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Chapter 11

Computational Protein Design

This is an example Chapter for our course notes. It is taken from Chapter 11 of the Textbook.

A PDF of this chapter is freely available at the MIT Press Web site.

This lecture introduces the automated protein design and experimental validation of a

novel sequence, as described in [1].

11.1 Introduction

Given a 3-D backbone structure, the protein design problem is to find an optimal sequence

that satisfies the physical chemical potential functions and stereochemical constraints. Pro-

tein design is an “inverse folding problem”, and fundamental for understanding the protein

function.

The term rotamer denotes discrete rotational conformations of protein sidechains. Typi-

cally these are represented by a finite discretization of the sidechain χ1, χ2, . . . dihedral angles.

Rotamers are based on observed sidechain conformations from a statistical analysis of high-

resolution crystal structures in the PDB. A rotamer can encode a different conformation of

the same amino acid sidechain, or a switch in amino acid type. Both are encoded uniformly
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Chapter 11. Computational Protein Design

using a rotamer library that contains the low-energy sidechain conformations across different

amino acids.

The most basic protein design problem is often viewed as a search for the optimal rotamers

to fit on a given protein backbone. Typically, the Cα-Cβ bond remains invariant unless the

residue is mutated to glycine or proline. The search returning the optimal rotamers yields

both sidechain conformations and underlying design sequence. The sequence of the computed

rotamers can be obtained by examining the amino acid type of each residue while disregarding

its sidechain conformation. However, structural confirmation of a designed structure requires

comparing the predicted side-chains (and backbone) versus the experimentally-determined

structure by x-ray crystallography or NMR.

11.2 Overview of Methodology

The following is the methodology used in [1] :

Given a backbone fold of a target structure, [1] first developed an automated side-chain

selection algorithm to (1) screen all possible amino acid sequences, and (2) find the optimal

sequence and side-chain orientations (rotamers). Then experimental validation by using

NMR was performed to evaluate the computed optimal sequence/structures.

11.3 Algorithm Design

Input: Backbone fold (Zif268), represented by structure coordinates.

Output: Optimal sequence (FSD-1)
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Overview:

(1) The algorithm considers specific interactions between (a) side-chain and backbone and

(b) side chain and side chain.

(2) The algorithm scores a sequence arrangement, based on a van der Waals potential

function, solvation, hydrogen bonding, and secondary structure propensity [1].

(3) The algorithm considers a discrete set of rotamers, which are all allowed conformers of

each side chain.

(4) The algorithm applies a dead-end elimination (DEE) algorithm to prune rotamers that

are inconsistent with the global minimum energy solution of the system.

Details:

The inputs of the algorithm are structure coordinates of the target motif’s backbone,

such as N, Cα, C′ and O atoms, and Cα-Cβ vectors. The residue positions in the protein

structure are partitioned into core, surface, and boundary classes. The set of possible amino

acids at the core positions is {Ala, Val, leu, Ile, Phe, Tyr, Trp}. The set of amino acids con-

sidered at the surface positions is {Ala, Ser, Thr, His, Asp, Asn, Glu, Gln, Lys, Arg}. The

combined set of both core and surface amino acids are considered for the boundary positions.

Note: The total number of possible amino acid sequences is equal to the product of possible

amino acids at each residue position. For instance, suppose that there are 7 possible amino

acids at one core position, and 16 possible amino acids at each of 7 boundary positions,

and 10 possible amino acids at each of 18 surface positions. The search space consists of

7× 167 × 1018 = 1.88× 1027 possible amino acid sequences.
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The algorithm is divided into two phases:

Phase 1 (Pruning): The algorithm applies DEE to find and eliminate rotamers that are

dead-ending with respect to the global minimum energy solution (GMEC). A rotamer r at

the residue position i will be eliminated (i.e., proven to be dead-ending) if there is another

rotamer t at the same position such that replacing r by t will always reduce the energy.

However, näıvely checking this will still take exponential time. Therefore the following

pruning was applied. Below, ir denotes rotamer r at sequence position i. Similarly, it and

js denote, respectively, rotamer t at position i, and rotamer s at position j.

DEE Condition: If there exists a rotamer t satisfying

E(ir)− E(it) +
∑

j

min
s

(E(ir, js)− E(it, js)) > 0, (11.1)

then r will be eliminated, where E(ir) and E(it) represent self-energies, i.e., ener-

gies between the atoms of a single rotamer (e.g., ir). By convention, and for con-

venience, we include in the self-energy term the rotamer-template energies also.

In this context, ‘template’ means the geometric structure of the protein backbone

atoms. E(ir, js) and E(it, js) represent residue pairwise, rotamer-rotamer ener-

gies for rotamers ir, it, and js. The condition in Eq. (11.1) ensures that replacing

r by t will always reduce the energy, regardless of what the rotamers at other

residue positions are. The intuition behind Eq. (11.1) is given in Sec. 11.4.

