
Symbolic and Numerical
Computation for

Artificial Intelligence
edited by

Bruce Randall Donald
Department of Computer Science

Cornell University, USA

Deepak Kapur
Department of Computer Science

State University of New York, USA

Joseph L. Mundy
AI Laboratory

GE Corporate R&D, Schenectady, USA

Academic Press
Harcourt Brace Jovanovich, Publishers

London San Diego New York
Boston Sydney Tokyo Toronto

ACADEMIC PRESS LIMITED
24--28 Oval Road

London NW1

US edition published by
ACADEMIC PRESS INC.

San Diego, CA 92101

Copyright © 1992 by
ACADEMIC PRESS LIMITED

This book is printed on acid-free paper

All Rights Reserved
No part of this book may be reproduced in any form, by photostat, microfilm or any other

means, without written permission from the publishers

A catalogue record for this book is available from the British Library

ISBN 0-12-220535-9

Printed and Bound in Great Britain by
The University Press, Cambridge

Chapter 15

Symbolic and Numeric Computation:
the Example of IRENA

James H. Davenport

School of Mathematical Sciences

University of Bath

Claverton Down, Bath BA2 7AY, U[(

jhd~maths.bath.ac.uk

Michael C. Dewar

School of Mathematical Sciences

University of Bath

Claverton Down, Bath BA2 7A Y, U[(

mcdGmaths.bath.ac.uk

Michael G. Richardson

Numerical Algorithms Group Ltd.

Wilkinson House, Jordan Hill Road, Oxford OX2 BDR, UK

miker~nag.co.uk

Historically symbolic and numeric computation have pursued different lines of evolution,
have been written in different languages and generally seen to be competitive rather
than complementary techniques. Even when both were to used to solve a problem, ad
hoc methods were used to transfer the data between them.

We first discuss the reasons for this dichotomy, and then present IRENA, a system be
ing developed by the authors to present an integrated environment with all the facilities
of Reduce combined with the functionality of the NAG FORTRAN library.

Not only does IRENA allow the Reduce user to make calls to the NAG Library in
teractively, it also converts a natural input representation to the required unnatural
FORTRAN one and vice-versa on output, which results in a much more intuitive inter
face. Many parameters have default values and so need not be supplied by the user.

348 J.H. Davenport, M.C. Dewar and M.G. Richardson

1. Introduction

"Computation" can mean different things to different people at different times. Indeed,
it was only in the 1950s that "computer" came to mean a machine rather than a human
being. The great computers of the 19th century, such as Delaunay, would produce formu
lae of great length, and only convert to numbers at the last minute. Today, "compute"
is largely synonymous with "produce numbers", and often means "produce numbers in
FORTRAN using the NAG library". However, a dedicated minority use computers to
produce formulae. Generally the two methods have been viewed as alternatives, and
indeed the following table shows some of the historic differences:

Common language
Best machine
Software collection

' Mode of computing

Numeric Symbolic

FORTRAN
Supercomputer
Library
Batch

Lisp
Workstation
System
Interactive

Of course there are exceptions to these rules. MAPLE and MATHEMATICA are writ
ten in C, and MATHLAB is an interactive package of numerical algorithms; but in
general it has been the case that computer algebra systems were interactive packages run
on personal workstations, while numerical computation was done on large machines in a
batch-oriented environment.

The reason for this apparent dichotomy is clear. Numerical computation tends to be
very CPU-intensive, so the more powerful the host computer the better; while symbolic
computation is more memory-intensive, and performing it on a shared machine might be
considered anti-social behavior by other users.

Hardware has, of course, come a long way since these lines were drawn. Most researchers
now have access to powerful workstations with a reasonable amount of memory and high
quality display devices. Graphics have become more important to most users and, even if
numerical programs are still run on the departmental supercomputer, they are probably
developed and tested on the individual's desk-top machine. Modern hardware is thus
perfectly suited for both symbolic and numeric applications.

