but also for problems 
that are driven by electrodynamics, relativistic mechanics and/or quantum mechanics as 
well as aggregate models like solid state theory, galactic dynamics, chemical kinetics and 
fluid dynamics. Thus one should exercise caution when extrapolating from experience in 
just one simulation domain. . 

The process of performing a simulation is shown in figure 1. We begin with the ob
servable scene to be simulated. An observable scene is those properties of the system 
that can be observed and are independent of the physics used to model the behavior of 
the scene. Typically, this is the geometry and material properties of the objects in the 
scene. By applying the laws of physics to the scene, state equations are generated whose 
solution describes the evolution of the scene with time, within certain regions of validity. 
The state equations are then converted into code that numerically computes the scene's 
state changes. As time advances, the state equations may cease to be valid and must be 
changed. Similarly, the geometric or topological characteristics of the scene itself may 
change. These effects are indicated by the shaded "feedback" arrows in figure 1. 

The state of a physical system is determined by the values of a set of state variables, 
which may include a subset of the observable parameters of the objects in a scene. The 
result of applying the physical laws to a scene are a set of state equations that constrain 
the state variables over time. For instance, clocked boolean logic circuits have a finite 
set of state variables, each of which ranges over {true, false}. Time is modeled by a 
sequence of discrete events occurring at clock· edges and the state equations are boolean 
equations. For rigid b\dy dynamics, there is a discrete set of state variables that have 
continuous values, time is modeled as a sequence of irregularly spaced events and the 
state equations are ordinary differential equations. The state equations of fluid dynamics 
are partial differential equations. This can be viewed as an infinite number of ordinary 
differential equations, where there is one state variable for each point in the fluid. Thus 
there are an infinite number of state variables in this case. 

Once the state eq~ations of a scene have been generated (the middle box ·of figure 
1), general mathematical techniques can be used to convert them into· a form in which 
numerical information about their state variables can be effectively determined. Examples 
include conversions of ordinary differential equations into finite difference formulas by 
Runge-Kutta methods, or the conversion of partial differential equations into systems of 
linear equations by finite element methods. We call the process of converting a system 
of equations into an effective computational form a discretization. 

These computation structures can then be converte'd to actual programs (or codes) 
that numerically simulate the scene. If something is known about the architecture of 
the computer that will run the program then especially fast codes can be generated 
by symbolic elimination of variables, unrolling of loops or duplication of code. Each of 
these options may be appropriate because of cache sizes, vector processing structures or 
interprocessor communication costs. Other techniques of compiler theory are also appro
priate and should be carefully considered at this point. More radical transformations like 
changing the order of the discretization or the discretization method itself may also be 
appropriate (for instance, if the cache size is too small). The process of converting state 
equations into computational structures and then into executable code is indicated in 
the right half of figure 1. 
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This paper discusses each of these steps in the simulation process. In section 2 we 
discuss one approach to representing scenes, their components and the underlying physics. 
Once the state equations have been generated, they can be directly solved numerically, 
yielding the trajectory of the scene from a given set of initial conditions. The approach 
we are pursuing is discussed in some detail in section 4. 

However, ~ccasionally some property of the trajectory is of interest-not the trajectory 
itself. We argue that by using symbolic techniques, the state equations of the system can 
often be transformed into other equations whose solutions more precisely answer the 
questions being asked. Solving these transformed equations is often substantially easier 
than solving the original system. However, substantial (non-numeric computation) is 
required to produce the transformed equations. In section 3 we illustrate how averaging 
techniques can be applied to reduce the dimension of the problem being solved and more 
directly answer certain questions. This technique is classical, but we feel is representative 
of the type of reduction that will be valuable in the future and is made possible by the 
general framework being proposed. 

In the domain in which we are working (fluid dynamics), the state equations are partial 
differential equations. A wide variety of different methods are available for their numerical 
solution. Many of these methods can be subsumed within the general mathematical 
framework of weighted residual methods. Because we have access to the state equations in 
symbolic form, we can directly apply the weighted residual methodology to the differential 
equations of the problem to produce a computational structure based on a wide variety 
of different techniques including finite element, spectral and collocation methods. This 
approach is discussed in section 4. In section 4.1 we describe the general principles behind 
the weighted residual method. In section 4.2 we use the weighted residual method to 
produce a spectral method computational structure for a problem in fluid dynamics. 
This particular example illustrates the complexity of the codes generated in the study of 
turbulent fluid dynamics. 

In section 4.3 we give another illustration of the weighted residual method in fluid 
dynamics, but this time the result of the discretization process is not a system of linear 
equations, but rather a system of ordinary differential equations. This is another example 
of where symbolic techniques can be used to convert a numerical problem into a simpler 
one that more directly provides the desired answers. 

2. Scenes and Laws of Physics 

This section makes more precise what we mean by scenes and physical laws. Section 2.1 
discusses scenes while section 2.2 discusses the components of a physics and some of their 
functions. 

