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Appendix
The following is an appendix which provides additional information to substan-

tiate the claims of the paper [4]. Appendix 1 describes the proof of Lemma 1. Ap-
pendix 2 provides details for trajectory planning to reduce the parallel motion of
n robots to parallel motion of two robots, followed by sequential control of single
devices. Details regarding control strategies for microassembly are presented in Ap-
pendix 3.

1 Details of the Proof of Lemma 1

Lemma 1. An n-robot STRING system has exactly n + 1 accessible control states.

Proof. (By induction.)
The base case: a STRING system with n = 1, has two accessible control states,

(0 - arm up) and (1 - arm down).
The inductive step: adding a single device, (changing the size of the system from

n to n + 1) extends the number of accessible control state by exactly one, provided
that both the n and n + 1 microrobotic systems remain STRING.

6 Corresponding author: brd+wafr08@cs.duke.edu
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Fig. 1. Proof of Lemma 1.

Let n micrororobots, labeled D1, · · · ,Dn, be a STRING system sorted according
to Vu,i and Vd,i. Without loss of generality, Vd,n ≤ Vd,n+1 and Vu,n ≤ Vu,n+1 (If this is
not the case, we can simply relabel the voltages and generate an equivalent system
sorted as described above). Fig. 1 shows the ranges for the transition voltages of
Dn+1, such that the new, n + 1 robotic, system retains STRING. Let Vα, · · · ,Vδ be
significantly independent transition voltage levels, ordered such that Vδ < Vγ < Vu <
Vβ < Vα < VΩ. Let Vd,n = Vα and Vu,n = Vγ. It follows that the snap-down voltage
Vd,n+1 can have a value V1 in the range [Vα,VΩ], or voltage V2 = Vα. Similarly, the
release voltage, Vu,n+1, can have the value V3 in the range [Vrel − 2δv ,Vγ], or voltage
V4 = Vγ (Vu,n+1 can not exceed Vrel − 2δv without risking that Vrel might release the
steering arm during the power delivery cycle). Consequently, for the (n + 1) robot
system to remain STRING, one of the following combinations of the snap-down and
release voltages for Dn+1 must hold: (V1,V3), (V1,V4) and (V2,V3). We examine each
case separately:

(V1,V3): Because the snap-down voltage of Dn+1 is greater than the snap-down
voltage of D1 · · ·Dn, Vd,n+1 > Vd,i, i ∈ Zn where Zn = {1, · · · , n}, we can only snap-
down the arm of Dn+1 after we snap-down the arms of all other devices. Since the
release voltage of Dn+1 is greater then the release voltage of D1, · · · ,Dn, Vu,n+1 >
Vu,i, i ∈ Zn, we can only release the arm of any other device after we have released the
arm of Dn+1. Consequently, we can only change the state of Dn+1 when D1, · · · ,Dn

are in state 1. During all other states of the system, the state of Dn+1 must remain 0.
Consequently, the number of accessible control states increases by exactly one.

(V1,V4): This case is identical to (V1,V3), except that the arm of Dn is released
at the same time as the arm of Dn+1. As long as Vd,n+1 > Vd,i, we can snap down the
arm of Dn+1 only after all other devices D1, · · · ,Dn are in state 1. As a consequence,
the number of accessible control states increases by one.

(V2,V3): The snap-down voltage of Dn+1 is equal to the snap-down voltage of Dn,
Vd,n+1 = Vd,n. In this case, the arm of Dn+1 is snapped down at the same time as the
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arm of Dn. Because the release voltage of Dn+1 is greater than the release voltage of
D1, · · · ,Dn, Vu,n+1 > Vu,i, where i ∈ Zn, we can only release the arm of Dn (or any
other devices) after we release the arm of Dn+1. As in the (V1,V3) case, the state of
Dn+1 must be 0 except when D1, · · · ,Dn are all snapped down, then Dn+1 can be in
either 0 or 1 by varying the release voltage. Consequently, the number of accessible
control states increases by one.

We have now shown that adding a device to STRING system, such that the result-
ing system remains an STRING system, increases the number of accessible control
states by exactly one. Combined with the base case (n = 1, two control states), it
follows by induction that every n-robot STRING system has exactly n + 1 accessible
control states. �

2 Motion Planning for n-Microrobot Assembly

We now describe how to plan the motion of n stress-engineered microrobots for
microassembly, despite coupling of their motion through the global control signal.
This section considers only nominal microrobot motion, and does not consider the
accumulating control error.