Not only has the last decade seen a revolution in hardware, this in its turn has led to
major changes in the kinds of software available. Gone, thankfully, are the days when
to exploit a computer effectively required deep knowledge of FORTRAN; modern pack
ages are graphically-oriented with interactive front-ends driven by mice and icons. Thus
computers have become more accessible and approachable, and with that has come a
demand for user-friendly software to investigate and solve mathematical problems. This
has lead to the growth in popularity of systems like Mathematica, while that of the large
numerical libraries like NAG and IMSL has declined in relative terms (although absolute
usage is still increasing). -

Symbolic and Numeric Computation: The Example of IRENA 349

2. The Symbolic/ Numeric Interface

Problem solving often has three phases:

1 model the problem symbolically;
2 solve the problem numerically; and
3 analyze and display the results,

where all three phases are accomplished with a computer it is quite common to use two
or three systems. The user uses a computer algebra system to derive a set of expressions
which represent his or her particular problem. Typically, these are then converted into
FORTRAN and somehow pasted into a program which probably calls NAG or other
library routines to determine a solution. The results might be graphed or printed directly
by the FORTRAN program, read back into the algebra system for this purpose, or another
system might be used altogether.

Most computer algebra systems have a fairly basic method of translating algebraic
expressions into FORTRAN. Useful enhancements include the ability to segment large
expressions into statements of less than twenty lines, and perform some optimization on
the generated code. Many different problems in a wide range of disciplines have been
solved with these simple techniques (for surveys see Fitch, 1979; Ng, 1979). However an
important step forward was the development of the GENTRAN package for Macsyma
(Gates and Wang, 1984) and Reduce (Gates, 1985). GENTRAN has many capabilities,
but the most notable ones are the ability to translate whole program segments into the
target language (FORTRAN, RATFOR or C), and to "flesh-out" skeletal programs or
templates provided by the user. A user wishing to solve several cases of the same basic
problem can write a general program once, and let GENTRAN fill in the problem-specific
parts automatically.

This latter facility has been used in the development of systems which take as input
a symbolic description of a problem, do the necessary analysis and manipulation, and
gene~:ate as output a "ready-to-run" FORTRAN program [e.g. FINGER (Wang, 1986)
-a pac'kage_fQr finite element analysis]. The FORTRAN must still be compiled and run
by hand, and the results processed by the user.

Computer algebra systems have many features which assist in the presentation and
analysis of data. Most have some form of graphical capability and can convert expres
sions into a typesetting language like Tf;;X. The missing link is the ability to perform
numerical computations within computer algebra systems. While some basic algorithms
are available, no system can remotely begin to match the coverage and versatility of the
NAG Library which contains over 900 user-callable routines in a wide variety of areas:
quadrature, differential equations, linear algebra, root finding, interpolation, optimization
and statistics to name but a few.

To combine such capabilities with that of a computer algebra system in one package
would have many advantages, and would greatly facilitate the development of hybrid
problem-solving systems in a variety of domains. Yet to duplicate the functionality of
the NAG Library in a symbolic system would be neither practicable nor sensible. The
NAG Library has been under development for two decades and represents a massive
investment of effort and expertise. It has also achieved a reputation for the excellence
and reliability of its algorithms and their implementations. In any case computer algebra

350 J.H. Davenport, M.C. Dewar and M.G. Richardson

systems are geared towards dealing with the rationals rather than with floating point
numbers, and as a consequence their floating point facilities are comparatively slow.

We have attempted to fill this gap by developing a system which uses GENTRAN
and Reduce to write programs which can call virtually any routine in the NAG Library
(Dewar, 1989; Dewar and Richardson, 1990; Dewar, 1991). The user provides a symbolic
description of the particular problem which is then converted into the form required by
the NAG Library. Although the user can take the generated code and run it by hand if
he or she wishes, the compilation and linking can be done automatically, and the results
returned to the user within the interactive environment as algebraic objects.

IRENA- an Interface between Reduce and the NAG Library- can thus be looked
at from several viewpoints:

• it provides an easy-to-use, interactive front end to the NAG Library;
• it provides an integrated symbolic / numeric computation environment for general

users;
• it provides a toolkit of numerical methods for developers of problem-solving pack

ages.

The following sections describe it in more detail.

3. An Introduction to IRENA

We shall illustrate some of the main features of IRENA with an example. Suppose we
wish to find:

subject to the conditions:

1 < X1 < 3
-2 < X2 < 0
1 < X4 < 3

starting from the initial guess (3, -1, 0, 1). We have decided to use routine E04JAF which
uses a quasi-Newton algorithm, and is designed to be used with continuous functions
with continuous first and second derivatives. The session with IRENA is in figure 1.

The user has provided three parameters: the constraints as a rectangle named bounds,
the initial guess as a vector start, and the function to be minimized as a function f.
The parameters are provided by a sequence of keys separated by commas. The order is
unimportant and, as we shall see later, the number of parameters used in a particular
call may vary. The NAG routine actually takes eleven parameters, and also requires the
user to write a subprogram to represent the function. These parameters are described in
figure 2.