2.1. ScENES 

When describing a physical system that is to be simulated, we distinguish the observ
able properties and characteristics of the system from those properties and characteristics 
that are required by a particular physical model. The former are components of the ob
servable scene, while the later belong to the physical laws and models that are to be 
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applied to the scene. For instance, the charge, mass and position of an electron are com
ponents of the scene, but the electric field is a characteristic of a physical model that 
might be used to determine the effect of the electron on other charged particles. Fields in 
physics are not themselves directly observable. only through tht:ir effect on other objects 
can their existence can be ascertained. Determining the effect of one object on another is 
the purpose of a physics. Fields are artifices used to facilitate the physics itself. (Recall 
that general relativity replaces a gravitational field by bending of the fabric of space 
itself. For small masses these disparate mechanisms give the same predications.) 

Similarly, the "ether" of nineteenth century physics belongs to a set of physical laws, 
and is not intrinsic to the scene. Ether is posited by nineteenth century physics and is not, 
itself, observable. A more modern example is the wave function of quantum mechanics. 
It cannot be observed in the scene but is essential for a particular set of physical laws. In 
all of these cases the physics used to analyze the system imposes additional parameters 
(e.g. wave functions) or objects (e.g. fields or ether) as an aid in specifying the physics 
itself. These new quantities are part of the interpretation scene that is generated by the 
physics (see section 2.2). 

A scene consists of a number of objects (rods, resistors, fluids, etc.) and connections 
(hinges, electrical nodes, etc.) between them. The connections constrain the behavior of 
two or more objects in some fashion. For instance, a hinge between two rods requires that 
the rods remain connected, while an electrical node connecting the pins of two resistors 
ensures that the two pins always have the same potential. 

In addition, the objects possess a number of "observable" properties, e.g. the position 
and momentum of a particle. These properties are those aspects of the state of the object 
that may be observed in the scene, and thus are independent of the physics used to model 
the behavior of the scene. The observable properties may be redundant and/ or related by 
some equations. For instance, the observable properties of a particle include the particle's 
mass (m), position (r), velocity (v), momentum (p) and kinetic energy (T), where 

dr 
v = dt, 

p=mv, 

mv ·v p·p 
T=--=-. 

2 2m 

For some models of physics, like Newtonian mechanics, the observable parameters are the 
state variables used by the physics. That is, the observable position and momentum are 
actually the position and momentum of the object in the physics. In other models, e.g. 
quantum mechanics, the observables are derived from the their correspondents. That is, 
the quantum mechanical position and momentum of a particle are not interchangeable 
with the observable position and momentum of the particle. 

2.2. PHYSICS 

The properties of an observable scene are not necessarily appropriate for simulation. 
Instead, the physical laws translate the scene into one where the new scene's objects 
are described using state variables. For instance, a two-dimensional scene that consists 
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(x,y) 

Figure 2. Simple pendulum. 

of a heavy bob at the end of a rigid, massless rod whose other end is hinged (i.e. a 
two-dimensional pendulum) might have constitutive parameters of the length of the rod 
(£) and the mass of the bob (m)-see figure 2. The observable parameters in the scene 
might be the position of the bob ((x, y) E R 2). However, when formulating a simulation, 
one would probably use the deflection of the rod from vertical (0 E [-1r, 1r)) as the state 
variable of the system. The position of the bob can be derived from(} by 

(x,y) =(c., +isinO,cy +fcosO). 

Each set of physical laws acts similarly. It must construct from an observable scene an: 
interpretation scene that consists of objects, state variables that are appropriate to the 
physical model and the manifold structure on which the state variables lie. A correspon
dence also needs to be provided between state variables in the interpretation scene and 
quantities in the observable scene. The combination of the state variables, their manifold, 
and the correspondence we call an interpretation scene or just an interpretation. Exam
ples of interpretations are the generalized coordinates of Hamiltonian mechanics (which 
were used in the pendulum example) and the wave functions of quantum mechanics. 

The physical laws that apply to a scene are kept separate from the scene and should 
be expressed independently of their application to a particular scene. There should be 
one (or more) descriptions of rigid body dynamics and one (or more) descriptions of 
electrodynamics. These descriptions include the "laws of physics" (e.g. F = ma for rigid 
body dynamics, or Maxwell's equations), specifications of when the particular laws are 
applicable and procedural specifications of how to apply the laws to a particular scene. 

We call a set of physical laws a physics. Each physics has a limited range of applicability 
(until the Grand Unified Theory is discovered). Among the components of a physics is a 
specification of how forces and energies of objects in a scene can be computed. There are 
multiple physics's, some of which are compatible with each other over certain ranges of 
state variables and some of which are incompatible. For instance, Newtonian mechanics 
and classical electrodynamics are compatible for small masses and slowly moving macro
scopic particles. Electrodynamics merely introduces a new force, which is characterized 
by Coulomb's law. Quantum mechanics and general relativity seem incompatible. 
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A description of a physics thus consists of (i) the domains of validity of the physics, 
(ii) a means of generating an interpretation scene from an observable scene and (iii) how 
fields and energies are to be derived from the resulting interpretation scene. In order 
for two different physics to be combined there must be some commonality between the 
two physics. First and foremost, the interpretation scenes must be- somewhat compatible. 
This is one of the reasons why incorporation of quantum mechanics is so hard. In those 
cases where this type of mixing can be done the effects of the different physics are usually 
related through the energies of the objects in the scene. 