The configuration of the n microrobotic system is given by the vector q =

(q1,q2, · · · ,qn). We assume the robots start in an initial configurations r = (r1, r2, · · · , rn),
and must be maneuvered to a goal configuration g = (g1, g2, · · · , gn) which corre-
sponds to a desired target structure Gk. We define the gross motion planning problem
as the problem of finding a sequence of control primitives (called a control sequence)
S that nominally (i.e. in absence of control error) maneuvers the robot from r to g.

The structure of M allows us to reduce the parallel motion of n robots to parallel
motion of two robots, followed by sequential motion for single devices. Without col-
lisions, we cannot stop individual robots from moving, however we can confine them
to move in circular orbits. Our heuristic planning algorithms consider the area swept
by the orbiting robots (discs of radius r∗ in the workspace) as obstacles. This ap-
proach is neither general nor complete, and requires a minimum separation between
the orbiting microrobots. However, our approach works well in practice on small
number of robots. We recognize that more general collision avoidance methods can
be adopted from [1, 8], however we leave the implementation of such extensions
for future work. Note that, given the sequence (order in which to assemble), which
in our case is specified by the control matrix M, the sequencing of the motion of
our robots is defined. Consequently our approach is analogous to [5], albeit using
non-holonomic robots.

The assembly of a structure composed of n robots takes place in n − 1 steps.

2.1 Step 1. Assembly of G1:

G1 is always assembled through the simultaneous motion of the two robots with the
highest indexes, i.e. Dn and Dn−1, as this allows the robots D1, · · · ,Dn−2 to orbit in
limit cycles without making progress towards the goal. The assembly ofG1 is divided
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Fig. 2. Assembling the initial stable shape, G1 using microrobots Dn and Dn−1. a: Stage 1:
Dn is maneuvered to an while Dn−1 orbits. b: Stage 2: Dn−1 is maneuvered to gn−1 while Dn

moves in straight line to gn.

into two stages, as shown on Figs. 2(a) and 2(b), respectively (the orbiting robots are
not depicted in Fig. 2).

During stage 1 (Fig. 2(a)) microrobot Dn is maneuvered (using control sequence
S 1) from an initial configuration, rn, to an intermediate goal configuration an, using
control primitives Pn and Pn−1. The reason for maneuvering robot Dn to an rather
that directly to its goal gn is that Dn will only move in a straight line during stage 2.
Hence, in stage 1 Dn must be maneuvered to a configuration from which the robot
can enter its goal, gn, during subsequent straight-line motion in stage 2.

As Dn is maneuvered to the intermediate configuration an, robot Dn−1 orbits with-
out making any progress towards the goal (i) (because control primitives Pn and Pn−1
invoke only turning motion in Dn−1.) However, in order to calculate the length of the
trajectory of robot Dn−1 during stage 2 (Fig. 2(ii)), which determines the length of
the straight trajectory of Dn (Fig. 2(iii)), which in turn determines the intermediate
configuration an, we must know the configuration of Dn−1 at the beginning of stage
2. To achieve this, we ensure that robot Dn−1 always orbits back to its initial config-
uration rn−1 at the end of stage 1 by adjusting the length of the trajectory for robot
Dn (and correspondingly the lengths of the orbit of Dn−1). This allows us to use the
initial configuration rn−1 as the starting configuration for planning the trajectory of
robot Dn−1 at the beginning of stage 2.

In stage 2, microrobot Dn−1 is maneuvered from rn−1 to its target configura-
tion, gn−1, using only primitives Pn−1 and Pn−2 (see Fig. 2(b)). Both these primitives
are sufficient to maneuver robot Dn−1 to an arbitrary configuration, but cause only
straight-line motion in Dn. However, as we described above, we ensured that the in-
termediate configuration an is chosen such that Dn moves into its target configuration
gn during its straight-line motion stage 2.
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Fig. 3. Progressive docking of single microrobots with the assembling stable shape.

The planned trajectories are then examined for collisions by testing for intersec-
tions of the straight path with the swept area of the orbiting robots, as well as Dn and
Dn−1 . If necessary, we modify the trajectories of both Dn and Dn−1 using geometric
collision avoiding heuristics. The length of the trajectory for Dn during stage 1 might
need to be readjusted to ensure that Dn−1 starts in rn−1 at the end of stage 1.