The three arguments passed by the user to IRENA determine all the objects required
by the FORTRAN. The size of the problem - in this case the number of indepen
dent variables- determines the size of the workspace arrays. The rectangle yields the
constraints, and the fact that the user has provided it at all causes IBOUND to be set cor
rectly. The names have been made more descriptive and, in the case of X which is used

Symbolic and Numeric Computation: The Example of IRENA 351

1: e04jaf(bounds=[1:3, -2:0, •:•, 1:3],
1: vee start {3,-1,0,1},
1: f(x1,x2,x3,x4)=(x1 + 10•x2)•2 + 5•(x3- x4)•2
1: + (x2 - 2•x3)•4 + 10•(x1- x4)•4);

6 •• ABIORMAL EXIT from JAG Library routine E04JAF: !FAIL =
•• JAG soft failure - control returned

There is some doubt about vhether the point x found by
E04JAF is a minimum. The degree of confidence in the result
decreases as !FAIL increases. Thus, vhen !FAIL= 5 it is
probable that the final x gives a good estimate of the position
of a minimum, but vhen !FAIL = 8 it is very unlikely that the
routine has found a minimum.

For an index to the folloving list, type 'GO;'. The values of its
entries may be accessed by their names or by typing 'G1;', 'G2;' etc.

{MIIIMUM_VALUE,LOCATIOI_OF_MIIIKUM,BL,BU}

2: location_of_minimum;

[1.0]
[]
[- 0.086232689914776]
[]
[0.4093035914975]
[]
[1.0]

3: minimum_value;

2.4337876121207

Figure 1. An example using IRENA.

Parameter Type Purpose

I INTEGER The number of independent variables
IBOUID INTEGER Determines how bounds are provided
BL REAL Array Contains the lower bounds
BU REAL Array Contains the upper bounds
X REAL Array On entry contains the starting point

On exit contains the position of the minimum
F REAL On exit contains the value of the minimum
Ill INTEGER Array Workspace
LIII INTEGER The dimension of IW
II REAL Array Workspace
Lll REAL The dimension of W
I FAIL INTEGER The diagnostic parameter
FUICT1 SUBROUTINE Represents the function

Figure 2. The parameters of NAG routine E04JAF.

\
\

352 J.H. Davenport, M.C. Dewar and M.G. Richardson

for both input and output, the names of the two structures are different. A non-zero
value of IFAIL has been detected on exit, and an appropriate error message displayed.
The output structures have been transformed into Reduce algebraic objects, and may be
inspected at will. A list of all the output parameters is returned.

4. Providing Default values for NAG Parameters

Frequently, input parameters of a FORTRAN routine can be given default values
appropriate for some or all instances of the routine's use. A feature of IRENA is the
"defaults" system, which allows appropriate default parameter values to be specified by
the system developers or the user. Once a default value is established for a parameter, it
need not be specified in the IRENA function call, thus considerably simplifying the user
interface, compared to the native FORTRAN call. Input parameters of NAG FORTRAN
Library (and indeed many other) routines fall into three general categories:

1 data parameters;
2 algorithmic control parameters; and
3 housekeeping parameters.

A number of borderline cases occur in the NAG Library but these will not immediately
concern us.

The concept of a data parameter is largely self-explanatory: these parameters specify
the data which the user wishes to process. Specifying default values for such parameters
would be completely inappropriate.

Algorithmic control parameters, as their name suggests, control the execution of the
algorithm. Examples are limits on the number of iterations of a process and convergence
criteria. Appropriate defaults can often be found, perhaps for particular cases, by careful
scrutiny of the NAG Library manual or other sources. However, the user may well wish to
override such defaults. Other types of control parameters exist, controlling, for instance,
the levels of diagnostics or printing of intermediate results. These are included in the
same category since users may, at times, be expected to override the defaults.

In the category of housekeeping parameters we include all parameters whose values
do not logically form part of the statement of the problem or constraints on its mode
of solution. This includes such things as the dimensions of input and workspace arrays.
Normally their values are in some sense dependent on the size of the particular problem
being solved. Although it is unlikely that the user would wish to override the default
value of such a parameter, there is no mechanism preventing this.