Though the physi<;s provides complete information about the constraints between the 
system's state variables, it does not provide a means of generating the state equations. 
We call such a mechanism which does generate the state equations form the constraints 
provided by the physics a formulation. Examples of formulations are Lagrangian and 
Hamiltonian mechanics. Both formulations provide a means of combining the fields and 
energies produced by the physics into a set of differential equations. Furthermore, notice 
that these formulation techniques can be used with several different physics, e.g. Hamil
tonian mechanics can be used to formulate both Newtonian and quantum mechanics once 
the potential and kinetic energies of the system are properly defined. 

The approach we have described in this section ensures that different physical consid
erations are dealt with separately. For instance, one should be able to simulate an electric 
motor by applying both rigid body dynamics and electromagnetics to a scene that con
sists of the rotor and stator of the motor, with the appropriate constitutive properties. 
We believe that greater modularity will result from this approach, although it places a 
premium on the symbolic techniques. 

3. Harmonic Balance 

When setting up a system of differential equations that models some physical situation, 
it is often easier to generate the equations in terms of state variables that are different 
from the ones that the user is really interested in. For instance, for a mech<).nical system it 
may be easiest to generate equations in terms of cartesian coordinates while the interest
ing behavior might be best expressed in terms of radial coordinates, or angular momenta 
or even averaged angular momenta. Each of these conversions can be performed after 
the numerical solutions are generated. This is the only approach possible when the state 
equations of the system are treated as a black box. However, when a simulator generator 
is used, the state equations are known to the simulator a priori and symbolic techniques 
can be used to perform this conversion before the integration process makes generating 
an accurate solution easier. 

To illustrate this approach we will use a more sophisticated type of coordinate change 
that also facilitates an averaging technique. Thus we will ultimately generate differential 
equations for the average values of the variables of interest. 

A large variety of simple oscillatory type systems can be modeled by differential equa
tions of the form 

x = y, 

iJ = -x + fh(x, y). 
(3.1) 
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Figure 3. van der Pol oscillator. 

For h(x, y) = (1 - x2 )y we have the van der Pol equation (van der Pol, 1926), for 
h(x, y) = (1 - y2 )y the Rayleigh equation (Rayleigh, 1883) etc. When f = 0, (3.1) 
reduces to a simple harmonic oscillator, whose solution is: 

x(t) = ro cos(t + t/>o), y(t) = x(x) = -rosin(t + t/>o), (3.2) 
where ro and t/>o are constants set by the initial conditions. In the x-y plane (the phase 
plane), the solutions are circles centered at the origin. The term fh(x, y) of (3.1) acts as 
a perturbing non-linear damping factor on the solution to the harmonic oscillator. An 
example of the behavior of this damping factor can be seen from the van der Pol equation 
where h(x, y) = (1 - x2)y: 

x= y, 

iJ = -x + f{1 - x 2)y. 
(3.3) 

The phase plot of the van der Pol equation, for f = 0.6 and various initial conditions, is 
shown in figure 3. 

In the phase plane, (3.3) has a stable limit cycle of radius approximately 2. If the 
initial state of the system lies outside the limit cycle, the system will cycle inwards, 
asymptotically approaching the limit cycle. If the starting point is inside the limit cycle 
the system will oscillate outwards towards the limit cycle. From a physical point of view 
we might have two basic questions: 

• What is the average amplitude of the limit cycle? 
• How quickly does the system converge to the limit cycle? 
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We can study the behavior of the non-linear oscillator by assuming the solution is of 
the form (3.2) but allow the constants to be time varying functions, i.e. 

x = r(t) cos(t + ¢(t)), 

y = r(t) sin(t + ¢(t)). 

Substituting these expressions into (3.1) gives the following system of equations 

rcos(t + ¢)- sin(t + ¢)(1 + ~) = rsin(t + ¢), 

rsin(t + ¢) + cos(t + ¢)(1 + ~) = Eh(r cos(t + ¢), rsin(t + ¢)). 

When solved for rand~. which must be done symbolically, we have 

r = Eh(r cos(t + ¢), rsin(t + ¢)) sin(t + ¢) 
. { 

¢ = --h(r cos(t + ¢), rsin(t + ¢)) cos(t + ¢). 
r 

The r component of the solution to this system of equations is the amplitude of the 
oscillator, which is closer to what we are looking for. In a physical system we probably 
don't care about the phase information, i.e. the ¢ component. We are more interested in 
the asymptotic behavior of the system. This can be obtained by averaging these equations 
over one oscillation, i.e. t to t + 21r: 

d(r} f [
27r 

dt = 
2

7r Jo h(rcos(t+¢),rsin(t+¢))sin(t+¢)dt, 

d(¢} 127r 
-d- = --

2
f h(rcos(t + ¢), rsin(t + ¢)) cos(t + ¢) dt. 

t 1rr 0 

In the r-¢ coordinate system, the van der Pol equation becomes 

r = fr(1- r 2 cos2(t + ¢)) sin2(t + ¢) 

~ = E(1- r 2 cos2(t + ¢)) sin(t + ¢) cos(t + ¢) 

When, averaged, the equation for r becomes 

(3.4) 

d(r} =~ {
2
7r(r2cos2(t+¢)-1)rsin2(t+¢)dt=-f((r}

3

- (r}). (3.5) 
dt 21r } 0 8 2 

The solution of this equation is precisely the evolution of the "average" amplitude of the 
oscillation without any additional information. Notice that by averaging out the phase 
information we have been able to reduce the order of the equation by one. In figure 4 we 
have shown the evolution of a solution of (3.4) for two starting points, one inside and 
one outside the limit cycle, using a solid line. The dotted lines indicate solutions of the 
averaged equation (3.5) from the same two starting points. The averaged equation (3.5) 
has two advantages over (3.4). First, the averaged equation is of dimension 1 while the 
original system was of dimension 2, so the numerical integration will be computationally 
easier. Second, notice from figure 4 that the averaged solution is much smoother than 
than the original equation, so larger time steps can be taken in the numerical integration 
process, which again speeds up the numerical computation. 
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Figure 4. Amplitude of van der Pol oscillator: raw and averaged. 