2.2 Steps 2, · · · , n − 1. Subsequent docking of single robots.

The concept of consecutively (in n − 2 steps) adding single robot to the initial sta-
ble shape G1 to generate the stable goal-structure Gk is illustrated in Fig. 3. From
this point on, only a single robot is maneuvered at any given time, while the re-
maining robots are either docked or orbiting. The structure of the control matrix M
allows robot Di to be maneuvered to its target configuration gi using control prim-
itives Pi and Pi−1, while robots D j, j < i, orbit in place. Control primitives Pi and
Pi−1 cause straight-line motion in robots D j, j > i, but, since our robots are assem-
bled in decreasing order of i, they are already docked and immobilized as part of an
intermediate stable structure shape.

As before, the paths are tested for intersection with the swept area of the orbiting
devices, as well as the assembling shape. If necessary, we modify the trajectories of
each of the robots.

3 Control Strategies for Microassembly

Any physical robotic system is subject to variability affecting its motion, called con-
trol error, which will perturb the motion of the robot away from its nominal trajec-
tory. In contrast with the motion planning described above, in this section we solve



6 Bruce R. Donald, Christopher G. Levey, Igor Paprotny, and Daniela Rus

the problem of maneuvering the robots to their target configurations in the presence
of control error. We derive online control strategies that reduce the accumulating er-
ror through iterative execution and replanning of nominal microrobot trajectories.
These control strategies are based on the theory of Error Detection and Recovery
(EDR) [2], which allows us to plan for variability that occurs during microrobot
motion, and to use compliance to further reduce the accumulating control error.

Because of inherent uncertainty in both the pose as well as control of the micro-
robots, we now use regions as opposed to point (exact) configurations. Let Ri be the
starting region for robot Di, typically a ball around the nominal initial configuration
ri, signifying the pose uncertainty. Correspondingly, let Gi be the region of goal con-
figurations for robot Di, typically an open set around gi. Our objective becomes to
maneuver the robots from their start region R = R1 × R2 × · · ·Rn, to their goal region
G = G1 ×G2 × · · ·Gn.

The control strategies are implemented through iterative execution and replan-
ning of the initially planned control sequence S until we recognize that the robots
have entered their goal regions G, or our assembly has failed. Iterative replanning of
a gross motion plan is used to implement a gross-motion control strategy. However,
our assembly scheme uses the gross-motion control strategy to maneuver the micro-
robots to the vicinity of their goal configuration. There, we switch to a fine-motion
control strategy to complete docking. The fine-motion control strategy is based on
interpolated turning and compliant motion, and allows precise control of the docking
location of the microrobot.

3.1 Fine-Motion Trajectories

Fine-motion trajectories use interpolated turning [3]. i.e. interleaving straight-line
and curved trajectory segments, to approximate a turning radius r′i > r, where r is
the turning radius of the microrobot with its arm snapped down. Adjusting the ratio
between the interleaved trajectory segments allows us to vary r′, and construct a fine-
motion trajectory between the intermediate configuration ai and a target location pg,i,
where pg,i = (xg,i, yg,i) ∈ �2 and (gi = (pg,i, θg,i)T = (xg,i, yg,i, θg,i)T ). The radius that
allows a microrobot to reach pg,i from ai can be calculated as:

r′ =
∆x2 + ∆y2

2
(
∆x cos θa,i − ∆y sin θa,i

) , (1)

where ∆x = xg,i − xa,i and ∆y = yg,i − yg,i. The control error is compensated for by
either reducing or increasing r′ such that the fine-motion trajectory passes through
pg,i. A change in r′ will cause a deviation from the nominal approach angle of a
docking microrobot. This deviation is subsequently corrected for using compliant
interaction with the docking object.

Fine-motion trajectories are constructed using either three or two primitives, as
shown in Figs. 4(a) and 4(b). Two-primitive fine motion trajectories are used to ma-
neuver single robots, while three primitive fine-motion trajectories are are used to
simultaneously maneuver two microrobots.
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Fig. 4. Cones of positions (pg,i) that can be be reached using two-primitive fine-motion trajec-
tories (a) and three-primitive fine-motion trajectories (b).