NAG workspace arrays are required to have a certain minimum size. Below this size,
the algorithm will simply not function. Increasing the array size above this will normally
have no observable effect; occasionally it will cause the routine to run faster. In a very
few cases, the array size _effectively provides a limit on the number of iterations of the
algorithm: in these cases, we would consider the array size to be an algorithmic control
parameter. Defaults for the lengths of workspace arrays are therefore normally classed
as housekeeping but occasionally as algorithmic control.

Each routine may have associated with it a default file containing default values for
control parameters and default expressions for the housekeeping parameters. The user is

Symbolic and Numeric Computation: The Example of IRENA 353

Table 1. Matrices with row lists: uppermost row first throughout. (i represents the
row, and j the column index).

Type

full
symmetric
skew-symmetric
Hermitian
strict upper triangular
upper triangular
upper Hessenberg
strict lower triangular
lower triangular
lower Hessenberg
general band

(variable bandwidth)
symmetric band

(variable bandwidth)

Representation

each inner list specifies a row
each inner list specifies that part of a row for which either i ;:: j or i ~ j
each inner list specifies that part of a row for which either i ;:: j or i ~ j
each inner list specifies that part of a row for which either i 2 j or i ~ j
each inner list specifies that part of a row for which i < j
each inner list specifies that part of a row for which i < j
each inner list specifies that part of a row for which i ~ j + 1
each inner list specifies that part of a row for which i > j
each inner list specifies that part of a row for which i 2 j
each inner list specifies that part of a row for which i ;:: j - 1
each inner list specifies that part of a row lying within the envelope,

the list being packed out with zeroes for symmetry about the diagonal
each inner list specifies that part of a row, lying within the envelope,

for which i 2 j

also free to set up his or her own default files, and can override the default value of any
parameter by giving it a value in the call to IRENA.

5. Improving The NAG Interface

As can be seen from the example in figure 1, we have adopted new forms for some
of the parameters. The bounds were expressed as a rectangle, the starting point was a
vector, and the subroutine was represented by a polynomial. In fact, the user could have
used the standard NAG forms of most of the parameters (all except the subroutine),
but clearly the enhanced interface is nicer. In this section we shall describe some of the
techniques we use to do this for arrays and scalars, and in section 6 we shall talk about
how we represent those parameters which are in fact subprograms.

5.1. MATRICES

Reduce represents matrices densely, with each element being specified explicitly. In
numerical computation, however, one is often dealing with matrices with some special
structure. Thus we have provided a suite of functions which allow the user to input these
structured matrices to IRENA. These can also be converted to Reduce matrices and
manipulated in the usual way. An example is the vector start in figure 1. A full list of
the other types, and their representations, is given in tables 1-3. In general this is a list
of lists, the type of matrix determining the relationship between the inner lists and the
actual elements.

354 J.H. Davenport, M.C. Dewar and M.G. Richardson

Table 2. Matrices with diagonal lists: uppermost diagonal first throughout.

Type Representation

band (fixed bandwidth)
symmetric band (fixed bandwidth)

each inner list specifies a "diagonal"
only the superdiagonal and diagonal (or
diagonal and subdiagonal) lists

Type

sparse

symmetric sparse
long spars~

symmetric long sparse

Table 3. Sparse matrices.

Representation

3 inner lists, each in srune arbitrary order, containing:
first list - row indices of non-zero elements
second list - column indices of non-zero elements
third list - non-zero elements

as sparse, restricted to either upper or lower triangle.
a list of triples {r,c,v} representing the row index, column
index and value, respectively, of the non-zero elements
(in arbitrary order)
as long sparse, restricted to either upper or lower triangle

5.2. INPUT JAZZING

The process by which scalars and matrices are transformed is known as jazzing. This
section describes how we deal with input parameters and transform the user's represen
tation into the one NAG expects.

5.2.1. ALIASES

The simplest way in which jazzing is used is to provide different names for parameters.
There are a number of cases where this is useful:

• FORTRAN restricts names to six characters, and these are often not very mean
ingful;

• It is preferable to have the same names for equivalent parameters across a whole
chapter, and indeed in some cases across the whole Library;

• Different groups of users use different terminology.

There can be several aliases for the same object, or even aliases to aliases, and of course
the user is still free to use the original parameter name, if desired. In addition to the
system-provided aliases, we allow the user to set up his or her own alias file.