The two questions raised about the system, that of the amplitude of the limit cycle and 
of the rate of approach are. easily answered from the averaged equation. On the stable 
limit cycle of the system, {r) will vanish, so by solving 

0 = -f ( {rt -{;)) 
we see that the average radius of the limit cycle is 2, which is independent of the initial 
conditions. This can also be observed from figure 4. 

The rate at which a solution approaches the limit cycle can be determined by solving 
(3.5): 

This type of perturbation analysis has been used in celestial mechanics since the time of 
Laplace and Lagrange. The particular problem we consider here, the behavior of solutions 
of equations of the form (3.1), was discussed in some detail in Poincare (1892). More 
recently Krylov and Bogoliubov (1947) have demonstrated the use of averaging techniques 
in a wide variety of problems. Rigorous results on the validity of averaging techniques 
are discussed in Sanders and Verhulst (1985). 
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4 .. Weighted Residual Methods 

For a large number of physical simulation problems, the state equations are partial 
differential equations. Though the number of techniques for solving these systems can 
be bewildering, the most important techniques can be divided into two major classes: 
finite difference algorithms and weighted residual methods. We have decided to focus on 
weighted residual methods because most of the techniques of interest in our application 
area are of the weighted residual type. 

There are a vast number of implementations of numerical algorithms based on particu
lar weighted residual methods, most often for particular partial differential equations, but 
to our knowledge there have been no previous attempts to build a system that generates 
a numerical solver for a wide class of weighted residual methods. 

We describe the basic principles behind the weighted residual method in section 4.1. 
In section 4.2 we give a brief illustration of how the weighted residual method is used 
to generate particular numerical codes in fluid mechanics. Finally, in section 4.3 we 
use the weighted residual method, along with a number of other ideas, to reduce some 
questions about the boundary layer of a fluid flow to questions about a system of ordinary 
differential equations. 

4.1. GENERAL APPROACH 

Let 

Lu=f (4.1) 

be a partial differential equation, where Lis a partial differential operator, f is a known 
function (often representing the boundary conditions) and u is a function of { x1, ... , Xm}. 
The weighted residual method assumes there exists a (possibly infinite) set of trial func
tions { tPi} such that, for some choice a;, 

u = L a;¢; (4.2) 
05,i<N 

is an approximation to u,the solution of (4.1). The¢; are functions of some subset of 
{ x1, ... , Xm} while the ai are functions of the remaining variables. Substituting ( 4.2) 
into (4.1) we have residual error . 

RE(u) = L ( L a;t/J;) -f. 
05,i<N 

The goal of a weighted residual method is to choose the a; in a fashion that minimizes 
RE(it) in some global 'ense. 

A set of equations for the a; can be deduced by choosing a set of weighting functions, 
Wj and requiring the inner product of RE( it) with the weights to vanish, i.e. 

j wiRE( it) dV = o (4.3) 
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If the cp; are functions of all of the variables { x1, ... , Xm}, then the resulting equations 
are algebraic in the aj. When L is a linear differential operator, the resulting equations 
are linear. Applying L to the components of the expansion and rewriting (4.3) we have 

L a; j Wj Lcp; dV = j wj/ dV 
05,i<N 

For certain operators L and known cp; and Wj the integrals above can be tabulated. Thus 
the bulk of the symbolic computation inherent in the reduction of ( 4.3) to systems of 
equations in the a; can be performed a priori. However, if the cp; and Wj are supplied by 
the user and, especially if L is non-linear, then symbolic computation is unavoidable in 
the application of the weighted residual method. This typically limits the applicability of 
the weighted residual method, but see Wang et a/. (1984) and Wang (1988) for examples 
of how this can be automated for the finite element method. 

A wide variety of different integration schemes fall into this general framework. If the 
Wj are chosen to be the same as the cp; we get a Galerkin projection. This is especially 
convenient if the "i/;; are orthogonal and eigenfunctions of L. The system oflinear equations 
are then diagonal. The resulting technique is called a spectral method. The most common 
spectral method chooses c/Jk = eikx. 

The finite element method discretizes the computational domain n into a number of 
elements, Ql, ... , QN. It then chooses the cp; to be continuous functions that are zero 
everywhere except within n;. A Galer kin projection then gives the equations for the a;. 

In general, determining the linear equations or ordinary differential equations that 
need to be solved from ( 4.3) is a rather painful process that must be performed by hand. 
By taking advantage of methods from symbolic computation we can largely automate 
this process. 

When the cp; involve a subset of { x1, ... , Xm}, ( 4.3) is a system of ordinary differential 
equations. Often the cp; are functions only of the spatial variables and the ai are functions 
of time. This is the situation in the two examples considered here. In section 4.2 the partial 
differential equation is first discretized in time and then the weighted residual method 
is applied, producing a system of linear equations that need to be solved. In section 4.3, 
the weighted residual method is applied directly to the spatial variables resulting in a 
system of ordinary differential equations for the a;. 