Two-primitive fine-motion trajectory

Two-primitive fine motion trajectories for single microrobots are represented by the
control sequence S 2 f = (Pi,a, Pi−1,b, · · · , Pi,a, Pi−1,b), where a + b = T . Let ρa = a

T

and ρb = b
T

. r′ of S 2 f are parameterized by ρa and ρb, S 2 f (ρa, ρb), is r′i = r
(
1 +

ρa
ρb

)
. A

fine-motion trajectory S 2 f ( 1
2 ,

1
2 ) is referred to as symmetric, and is written S 2 f (sym).

The positions that can be reached using S 2 f are spanned by the cone of the trajecto-
ries of S 2 f (0, 1) (pure turning), and S 2 f (1, 0) (straight line motion) starting from ai
(Fig. 4(a).)

Three-primitive fine-motion trajectory

The three-primitive fine-motion trajectories are used to dock robots Dn−1 and Dn

during the assembly of the initial stable shape, and are represented by the control
sequence S 3 f = (Pn,a, Pn−1,b, Pn−2,c, · · · Pn,a, Pn−1,b, Pn−2,c), where a + b + c = T .
As above, ρa = a

T
, ρb = b

T
, and ρc = c

T
, S 3 f (ρa, ρb, ρc). S 3 f ( 1

3 ,
1
3 ,

1
3 ) is referred to

as symmetric, (S 3 f (sym)). The trajectories for Dn and Dn−1 will differ, because the
motion of Dn and Dn−1 is different during the application of control primitive Pn−1.
The relationship between the radii r′n and r′n−1 for Dn and Dn−1 given ρa, ρb, and ρc

is:

r′n = r
(
1 +

ρb + ρc

ρa

)
(2)

r′n+1 = r
(
1 +

ρc

ρb + ρa

)
. (3)

In order for Dn+1 to be able to reach pg,n+1, pg,n+1 must lie within the cone
spanned by S 3 f

(
1
3 ,

1
3 ,

1
3

)
and S 3 f

(
1
3 ,

2
3 , 0

)
, as shown on Fig. 4(a). Correspondingly,

pg,n must be within the cone spanned by S 3 f

(
1
3 ,

1
3 ,

1
3

)
and S 3 f

(
0, 2

3 ,
1
3

)
(Fig. 4(b).)
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Fig. 5. Two-stage EDR control strategies. (a:) docking a single robot to a stable shape and (b:)
assembly of the initial stable shape. Error-bounds (i) – (vi) are defined in Sec. 3.4.

3.2 A Two-step EDR Control Strategy

Having defined fine-motion trajectories, we use the theory of Error Detection and
Recovery (EDR) [2] to construct a robust control strategy for implementing mi-
croassembly in the presence of uncertainty and compliance.

Our robots are maneuvered to dock with another rigid body, which we denote as
O. In the case of docking a single robot to a stable shape, O is the stable shape. In the
case of the assembly of the initial stable shape, O is the other robot. In either case, we
define CO as the proximity space of O, which is the region from which the microrobot
may not be able to avoid colliding with O. The region CO can be obtained geomet-
rically by expanding the boundary of O in C-space by 2r∗ (r∗ is defined in Fig. 2(b)
in [4]). Such an expansion is a simplified geometric approximation to the obstacle
transformation method for non-holonomic robots used by for example Papadopoulos
and Poulakakis [8].

We construct an EDR strategy to reliably maneuver the robots between their indi-
vidual start, Ri, and goal, Gi, regions. We assume that the start regions Ri are outside
CO. To simplify the construction of the complete control strategy from R to G we use
backward chaining to create a two-step EDR control strategy [2]. During step one,
the robots are maneuvered to an intermediate goal region Ai outside CO, using the
gross-motion control strategy. The region Ai is defined as the region outside CO from
which there exists a fine-motion control strategy such that the robot is guaranteed to
enter Gi. Consequently, during the second step, the robots are maneuvered from Ai to
Gi using the fine-motion control strategy. Figure 5 shows a conceptual illustration of
the two-step control strategy for the case of the assembly of the initial stable shape
(a), and the sequential docking of single robots (b).

Let Σ1 be the set of all gross motion control strategies, and Σ2 be the set of all
fine-motion control strategies. Let σ1 be a strategy in Σ1 and σ2 be a strategy in Σ2.
The reachability diagram for the two-step EDR strategy is Ri

σ1
−−→ Ai

σ2
−−→ Gi.