5.2.2. NEW SCALARS

Sometimes the NAG parameter is not the natural parameter. For example, the NAG
routine E02ADF, which computes least-squares polynomial approximations to an arbitrary
set of data points, has a parameter KPLUS1 whose value is one plus the maximum degree

Symbolic and Numeric Computation: The Example of IRENA 355

required. This form of jazzing transforms the IRENA parameter, in this case k, to its
NAG equivalent.t

5.2.3. KEYWORDS

Some NAG parameters can only take a limited number of values: e.g. . TRUE. or
.FALSE .. In this case we define a set of keywords, each of which is equivalent to one
of these cases. For instance, the routine E02BCF evaluates a cubic spline and its first
three derivatives from its B-spline representation. It has a parameter, LEFT, which spec
ifies whether left or right handed values are to be computed, depending on whether its
value is 1 or not. IRENA has a pair of keywords left and right, which can be interpreted
as LEFT=1 and LEFT=O respectively. Thus a typical call to E02BCF would look like:

4: e02bcf(vec knots {0,1,3,3,3,4,4,6},
4: vee coefs {10,12,13,15,22,26,24,18,14,12}, x=O, right);

Normally we also provide the NAG parameter with a default value, so that one of the
keywords is in some sense redundant, and supplied for symmetry only.

5.2.4. RECTANGLES

NAG normally represents a rectangular region either as two scalars (in the one
dimensional case), or two arrays of lower and upper bounds. In IRENA we define a
rectangle to be a single object in its own right, consisting of a set of pairs of numbers
surrounded by square brackets, e.g. the constraints on the variables in the optimization
routine in figure 1.

5.2.5. VERY LOCAL CONSTANTS

Sometimes NAG attaches special meanings to certain values. For example, in the ex
ample shown in figure 1, the FORTRAN arrays BLand BU contain th~ lower and upper
constraints on the values of the Xi. If the value given is a very large negative or positive
number respectively, then this is taken to mean that the value of that particular Xi is un
constrained in that particular direction. In the example x3 is completely unconstrained,
and in the rectangle bounds its constraints are denoted by asterisks. Each asterisk in fact
means something different. For the upper bound it means fphuge- the largest floating
point number - while for the lower bound it means -fphuge. The asterisk is a very local
constant, and it enables us to provide a uniform interface within a routine. In general
the asterisk character is interpreted as meaning that a parameter is "unset", i.e. it is not
given a value.

t This compares with the situation where the NAG user might be expected to provide values for both
K and KPLUS1. In this case we would class KPLUS1 as a housekeeping parameter and give it the default
value k + 1.

356 J.H. Davenport, M.C. Dewar and M.G. Richardson

5.2.6. JAZZING MATRICES

There are three main reasons for jazzing arrays on input:

1 NAG arrays are sometimes confusing, with different columns being used for differ
ent purposes (e.g. W in D02YAF which has a variable number of columns used for
inputting values of derivatives, returning results, and workspace). Jazz allows the
user to specify their separate logical components and then assembles them correctly.

2 Matrices with a special structure are represented by NAG routines in a multitude of
ways to make efficient use of memory, e.g. two triangular matrices might be packed
into one FORTRAN array to save space. However, we have provided representations
for matrices which preserve these structures, and so need to transform the IRENA
or Reduce representation to the NAG one. Note that we do not insist that, for
example, a triangular matrix be represented explicitly as an IRENA triangular
matrix; jazz will try and coerce any IRENA or Reduce matrix to the required type.

3 NAG routines often expect the user to provide a large array, only some of whose
elements are set. This is usually to allow the routine to manipulate elements of the
array in place, rather than using separate workspace. An example is MU in E02DAF
whose first and last four elements are zeros. It is nicer to allow the user to provide
the smaller structure, which jazz then "pads-out" to the larger one.

5.2.7. COMPLEX OBJECTS

The FORTRAN standard (ANSI, 1978) is somewhat confused about the representation
of complex numbers. Whilst it provides a single precision complex data type, there is
no double precision analogue. This has led to a great deal of inconsistency between the
available compilers: some follow the standard and offer no double precision complex data
type at all; while others do, but call them by a variety of names (double complex on
SUNs, COMPLEX*16 on IBM machines etc.). As a result, the implementors of algorithms
have chosen a variety of representations for complex objects. For scalars the normal ones
are:

• a pair of scalars representing the real and imaginary parts;
• a vector of length two, containing the real and imaginary parts (and corresponding

to the normal implementation of the complex data type).

while for arrays the common representations are:

• a pair of arrays representing the real and imaginary parts;
• a single vector, those elements with odd indices being the real parts and those

with even ones being the imaginary parts (again, this corresponds to the normal
implementation of the complex data type).