4.2. NUMERICAL EXAMPLE 

In this section we illustrate how the weighted residual method is used to produce a 
numerical code for a problem .that arises in the study of turbulent channel flow. This 
example illustrates the complexities that arise in practical applications of the weighted 
residual method. A simplification of one of the equations that arose in the study of 
turbulence in a channel flows by Kim et a/. (1987) is 

ag(x,y,t)- h() _!_\72 
at - g + Re g, (4.4) 

where x and y are the spatial dimensions of the problem (only two are used in this 
illustration, although three are used in the real problem). his a known non-linear function 
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f(xn) 

f(xn+1) 

f(xn+1) + f(xn) 
2 

~ [3/(xn) - f(xn-1)] 

1
1
2 

[23/(xn)- 16/(xn-1) + 5/(xn-2 )] 

Explicit Euler 

Implicit Euler 

Crank-Nicolson 

2nd order Adams-Bashforth 

-3rd order Adams-Bashforth 

Figure 5. Discretization techniques for x(t) = f(x). 

of g and other functions that occur in the problem. In practice it can be a fairly complex 
expression and more than one partial differential equation be involved. 

In solving this problem, discretization must occur in three different dimensions-time 
and the two spatial dimensions. Three different schemes will be used: An implicit finite 
difference scheme for time (t), a spectral method for the x dimension and a Galerkin 
type method using Chebyshev polynomials for they dimension. 

These three schemes are used in three successive steps. First, time is discretized and 
the value of g(x, y, t) at the nth time step is denoted by gn(x, y) = g(x, y, n t!..t). Sec
ond, gn(x, y) is discretized in the x dimension using Fourier expansion with coefficients 
g/:(y). Finally, g/:(Y) is discretized using Chebyshev polynomials in the y dimension with 
coefficient Y/:,;. That is, 

gn(x, y) = L g/:(y)e2trikx/L.,, 
0-:5k<N., 

L L u'k,;T;(y)e2trikx/L.,. 
0'5k<N., 0'5j<Ny 

At this point the coefficients are numbers, and if done properly they are solutions of linear 
equations. Once these linear equations have been solved we can recon~truct g(x, y, t) by 
summing the series. 

Each of these transformations can be automated using symbolic techniques. In practice, 
their application is not completely straightforward. The following paragraphs illustrate 
this with some comments on the implementation of these techniques using symbolic 
computation. 

The first step is to perform the time-wise discretization. We denote by gn = gn(x, y) 
the function that corresponds tog at the nth time step. The most straightforward dis
cretization would be the explicit formula 

gn+l 9n 1 
;:__--:---=-- = h(gn) + -\72gn 

t!..t Re 
But this is known to be relatively unstable. 

Figure 5 gives a number of different discretization techniques that can be used for 
ordinary differential equations. For this particular problem none of them is completely 
satisfactory. For instance, the explicit methods (Bashforth and Adams, 1883; Gear, 1971) 
are not sufficiently stable when applied to the entire equation. The implicit methods 
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require the solution of a non-linear equation at each time step (because of the nonlinearity 
of h) and are thus too costly. 

The solution is to use an explicit scheme on the nonlinear terms and an implicit scheme 
on the linear terms. Using the second order Adams-Bashforth formula for the linear terms 
and the formula of Crank and Nicolson (1947) for the linear terms yields 

gn+l 9n 1 1 
.::.__"'7""---=-- = _ (3h(gn) _ h(gn..:l)) + _ (\72gn+l + yr2gn). 

M 2 2~ 

In a symbolic manipulation system this process is quite simple. The differential equation 
is first converted to a sum of terms form. Each term is then examined to see if it is linear 
in g. If so, an implicit formula is applied to each term, otherwise an explicit one. The 
results of these replacements are then added together and simplified. 

The terms that involve gn+l can be isolated on the left hand side to give 

M M M 
gn+l _ -\72gn+l = _ (3h(gn) _ h(gn-1)) + 9n + -\72gn. (4.5) 

2Re 2 2Re 
Again the symbolic processing involved is straightforward, each term is examined and 
placed on one side of the equation or the other based on its dependence on gn+l. 

At a given time step, each of the terms on the right hand side of ( 4.5) is known and 
can be computed directly. The next step is to compute the Fourier transform of this 
equation, eliminating the functional dependence on x. 

gn(x, y) = L g~(y)e21fikx/L,. 
O$k<N, 

Thus the kth mode the Fourier transform of the left hand side of (4.5) is 

:Fk{ (1- fit \72) gn+l} = gn+l + fit (411"2gn+l (J:_) 2- {)2g~+l) 
2Re k 2Re k L., oy2 

(4.6) 

This equation is finally discretized in y by expanding jj~(y) in terms of Chebyshev 
polynomials: 

g~(y) = L ?i~.jTj(Y), 
O~j<Ny 
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where ar,; are numbers. The Chebyshev expansion of the left hand side of (4.6) is 

-n+l + ~ (4 2 (~) 
2 

_ .!:..._) -n+l 
gk 2Re 7r L, f)y2 gk 

"" gn-f:lT.· (y) + flt ( 411"2 (j?_) 2 

T.· (y)gn-f:l + d
2
TJ (y) gn-f:l) 

L....t k,1 1 2Re L 1 k,1 dy2 k,1 
09<~ X . 