We use the preimage terminology and notation from [7, 2]. The strong preim-
age of Y , PX,θ(Y), is the region of C-space from which the robot is guaranteed to
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recognizably enter the region Y when starting in region X and applying control strat-
egy θ. The weak preimage of Y , P̂X,θ(Y), is the region of C-space from which the
robot might recognizably enter Y , given fortuitous sensing and control events, when
starting in X and applying control strategy θ. The forward projection, Fθ(X), of X
under θ is the region of C-space which the robot might reach after the execution of
the control strategy θ when starting in region X. Note that our control strategies are
based on progressive re-planning and execution of a trajectory towards a nominal tar-
get configuration, e.g. y, and consequently, the control strategy θ includes a specific
nominal goal y. This also implies that Fθ(X) does not grow much over time, because
the control error is continuously reduced through re-planning of the robot trajectory.

Let CF be the region outside CO, CF = C−CO. We define Ai to be the intersection
of CF , the strong preimage of Gi under σ2, and the forward projections of Ri under
σ1; Ai = PAi,σ2 (Gi) ∩ CF ∩ Fσ1 (Ri). In addition, for Ai to be guaranteed reachable
from Ri, it must hold that Ri ⊂ PRi,σ1 (Ai). Ai must contain the forward projection of
the gross-motion control strategy, σ1, from Ri, Fσ1 (Ri). We can bound Fσ1 (Ri) by a
cylinder around a target configuration ai, Ca,i = Bra,i (ai) × [θa,i − ha,i, θa,i + ha,i] ⊂
�2 × S 1, where Bra,i (ai) is a ball of radius ra,i around ai. The size of Ca,i is derived
in Appendix 3.4, and depends on the control algorithm that implements the control
strategy.

We construct the strategies σ1 and σ2 using Cα,i as the goal and start region,
respectively. As we describe in Appendix 3.5, we can replace goal region Gi with
a larger region G∗i , from which the robot can achieve goal Gi using compliance. In
order for the cylinder Cα,i to be completely contained in PAi,σ2 (G∗i ) while outside CO,
the intermediate target configuration ai must be at least rα,i away from the boundaries
of PAi,σ2 (G∗i ) and CO in �2, and hα,i in S 1. The region A∗i , defined as the set of all
intermediate configurations ai, can now be obtained geometrically. If A∗i = ∅ we can
not guarantee that the robot will reach Gi.

We execute the gross-motion control strategy σ1 for parallel motion of Dn and
Dn−1 and sequential motion of Di, i ∈ Zn−2 between Ri and Cα,i, i ∈ Zn. Once the
robots enter Ai, the fine-motion control strategy, σ2, is executed between the Di’s
measured configuration, a∗i , and G∗i . The assembly terminates when the robots enter
the goal Gi or the failure region H. The failure region H = Fσ2 (A) − P̂Aiσ2 (G∗) (See
[2]), can be approximated as the boundary of O that is not in G∗i (this is where the
devices may get stuck.)

Details regarding the algorithms that implement σ1 and σ2 can be found in Ap-
pendix 3.3, while the derivations of the error bounds, Ai and Cα,i can be found in
Appendix 3.4.

3.3 The Control Algorithms

The σ1 and σ2 control strategies are implemented through iterative execution and
replanning of control sequence S towards a nominal target configuration until we
recognize that the robots have entered their goal or failure regions (G∗i , Ai, or H).
This iteration begins with the generation of the control sequence S using the plan-
ning algorithms described in Sec. 2, and the current position of the robot. A portion
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Fig. 6. The trajectories and the goal-regions for Dn and Dn−1 during the assembly of G1.

of S , up to the re-planning time interval tx, is then executed, i.e. the waveforms
corresponding to each control primitive Pi(t) are sequentially applied through the
operating environment. Following this partial execution of S , the new pose of the
robot is measured, and the control cycle is repeated. The growth of Fσ1 (Ri) over time
is proportional to tx.

However, an extension of this basic re-planning algorithm is required to imple-
ment σ1 on Dn and Dn−1 during the assembly of the initial stable shape G1. Even
though both Dn and Dn−1 are controlled simultaneously, error correction can be per-
formed on the trajectory of a single robot only. The assembly is still performed in two
stages, however the trajectory of Dn is not corrected during its straight-line motion
in stage 2.