There are a few rather more obscure representations, mainly where we are dealing with
an array with some special structure (e.g. Hermitian).

In IRENA we expect the user to provide a normal Reduce complex object, which we
will then convert to the appropriate format.

Symbolic and Numeric Computation: The Example of IRENA 357

5.2.8. UNPACKING MATRICES

Most jazzing so far has consisted of taking small logical objects and constructing larger
FORTRAN objects from them. Occasionally, however, we would like to take a matrix
provided by the user and make each element into a FORTRAN scalar. For example, the
NAG routine C02AJF finds the roots of a quadratic equation with real coefficients using
the well-known formula:

-b± ../b2 - 4ac
x=

2a
where the coefficients a, b, care provided by the user as three scalars. However, for con
sistency with the rest of the C02 chapter, we would like the user to be able to provide
them as a vector called coefficients. Hence the interface can be either:

5: c02ajf(vec coefficients{10,3,1});

or:

6: c02ajf(a=10,b=3,c=1);

5.3. OUTPUT JAZZING

In this section we describe how we take the objects returned by the FORTRAN rou
tines, and coerce them into something more natural for the user.

5.3.1. MATRICES

There are three main uses for output jazzing of arrays:

1 Disentangling FORTRAN arrays into their logical components. In section 5.2.6 we
described W in D02YAF which has some columns used only for input and some for
output. Clearly we want to return the output columns as separate structures.

2 Unpacking arrays to restore some structure to them. For example, two triangular
matrices are sometimes returned as a single array, IRENA unpacks them and returns
the two matrices separately.

3 Trimming large structures into smaller ones. Analogous to the third case in section
5.2.6 we now wish to get rid of the excess padding we added earlier. Alternatively, we
might wish to return just the "interesting" bits of a workspace array: for example,
many quadrature routines return partial results this way which can be useful if an
error occurs.

5.3.2. CoMPLEX OBJECTS

On input we generally create real objects from given complex objects, on output we do
the reverse and generate complex objects from the real data returned by the FORTRAN
routine.

358 J.H. Davenport, M.C. Dewar and M.G. Richardson

5.3.3. PACKING OBJECTS INTO LARGER STRUCTURES

Analogous to section 5.2.6, here we take several output parameters and turn them into
an array. For instance, in the example given, the FORTRAN routine returns two vectors
ZSM and ZLG, representing the two (complex) roots. We transform them into the array
roots, for consistency with the rest of C02.

5.3.4. OUTPUT ALIASING

Analogous to the input case, we often wish to give FORTRAN output parameters more
meaningful names.

6. Argument Subprograms (ASPs)

Argument subprograms are parameters to NAG routines which are themselves either
functions or subroutines. They are used for a variety of purposes, as detailed below, and
occur throughout the library. The nearest Reduce equivalent to a FORTRAN subpro
gram is an algebraic procedure, but to ask the user to provide ASPs in this form is
unsatisfactory for the following reasons:

• The differences between the two languages make producing equivalent pieces of
code difficult. FORTRAN uses call-by-reference semantics, while Reduce uses call
by-value. FORTRAN requires explicit type declarations, while RLISP (the lan
guage recognized by the Reduce interpreter) only requires that variables be local
(i.e.scalar) or globals (the default). A Reduce procedure can be translated into
FORTRAN by GENTRAN, and the tokens real and integer can be used instead
of scalar to give type information, but the two pieces of code will not be semanti
cally equivalent. To generate correct code requires that the Reduce user understand
FORTRAN, something we whole-heartedly wish to avoid.

• Matrices are treated in a rather clumsy fashion by Reduce; they can only be global
variables, rather than local.

• We are trying to get away from the idea that the user needs to write a program
to solve a problem, and to ask the user to encapsulate a mathematical object as a
Reduce procedure would undermine that. We prefer to ask the user to provide these
objects in their natural form: for example, to generate an ASP which returns the
value of a function at a given point, only the definition of the function is necessary.