Note that we have ‘overloaded’ the operator E to represent both self-energies (e.g., E(ir))

and residue-pairwise energies (e.g., E(ir, js)). Many protein design algorithms (including

most of those in this book) explicitly require that the energy function E be residue-pairwise

additive. The DEE algorithms directly exploit this assumption. In general, DEE algorithms

could, in principle, be extended to work with residue-k-wise additive energy functions instead,

4



Chapter 11. Computational Protein Design

for a small constant k > 2. However, parameterizing such energy functions requires care,

and can be difficult. In general, “N -body” energy functions (where N is the total number of

atoms) such as the Generalized Born/Poisson-Boltzmann solvation models are not amenable

to DEE. However, there are approximate pairwise solvation models, and these are discussed

in Chapter 12.

Different scoring functions E are defined for core, surface and boundary residues sepa-

rately. The scoring function for core residues uses “a van der Waals potential to account for

steric constraints and an atomic solvation potential favoring the burial and penalizing the

exposure of nonpolar surface area” [1]. The surface residues apply a hydrogen-bond potential

and secondary structure propensities, and a van der Waals potential. The residues at the

boundary positions use a combination of both core and surface scoring functions.

Phase 2 (Enumeration): For any residue position i, let Ri be the remaining rotamers

that are not eliminated in the Phase 1. The algorithm then enumerates all the combinations

of remaining romtamers—that is,
∏

i Ri—to find the combination that has the global minimal

energy. Enhancements to DEE (e.g., [3, 2]) also prune pairs of rotamers that are inconsistent

with the GMEC, returning only subsets Rij ⊂ Ri × Rj of the pairwise cross products.

Rotamer pairs in Ri ×Rj but outside Rij cannot participate in the GMEC.

Phase 1 is provably correct, in that no rotamer will be pruned if it is part of the GMEC.

Phase 1 is also polynomial-time. Phase 2 can be made provable using the A∗ search algo-

rithm (Chapter 12 and [4]). That is, A∗ after DEE will guarantee to compute the GMEC.

Phase 2 is worst-case exponential-time.

Results:

Figure 11.1 shows the comparison of optimal computed sequence FSD-1 and the target
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sequence Zif268. Figure 11.2 shows the comparison of the experimentally-determined struc-

ture of the optimal computed sequence FSD-1, versus the structure of the target backbone

sequence Zif268.

11.4 Intuition: Dead-End elimination

Here is the intuition behind Equation (11.1), the Dead-End Elimination (DEE) condition.

We repeat it here for clarity:

E(ir)− E(it) +
∑

j

min
s

(E(ir, js)− E(it, js)) > 0. (11.1)

Recall that lower energy is better; we are searching for the GMEC. The DEE condition

(Equation 11.1) tells us that we can prune a candidate rotamer ir if certain conditions hold.

Those conditions include: the existence of a competitor rotamer it (i.e., a competitor rotamer

t, also at position i) that is better than ir. But how can we prove that t is better than r?

For this calculation, it will be helpful to use the perspective of a witness rotamer js. In

this biophysical modeling problem the only ‘perspective’ a witness can have on the discrete

choice ir vs. it is its energetic interaction with the candidate vs. the competitor. One of these

energies will be more favorable, which implies we may construct a penalty for the choice of

rotamer r vs. t at position i.

First, the DEE condition contains a local sidechain-backbone penalty encoding the cost

of choosing ir vs. it. This is E(ir)− E(it). It is independent of js.

The DEE condition also includes a pairwise sidechain-sidechain penalty for the cost of

choosing ir vs. it, from the perspective of js. Now, if we knew what rotamer s was at position

j, then this penalty would simply be E(ir, js)−E(it, js). Since we don’t, all possible rotamers

at position j must be considered. The pairwise penalty is built by computing at position j
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Figure 11.1: Comparison of computed sequence FSD-1 and the target sequence Zif268 [1]. Se-
quence of FSD-1 aligned with the second zinc finger of Zif268. The bar at the top of the figure
shows the residue position and the open bars indicate the 20 surface positions. The alignment
matches positions of FSD-1 to the corresponding backbone template positions of Zif268. Of the
six identical positions (21 percent) between FSD-1 and Zif268, four are buried (lle7, Phe12, Leu18,
and lle22). The zinc binding residues of Zif268 are boxed. Representative nonoptimal sequence
solutions determined by means of a Monte Carlo simulated annealing protocol are shown with their
rank. Vertical lines indicate identity with FSD-1. The symbols at the bottom of the figure show
the degree sequence conservation for each residue position computed across the top 1000 sequences:
filled circles indicate more than 99 percent conservation, half-filled circles indicate conservation
between 90 and 99 percent, open circles indicate conservation between 50 and 90 percent, and the
absence of a symbol indicates highest occurence at each position is identical to the sequence of
FSD-1. Single-letter abbreviations for amino acid residues as follows: A, Ala; C, Cys; D, Asp; E,
Glu; F, Phe; G, Gly; H, His; I, lle; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser;
T, Thr; V, Val; W, Trp; and Y, Tyr. Credit: Ref. [1].
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Figure 11.2: Backbone structure comparisons of computed sequence FSD-1 and the target se-
quence Zif268 [1]. Comparison of the FSD-1 structure (blue) and the design target (red). Stereoview
of the best-fit superposition of the restrained energy minimized average NMR structure of FSD-1
and the backbone of Zif268. Residues 3 to 26 are shown. Credit: Ref. [1].