The trajectories and goal-regions for the control scheme of assembling G1 is
shown in Fig. 6. Let σ1,1 be part of the gross-motion control strategy implemented
in stage 1, and σ1,2 be the part of the gross-motion control strategy implemented in
stage 2. The region A′n is analogous to the intermediate configuration an in trajectory
planning (See Appendix 2). Dn is controlled to A′n during stage 1, while Dn−1 orbit
a limit cycle. In stage 2, Dn−1 is controlled to An−1, while Dn moves to An along a
straight-line trajectory. The region An is the forward projection of region A′n after the
execution of σ1,2, FA′n,σ1,2 (A′n). The regions An and An−1 are obtained geometrically.
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3.4 Error Bounds

Error bounds are used to bound regions Ca,i and C′a,i, as well as the size of forward-
projections and preimages for our control strategies. We derive error bounds from
the kinematic model of the microrobot by substituting ω = vah

r and adding error
components ve and ωe to the microrobot turning rate (ω) and linear velocity (v):

q̇ =

 ẋ
ẏ
θ̇

 =

 sin θ
cos θ

0

 (v + ve) +

0
0
1

 (ω + ωe) (4)

.
Let v̂ = v + ve, and ω̂ = ω + ωe. The displacement with error, ∆qe(t), is:

∆qe(t) =


v̂
ω̂

(
cos

(
θ − π

2

)
+ cos

(
θ − tω̂ + π

2

))
v̂
ω̂

(
sin

(
θ − π

2

)
+ sin

(
θ − tω̂ + π

2

))
tω̂

 (5)

Eq. (5) represents the error bound for a single control primitive. Let δ(t) =∫
S ∆qe(t) − ∆q(t)dt be the error integrated over the control sequence S , where
δ(t) = (δx(t), δy(t), δθ(t))T , and δxy(t) =

√
δx(t)2 + δy(t)2 (error in �2).

Bounding Fσ1 (Ri)

The size of the forward-projection of R with the gross motion control strategies σ1,
Fσ1 (Ri), is bounded by the maximum error (δ(t)) that can occur during the execution
of the control algorithms described in Appendix 3.3. We start by deriving Ca,i as the
bound for Fσ1 (Ri) for Di, where i ∈ Zn−2 using σ1 for single robots. We then use
these results to derive the bound for Fσ1 (Rn−1) and Fσ1 (Rn) for Dn−1 and Dn during
step 1 of microassembly.

Let tθ = θ/ω̂ be the time it takes the robot to rotate by angle θ while in control
state 1. The forward-project of R using σ1 for the control of single robots from Ri to
Ai, Fσ1 (Ri) for i ∈ Zn−2, is equal to δ (t2π). The reason for this is that our microrobots
can only turn one way, and correcting a small error may require up to a 2πr long
trajectory, since the robot may have to complete a full circle. Consequently, σ1 for
single robots may not be able to reduce the control error to below δ (t2π), thus Fσ1 (Ri)
for Di with i ∈ Zn−2 is bounded by cylinder Cα,i with rα,i = δxy (t2π) and hα,i = δθ (t2π).

Fσ1 (Rn) for Dn is different from Fσ1 (Ri) for Di with i ∈ Zn−2 because control error
in Dn is not corrected during its straight-line motion in stage 2 of the gross-motion
control strategy for Dn and Dn−1. Because accumulating control error in Dn during
stage 2 is not reduced, the bound Cα,n depends on the length of the trajectory for Dn−1
during stage 2, and is the forward projection of A′n with σ1,2 during stage 2, Fσ1,2 (A′n).
Region A′n can be bounded by Fσ1,1 (Rn) of Dn, which is C′a,n−1 with r′a,n−1 = δxy (t2π)
and h′a,n−1 = δθ (t2π).

However, Fσ1,2 (A′n) may be prohibitively large, because of large uncertainly in the
length of the trajectory for σ1,2. For example, the robot Dn−1 might drive in a straight
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line to the goal, or the control error might force it to turn 2π during every replan-
ning interval. We can reduce the size of Fσ1,2 (A′n) through an iterative approach, by
assuming a nominal trajectory for Dn−1 during σ1,2. When Dn−1 fails to enter An−1 as
Dn enters An (meaning that the executed trajectory of Dn−1 was longer than nominal
due to error correction), or Dn fails to enter An as Dn−1 enters An−1 (meaning that
the executed trajectory of Dn−1 was shorter than nominal due to error correction), we
simply implement a new gross-motion control strategy σ1 from current (recorded)
configurations of Dn and Dn−1. Dn−1 will now be in a configuration closer to An−1,
reducing the uncertainty in the length of trajectory during σ1,2. Iterative replanning
of σ1 ensures that the length of of the trajectory along which Dn−1 travels to An−1 us-
ing σ1 approaches an upper bound of s4π, where s4π is the length of the trajectory for
Dn−1 to turn 4π (complete two full turns). Consequently, the size of An approaches
the timed forward projection [6], Fσ1,2 (A′n, t4π), where t4π is the time it takes for Dn−1
to turn 4π. Fσ1,(A