Thus we provide alternative representations for all ASPs. In this way the ASP system
is conceptually similar to the jazz system, the main difference being that in this case the
alternative form is compulsory. ·

6.1. FUNCTION VALUES

The most common use of an ASP is to evaluate a given function or set of functions
at an (arbitrary) point, e.g. an integrand or a set of differential equations. In IRENA
the user is expected to supply a set of expressions corresponding to the functions, and

Symbolic and Numeric Computation: The Example of IRENA 359

the ASP system will generate the appropriate FORTRAN. For example, a call to the
integration routine D01GBF might look as follows:

7: d01gbf(region=[0:1,0:1,0:1,0:1],
7: f(w,x,y,z)=4*w*y-2*e-(2*w*y)/(1 + x + z)~2);

The dummy parameters w, x, y, z are replaced by the correct FORTRAN parameters, in
this case elements of the array X, during code generation to produce the following:

DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X)
DOUBLE PRECISION X(NDIM)
INTEGER .NDIM
FUNCTN=4*DEXP(DBLE(2*X(3)*X(1)))*(X(4)**2+2*X(4)*

. X(2)+2*X(4)+X(2)**2+2*X(2)+1)**(-1)*X(3)**2*X(1)
RETURN
END

In many cases we are dealing not with a single function but with a set of functions,
e.g. a set of differential equations. We provide two methods for entering such functions.
The first is analogous to the simple case above, while the second is useful for large sets of
"related" functions. Mathematicians usually represent sets of functions with subscripts;
in IRENA the equivalent notation is to suffix the function name with its index to produce
a new name. This method is used in the key list as follows:

8: d02bbf(range=[0:8],
8: vee initial_values {0.0,0.5,pi/5},
8: fen1(tt,yy,v,phi)=tan(phi),
8: fen2(tt,yy,v,phi)=-0.032*tan(phi)/v- 0.02*v/eos(phi),
8: fen3(tt,yy,v,phi)=-0.032/v-2,
8: ... vee output {1,2,3,4,5,6,7,8});

An extension to more general functional notation is useful where we have a set of
functions like:

/;(x1, X2 1 ••• , Xg) = -Xi-1 + (3- 2 *Xi)* Xi- 2 * Xi+l + 1

with appropriate modifications for the extreme values of i. In IRENA this is coded as
follows, either in the global Reduce environment, or in the key list:

9: fset fen[1](x[1:9])=(3-2*x(1))*x(1)-2*x(2)+1;
10: fset fen[i=2:8](x[1:9])=-x(i-1)+(3-2*x(i))*x(i)-2*x(i+1)+1;
11: fset fen[9](x[1:9])=-x(8)+(3-2*x(9))*x(9)+1;

We can pnd the zero of this set of equations with the following call to C05NBF. The values
of fen will be picked up automatically.

12: e05nbf(vee start {-1,-1,-1,-1,-1,-1,-1,-1,-1});

6.2. JACOBIAN AND DERIVATIVE VALUES

Quite often NAG routines require the user to write a routine to calculate the Jacobian
or Hessian matrix, or the derivatives of a given set of functions. Although in theory
an easy task, in practice errors are easy to make but difficult to detect. In IRENA

360 J.H. Davenport, M.C. Dewar and M.G. Richardson

we calculate derivatives automatically, expecting the user to provide only the original
functions (which are normally required anyway for another ASP).

Because Jacobians and Hessians by their very nature consist oflarge numbers of related
expressions, the efficiency of the generated code can be dramatically increased through
the use of symbolic optimization.

6.3. DuMMY RouTINEs

Sometimes NAG offers the user the choice of either writing their own routine, or of
calling one in the Library. This is often the case when the routine is required to monitor
the progress of the computation and output diagnostic information. In these cases (where
appropriate) we automatically generate a dummy routine to call the NAG routine without
further input from the user.

6.4. OUTPUT ROUTINES

Occasionally NAG routines require the user to provide a routine to output intermediate
information during the execution of the algorithm. IRENA provides a procedure which
may or may not require some input from the user, such as an array of points at which
to generate diagnostics. Moreover the resulting information is available as an actual
structure within Reduce, rather than simply printed out.

6.5. MATRIX MANIPULATION ROUTINES

These are routines required to manipulate matrices in some way, often a specific (user
supplied) matrix for a given problem. In such cases IRENA requires that the user supply
the relevant matrix, and the routine is generated using either Reduce's symbolic manip
ulation facilities, or a call to an appropriate NAG routine.

6.6. REGIONS

Some NAG routines are concerned with evaluating the endpoints of regions. We expect
the user to express the region as an IRENA rectangle (see section 5.2.4), whose end points
may be either expressions or constants.