The last term in this sum causes some problems because it is not expressed as a 
sum of Chebyshev polynomials, but as a sum of their derivatives. However, derivatives of 
Chebyshev polynomials can be expressed as a sum of Chebyshev polynomials by repeated 
application of the formula 

r::+2(x) - r::(x) + r::_2(x) 
(n + 1)(n + 2) (n2 - 1) (n- 1)(n- 2) = 4Tn(x), 

or by solving the tridiagonal system it implies. At this point, we have converted the 
problem of advancing time in ( 4.4) to solving systems of linear equations and computing 
Fourier and Chebyshev transforms. 

For other basis and weight functions, and for other differential equations, very similar 
approaches are used. Simple symbolic methods (arithmetic operations and some simpli
fication) are used to reduce the projection process to a sequence of integral. In the case 
discussed here, all of the integrals could be performed by table lookup. In the next section 
the integrals will have to be performed numerically. 

4.3. PROPER ORTHOGONAL DECOMPOSITION 

By discretizing the spatial dimensions but not the time dimension, we can reduce the 
N avier-Stokes equations to a system of ordinary differential equations. If the proper basis 
functions are chosen and sufficient terms are used the dynamical behavior of the ODEs 
should closely approximate that of the N avier-Stokes equations. 

Lumley (1967) has suggested using this approach to study the behavior of the turbulent 
boundary layer of a fluid moving over a flat plate. Within the boundary layer bursts can 
be observed that are spatially and temporally somewhat periodic (Kline et al., 1967). 
It would be interesting to know if these periodic phenomena manifest themselves in the 
ordinary differential equations where more powerful mathematical techniques can be used 
to analyze their behavior. 

This reduction and detailed study of the resulting dynamical systems was originally 
performed by Aubry et a/. (1988). As we shall see, the ordinary differential equations 
that result are extremely complex and are best generated by symbolic techniques. 

Fluid flow is governed by the N avier-Stokes equations. In the absence of external forces 
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Figure 6. Coordinate system for a channel. 

the dimensionless form of these equations is 

{)y ( 1 2 
-
0 

+ v · V')v = -V'1r + -\7 v, 
t Re (4.7) 

V'·v=O 

where v denotes the velocity field of the fluid and Re is the Reynolds number of the 
fluid. Flows with small Reynolds numbers tend to be rather steady, while flows with 
large Reynolds numbers (typically greater than 2300) are generally turbulent. In order 
to write the equations in a dimensionless form, characteristic lengths need to be defined 
in each of the three dimensions. We denote these different characteristic lengths by L 1 , 

L2 and La. 

If f(xl, x2, xa) is function of position in the channel, we will denote by (!) its spatial 
average in a plane parallel to the walls of the channel: 

(f(x1,x2,xa)) = L
1

1
La J f(xl,x2,xa)dxldxa, 

where L1 and La are characteristic dimensions in the x1 and xa directions respectively. 
Within this plane the turbulent flow is relatively homogeneous. Variations occur in the 
orthogonal direction. Thus (f(x1, x2, xa)) is a function of only the distance from the wall, 
X2. 

The streak structure that we are interested in is not a function of the mean velocity 
of the fluid, only its fluctuations. Denoting 

(v) = (U(x2), 0, 0) = U, 

we can determine U(x 2 ) exactly: 

U(x2) = Re 1312 

(u1 u2) dx~ + Reu} (x2- ~), (4.8) 

where ur is the dimensionless wall shear velocity and H is the half height of the channel. 
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Applying this to ( 4. 7) we get the Reynolds averaged N avier-Stokes equations: 

dui OUi [ ("'
0 

2 ( X~)] dt + Re ox
1 

lo (u1 u2) dx2 + ur x2 - H 

[ 
2 ( 2x2)] ~ ({)ui ( OUi )) + Re u2 8il (u1 u2) + uT 1- H + 

1
fu

3 
Uj OXj - Uj OXj ( 4.9) 

1 2 
=-Pi+ -\7 u;. 

' Re 
These are the equations to which we will apply the weighted residual method. 

Notice that, while the Navier-Stokes equations are quadratic, these equations for the 
velocity fluctuation are cubic due to the quadratic behavior of the mean velocity in ( 4.8). 

4.3.1. EIGENFUNCTION PROJECTIONS 

Because the flow is homogeneous in the plane parallel to the wall, we can use a Fourier 
expansion in the x1 and x 3 directions (parallel to the wall). We assume we are given 
a set of basis functions in the inhomogeneous direction. These basis will not be known 
numerically, but rather will be provided numerically. These basis functions are called the 
"empirical eigenfunctions". Expanding the velocity fluctuation u just along x 1 and x 3 

dimensions we have 

Each of the u(x2, t; kt. k3 ) can be expanded in series based on the empirical eigenfunc
tions: 

00 

u(x2, t; kl, ka) = l: a~~t(t)¢~~t(x2)· 
n=l 

Combining these two expansions gives the following representation of the velocity fluc
tuation field: 

(4.10) 

Notice that (4.10) is actually three equations, one for each component of u. We denote 

the components of ¢~~L by 

A,.(n) _ / -~.(n) -~.(n) -~.(n) ) 
'+'k 1 k3 - \ 'l'lk 1k 3 ' '1'2k 1k 3 ' '1'3k 1k 3 ' 

In addition we use the following identity, which can be computed by almost any symbolic 
system. 

e L1 1 1:3 3 dx1dxa = 1L,1L' 27ri( 1'.1., + Pa"' ) { £1 La if Pl = Pa = 0. 
o o 0 otherwise. 