′
n, t4π) can be derived geometrically, using error bounds obtained by

integrating Eq. (5) over straight-line motion of Dn with duration t4π.
Because Dn−1 is controlled last, i.e. during stage 2, Fσ1 (Rn−1) for Dn−1 is identical

in size to the region Fσ1 (Ri), i ∈ Zn−2, as any control error is removed by replanning
the trajectory of Dn−1.

Error Bounds for Fine-Motion Control Strategies (σ2)

The forward-projection of the fine-motion control strategies is smaller that of the
gross-motion control strategies (Fσ1 (Ai)), and its size approaches the uncertainty in
configuration of the robot Di.

The error bound for two-primitive fine-motion trajectories are obtained by in-
tegrating Eq. (5) over the control sequence for either all turning or all straight-line
trajectories (i.e. successively applying the control primitives), defined through con-
trol sequences S 2 f (0, 1) and S 2 f (1, 0). With respect to three-primitive fine-motion
trajectories, the error bounds for Dn are derived by integrating Eq. (5) over the range
of control sequence that can be used to vary its trajectory without changing the tra-
jectory of Dn−1; namely S 3 f ( 1

3 ,
2
3 , 0) and S 3 f (sym). The error bounds for Dn−1 are

derived in a similar fashion by integrating Eq. (5) over S 3 f (sym) and S 3 f (0, 2
3 ,

1
3 ).

3.5 Compliance

The use of fine-motion control strategies relies on the ability to reduce the accumu-
lating error in rotation of the docking microrobot. We use compliance between the
docking robots to reduce this error. We plan for compliance by considering a larger
goal-region G∗, from which the robots are guaranteed to enter G using compliance.
We observed two distinct types of compliance; self-aligning compliance between the
two robots that dock to form the initial stable shape, and docking compliance in the
case of a microrobot docking with a stable shape.
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Fig. 7. Self-aligning compliance. (a) Limits for self-aligning compliance; wy < 80µm and
α < 60◦. (b) An example of self-aligning compliance during the assembly of G1. Outlines of
Dn and Dn−1 recorded four times during a self-aligning experiment. The initial shape rotates
by 79◦ overall.

Self-aligning Compliance

Two microrobots that dock to form the initial stable shape G1 self-align during the
application of a power-delivery waveform. The opposing robots slide relative to one
another until the front edge of both robots is aligned, and they reach a stable config-
uration. Self-alignment is a form of local, pairwise self-assembly, however the un-
derlying alignment mechanics are not fully understood. Empirical data indicate that
self-alignment occurs if the incident angle at which both robots dock (α) is within
± 60◦, and the position misalignment is bounded by ± 80 µm (for simplification we
only measure position, and not angular, misalignment, see Fig. 7(a)). The goal re-
gions Gn and Gn−1 for both robots can be enlarged correspondingly, resulting in the
expanded goal regions G∗n and G∗n−1. Fig. 7(b) shows an example of self-alignment
between two docking robots. Outlines of the two devices measured four times during
a self-aligning experiment are shown, illustrating the reduction in relative error. Note
that the initial shape rotates while the two robots self-align.

Docking Compliance

Compliance between a single robot and a stable shape occurs when the robot is com-
manded to move forward with the steering arm in the elevated position, and one of its
corners makes contact with the stable shape. When the corner of the robot contacts
the edge of the stable shape (at point ci), the robot rotates around this point (the steer-
ing arm is always elevated during docking), and aligns with the flat edge of the stable
shape. The alignment occurs only if the incident angle (α) of the robot approaching
the object is within its sticking cone (the range of incident angles at which the corner
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co will stick to the object), which we have conservatively bounded by ± 45◦. Similar
to self-aligning compliance, docking compliance allows us to enlarge the preimage
of the goal, effectively enlarging the target region Gi by the sticking cone, resulting
in the expanded target region G∗i . Adjusting r′i in the fine-motion strategy allows us
to precisely control the location of ci.
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