7. Implementation Details

The Sun 4 implementation of mark 14 of the NAG Library is big - nearly nine
megabytes of compiled code - and so it is not practical to simply link the whole of the
NAG Library with Reduce! In addition, although IRENA provides access to any individ
ual routine, it does not (yet) allow the nesting of routines, to minimize an integral for
example. Thus we decided early on to aim to generate complete programs to solve prob
lems, and then dynamically link these into the running Reduce. Since we are generating

Symbolic and Numeric Computation: The Example of IRENA 361

13: integrate(integrand(x)=sin(x)/x,region=[-1:1]);

For an index to the £olloving list, type 'GO;'. The values o£ its
entries may be accessed by their names or by typing 'G1;', 'G2;' etc.

{IITEGRAL,ABSOLUTE_ERROR_ESTIMATE,IRTERVALS,A_LIST,B_LIST,E_LIST,

R_LIST}

14: integral;

1.89216614073437

15: absolute_error_estimate;

1.05036320792971E-14

Figure 3. Choosing a NAG routine.

programs, there are also facilities to only generate code (i.e. disable the compile I link I
execute cycle), which can then be taken away and executed on a different processor, or
in a batch environment etc.

Although this approach may appear slow it does offer advantages. In practice, if the
user needs to generate an ASP then this will need to be compiled and linked anyway. A
more detailed discussion of this topic, and a description of the method used to perform
the dynamic linking, can be found in Dewar and Richardson (1990) and Dewar (1991).

We have described the way we can simplify the interface to a NAG routine. Clearly with
over 900 routines to deal with, to do this for every routine requires a great deal of effort.
Thus we have developed a suite of tools and methods to generate a skeletal interface
automatically from the NAG documentation. So, while the jazzing of each routine must
be done by hand since it is very much a subjective matter, most of the rest of the work
to build the interfaces is accomplished automatically. The full details may be found in
Dewar (1991).

8. Applications

Obviously a major use of IRENA is as an interactive numerical analysis package.
However, a more interesting idea is to use it as part of a larger problem solving system.
One area which has already been investigated is that of quadrature (Dewar, 1991). Given
an integral to be solved over a particular region, the package will select the NAG routine
which seems best suited to the particular integral and call it. An example is shown in
figure 3.

9. Conclusions

In this paper we have described how the division between symbolic and numeric compu
tation arose largely because of the differing hardware requirements of the two paradigms
and suggested that, since this is no longer a problem, the time is ripe to attempt to
reconcile the two approaches. To this end we have developed IRENA, which provides

362 J.H. Davenport, M.C. Dewar and M.G. Richardson

an environment containing high-quality symbolic and numeric methods. Not only does
IRENA give the Reduce user access to a suite of high-quality numerical algorithms, but it
also uses the symbolic facilities of Reduce to considerably simplify the interfaces to them.
Although one use of IRENA is as a simplified, interactive front-end to the NAG Library,
we believe that it has much greater potential. We believe that IRENA and Reduce to
gether provide a toolkit of high-quality building blocks for developers of problem-solving
systems in many domains.

References

ANSI (1978), American National Standard Programming Language FORTRAN, Technical Report ANS
X3.9, American National Standards Institute.

M.C. Dewar and M.G. Richardson (1990), "Reconciling symbolic and numeric computation in a practical
setting", Proc. Design and Implementation of Symbolic Computation Syst., Springer-Verlag, NY,
195-204.

M.C. Dewar (1989), "IRENA -an integrated symbolic and numerical computation environment", Proc.
Int. Symp. Symbolic Algebraic Computation, ACM, Portland, Oregon, 171-179.

M.C. Dewar (1991): Interfacing Algebraic and Numeric Computation, PhD Thesis, School of Math.
Sci., University of Bath, Claverton Down, Bath.

J.P. Fitch (1979), "The application of symbolic algebra to physics- a case of creeping flow?", Proc.
EUROSAM '79, Springer-Verlag, NY, 30-41.

B.L. Gates and P.S. Wang (1984), "A LISP-based RATFOR code generator", Proc. 1984 MACSYMA
User's Conf., Schenectady, NY, 319-329.

B.L. Gates (1985), "Gentran: an automatic code generation facility for Reduce", ACM SIGSAM Bull.,
19(3), 24-42.

E.W. Ng (1979), "Symbolic-numeric interface: a review", Proc. EUROSAM '79, Springer-Verlag, NY,
330--345.

P.S. Wang (1986), "FINGER: a symbolic system for automatic generation of numerical programs in
finite element analysis", J. Symbolic Computation, 2, 305-316.

	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362