a lower bound on the ir vs. it penalty, namely min
s

(E(ir, js) − E(it, js)). The minimization

occurs over all possible rotamers s at position j. Then a sum is computed of all such lower

bounds over all residue positions:
∑
j

mins(E(ir, js)−E(it, js)). If the entire quantity on the

left-hand side in equation Eq. (11.1) is positive, then rotamer ir can be pruned, since we

have proven it cannot participate in the GMEC.

Finally, the DEE criterion can be efficiently computed, in polynomial time, by enumer-

ating triples of the form (ir, it, js). We prove this below.

11.5 Complexity Analysis

Let n denote the number of residues, and r denote the (maximum) number of possible ro-

tamers for each residue.

We first analyze the time complexity of DEE pruning in Phase 1. For each rotamer at

a specific residue position i, it takes time O(nr) to search all r possible amino acids in all

other n−1 positions to find
∑

j mins[E(ir, js)−E(it, js)]. Comparisons with other rotamers

at the same position i take r · O(nr) = O(nr2) time. Since we need to consider all possible
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rotamers at every position i, the total DEE pruning takes n · r ·O(nr2) = O(n2r3) time. So

DEE is polynomial time!

Although the pruning step will eliminate many states (that is, a configuration of rotamers)

in the search space, it cannot guarantee that the number of the remaining states is small

enough for the enumeration to be efficient. Even if there are only two rotamers remaining for

each position, the worst-case time to find the state that minimizes energy is still exponentially

large.

Note: In fact, the optimization problem in protein design has been proven NP-hard [5], and

even NP-hard to approximate [6].

11.6 Experimental Validation: Interplay of Computa-

tional Protein Design and NMR

The solution structure for the computed sequence FSD-1 was obtained by using 2D 1H NMR

spectroscopy. Sample NMR data, including a NOESY spectrum, are shown in Figure 11.3.

X-PLOR plus the standard protocols for hybrid distance geometry-simulated annealing were

used to calculate the structure. Figure 11.4 and 11.5 show an ensemble of 41 structures that

are consistent with good geometry and distance constraints within a small tolerance. The

structure of FSD-1 was close to the target structure (Zif268), validating the structure-based

protein design algorithm using DEE.

The structure determination in [1] also represents an simple didactic example of the

classic method of NMR protein structure determination in the solution state, based primarily

on NOEs. Although FSD-1 is a small protein, the basic concepts such as sequential and

short range NOEs, NOESY crosspeaks, NOESY assignment, structural ensembles, and the

9



Chapter 11. Computational Protein Design

Figure 11.3: NMR Data for FSD-1. A: FSD-1, sequential and short-range NOE connectivities.
B: 2D 1H NOESY spectrum for the optimal computed sequence FSD-1. Credit: Ref. [1].

simulated annealing structure determination protocols, are illustrated in this study. For

example, note the ambiguous NOESY crosspeak assignment (∗) in Figure 11.3B. The NOE

patterns exploited by the jigsaw algorithm (Chapter 8) are clearly seen in Figure 11.3A.

This example of NMR structure determination in the solution state is a special and

restricted case, in which FSD-1 could be synthesized through solid phase 9H-fluoren-9-

ylmethoxycarbonyl (Fmoc) chemistry. A modern study of a larger protein would typically

employ stable isotopic labeling by recombinant protein expression in a bacterial host (such as

E. coli) followed by protein purification by fast protein liquid chromatography (FPLC), and

additional NMR experiments (e.g., triple-resonance, IPAP) for assignments and to measure

structural restraints such as RDCs in weakly-aligned conditions (Chapters 15–18). Never-

theless, these results represent a successful end-to-end study using the techniques we have

been discussing, including algorithms for protein design and NMR structural biology.

10



Chapter 11. Computational Protein Design

Figure 11.4: NMR structure determination of FSD-1. Credit: Ref. [1].

Figure 11.5: Empirically-determined NMR structure ensemble of FSD-1, including side-chains.
Credit: Ref. [1].
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