( 4.11) 
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Rather than compute the projection of the entire differential equation, we will illustrate 
the technique using the following term from ( 4.9), 

2 au; ( x~) ReuT-- x2-- . 
OX! H 

We can ignore the Re u} term since it is a constant. 

Our goal is to compute ftf
2 

such that 

OUj (x _X~) = 1 ~ ~ tcn) e2,-i(.ftx 1 +?,-x3 )«fo(n) (x ). 
OXt 2 H VLtL3 L...J L...J k,k3 k,k3 2 

n=l k,=-oo 
k3=-oo 

(4.12) 

The Jtf
3 

are functions of the a~~L. They are obtained by taking inner products (inte
grals) of ( 4.12) with the orthonormal basis functions. The first two inner products are 
Fourier transforms, that is 

f- = ~ {L 3 (-1- {L' OUi (x _ X~) e-27rk 1 xi/L 1 dx ) e-2d3x3/L3 dx 
k,k3 V£3 Jo VLl Jo 8xt 2 H 1 3· 

The final inner product takes the form 

The final term of U is a polynomial in x 2 and is easily dealt with. The Fourier transform 
gives 

The result of many similar symbolic computations is the system of ordinary differential 
equations shown in the appendix. 

4.3.2. NUMERICAL COMPUTATION 

Having produced a symbolic system of ordinary differential equations like that shown 
in the appendix we must still compute each of the coefficients. This can itself be a rather 
complex undertaking without the proper abstractions. Consider, for instance, a piece of 
the sample term computed in the last section: 

a(l) {L
2 

(x2 - x~) 1/J~I) 1/J~n)* dx2. 
k,k3 Jo H •k 1 k 3 •k 1 k 3 



Symbolic/Numeric Techniques in Modeling and Simulation 341 

Real Imag Real Irnag Real Irnag 

Figure 7. Memory structure of an empirical eigenvector. 

The product of the two eigenvectors ¢.~/) ¢C,.n)• really means the dot product: 
klk3 klk3 

Furthermore, each of the components of the eigenvectors are complex valued functions 
that are only known by their numerical values at selected points. 

To understand the complexity of this computation, consider its implementation in a 
conventional programming language like C. The sampled functions that make up each 
eigenvector would be represented as arrays of the Nsamp values of the sampled functions. 
Since complex numbers are not primitive in G, complex valued functions are represented 
by pairs of sampled functions. Each eigenvector would be a triple of complex valued 
sampled .functions. This is illustrated in figure 7. 

Using this representation, the expression ¢<,.k1) k ¢,~n)• , which only involves an inner 
1 3 klk3 

(dot) product; and the complex conjugation of the vector ¢,~n) would expand into the 
klk3 

following pseudo-C code: 

double Ans[2][1Vsamp]; 

for (j = 0; j < lVsamp: j++) { 
for (k = 0; k < 3; k++) { 

Ans [0] [j] = Ans [0] [j] + cp~~)ka [k] [OJ [jJ X c/J~1 k3 [k] [OJ [jJ 

} 

+ cp~t!ka [kJ [1] [jJ X c/J~lka [kJ [1J [jJ; 

Ans [1J [jJ = Ans [1J [jJ - c/J~?ka [k] [0] [jJ X ¢~1 k3 [kJ [1] [j] 

} 
+ cp~~)ka [k] [1J [jJ X cp~1 k3 [kJ [OJ [jJ; 

The most straightforward approach is to expand the equations of the appendix into 
similar code. This is extremely time-consuming, and produces an enormous mass of 
code that is difficult to understand, hard to verify and almost impossible to modify if 
different turbulence models are introduced or if the original partial differential equations 
are modified. 

The usual solution to this problem is to divide this computation into subroutines that 
deal with the different pieces ofthe differential equations, e.g. routines for arithmetic with 
complex valued sampled functions, arithmetic with vectors of complex valued sampled 
functions and integration of complex valued sampled functions. 
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We have taken a different approach. Over the past decade advanced computer alge
bra systems have been constructed using a "functorial" or "categorical" approach, as 
discussed in Jenks and Trager (1984). One of the tents of this approach is that math
ematical objects like polynomials should be implemented as parameterized objects over 
the relevant ground structures (the coefficient domains). This approach is greatly simpli
fied by the use of object-oriented programming languages like the Common Lisp Object 
System (Bobrow et a/., 1988), and C++ (Ellis and Stroustrup, 1990). Weyl is an exam
ple of these object-oriented languages that can be used in this manner. Zippel (1990) 
describes some of the issues that arise from this approach. 

Among the functorial structures that are built using this approach are vectors, ma
trices, polynomials and series expansions. The base structures typically include integers, 
hardware-supported floating point numbers and arbitrary precision floating point num
bers. To deal with this problem we have extended Weyl to include a new type of a 
functorial structure, which we call a "sampled function". 

A sampled function is a function from an interval of R to a field [( that is represented 
by its value at 'certain points in the interval. At other points the function's value is 
automatically interpolated (or extrapolated) from the values at which it is known. This 
structure is implemented functorially so the field I< can be any field structure dealt with 
by Weyl including the real and complex numbers. Furthermore, the code required for the 
interpolation process and for performing arithmetic with sampled functions needs to be 
written only once. 

Like all objects in Weyl, arithmetic with sampled functions can be performed using 
the usual Lisp operators, including conjugation. The eigenvectors ¢~:L are just (Weyl) 
vectors of sampled functions. Being vectors, the dot-product operator can be used to 
multiply them. The whole expression can thus be computed as shown below: 

(* (var l kl k3) 
(integral (* (make-sampled-function 

(lambda (x) (- x (/ (* x x) H))) 
(dot-product (eigen l k1 k3) 

(conjugate (eigen n k1 k3)))) 
:lower-bound 0 
:upper-bound X2)) 

Notice that the Weyl code is a direct translation of the more mathematical form given 
above. With this approach, the code to generate the equations in the appendix requires 
only a couple of pages and is written in a manner that allows a fluid dynamicist to verify 
it. 

However, we are still not quite finished. One of these ordinary differential equations, 
when using only a single eigenfunction, has the form 

al = 6.1al + 2.1ala; + 1.1a2a; + 0.4a3a: + 0.3a4a5 
(4.13) 

- (3.0alai + 3.7a2a; + 2.4a3a; + 1.3a4a: + 0.6asa5)al, 

where the coefficients are specified to only one decimal place for conciseness. The a; are 
complex valued functions so, to numerically integrate the equations, each a; must be 
converted to a pair of real valued functions. For ( 4.13) this gives the following pair of 
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Figure 8. Typical amplitudes. 

equations. 

:i:1 = 6.1xl + 2.1(x2x1 + Y2Yt) + 1.1(x3x2 + Y3Y2) + OA(x4x3 + Y4Y3) 

+ 0.3(xsx4 + YsY4)- 3.0(xi + yi)x1 + 3.7(x~ + ynx1 

+ 2.4(x~ + y~)x1 + l.3(x~ + y~)x1 + 0.6(x~ + y~)x1, 

Yl = 6.1yl - 2.1(x2Yl - Y2X1)- 1.1(x3Y2 - y3x2) - OA(x4y3- Y4X3) 

- 0.3(xsY4- y5x4)- 3.0(xi + yi)y1 + 3.7(x~ + y~)Yt 

+ 2.4(x~ + y~)Yl + 1.3(x~ + y~)Yl + 0.6(x~ + y~)Yl· 

200 

Currently, these equations are integrated using the LSODE package (Hindmarsh, 1983; 
Petzold, 1983). A typical integration is shown in figure 8. There are periodic bursts of 
behavior, where the equations become very stiff. The Jacobians of the equations are 
currently generated symbolically to speed the calculation during the stiff regimes. Since 
the right-hand sides of these equations are polynomials, symbolic differentiation does not 
cause the expressions to grow and minimizes some of the benefits that accrue by using 
automatic differentiation (Kedem, 1980; Rail, 1981; Griewank, 1989). 

The bursts of activity in figure 8, when converted into a velocity fluctuation, correspond 
to the periodic formation of the counter-rotating vortices. Thus the reduced system of 
ordinary differential equations has the same qualitative behavior as the far more complex 
Navier-Stokes equations. We are currently studying how to make this correlation more 
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quantitative and how the correlation with physical behavior depends upon the number 
of empirical eigenfunctions used. 

One should note that for a modest number of empirical eigenfunctions, the size of the 
system of ordinary differential equations becomes very large and their formation and 
manipulation without symbolic techniques would be impractical. 

5. Conclusions 

In this paper we have advocated the construction of special purpose simulators for 
particular scenes, rather than building a general purpose simulator. Towards this end, 
we have discussed one possible approach to the construction of an environment which 
would enable the construction of such simulators. We have particularly focused on the 
use of symbolic techniques to transform differential equations into executable code. 

We have outlined two major areas in which symbolic computation can be effectively 
used in numerkal computations: (i) transforming differential equations into equations 
that more accurately address the questions being asked of the system under study, and 
(ii) the formation of the numerical integration code itself from libraries of technique frag
ments. Both of these techniques suggest different organizations of symbolic computation 
systems than we currently have available. 
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Appendix. Final System of ODEs 

, 1 ( l: ) ~ (m) (q) + ~L 1- uk1=0 L....,; ak'k'ak -k'k -k' X v Lil L/3 k -o 1 a 1 1 a a 
a- k~=-oo 

Re 

n,= { 

00 

L: 
k~ =O,k~=O 

1=1 ,m=l ,q=l 

211"ik! if I= 1 £1 
d 

if/= 2 
d:c2 
211"ika if I= 3 £1 

k~=-oo 
m=l,q=l 

2/ r Ak1ka(f) = 2W(f) 

4W(f) 

l ,,,,,, -•:1 
Lt 

n~ = __!!__ 
d:c2 
211"i(ka-k~) 

La 

if k1 = ka = 0 

if k1 = 0, ka > 0 

if k1 > 0, ka = 0 

if k1 > 0, ka > 0 

if I= 1 

if I= 2 

if I= 3 
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