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ABSTRACT

Motivation: The task of engineering a protein to perform a target
biological function is known as protein design. A commonly used
paradigm casts this functional design problem as a structural one,
assuming a fixed backbone. In probabilistic protein design, positional
amino acid probabilities are used to create a random library of
sequences to be simultaneously screened for biological activity.
Clearly, certain choices of probability distributions will be more
successful in yielding functional sequences. However, since the
number of sequences is exponential in protein length, computational
optimization of the distribution is difficult.
Results: In this paper, we develop a computational framework
for probabilistic protein design following the structural paradigm.
We formulate the distribution of sequences for a structure using the
Boltzmann distribution over their free energies. The corresponding
probabilistic graphical model is constructed, and we apply belief
propagation (BP) to calculate marginal amino acid probabilities. We
test this method on a large structural dataset and demonstrate the
superiority of BP over previous methods. Nevertheless, since the
results obtained by BP are far from optimal, we thoroughly assess
the paradigm using high-quality experimental data. We demonstrate
that, for small scale sub-problems, BP attains identical results to
those produced by exact inference on the paradigmatic model.
However, quantitative analysis shows that the distributions predicted
significantly differ from the experimental data. These findings, along
with the excellent performance we observed using BP on the
smaller problems, suggest potential shortcomings of the paradigm.
We conclude with a discussion of how it may be improved in the
future.
Contact: fromer@cs.huji.ac.il

1 INTRODUCTION
The engineering objective of ‘creating’ a protein to perform a target
biological function is known as protein design. Since the pursuit of
a protein with a specific function without additional constraints is
perceived as overly difficult, the function-design problem is usually
restricted to the search for an amino acid sequence that assumes
a target 3D structure (Kuhlman et al., 2003; Park et al., 2004),
assuming that this structure will entail a specific function. The
potential applications of such design are diverse and numerous
(for a recent review, see Rosenberg and Goldblum, 2006). Specific
objectives include the modest ambition of slight modifications of
existing proteins to affect such characteristics as stability or binding
affinity (Shifman and Mayo, 2002). A loftier goal is to design
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protein sequences that will assume novel structures (Kuhlman et al.,
2003) or acquire new functionalities. Such functionalities may be
therapeutic (e.g. Bewley et al., 2002, where an HIV inhibitor protein
was designed, or Lazar et al., 2003) or industrial (e.g. Arnold, 2001,
which discusses the design of biocatalysts). Furthermore, the success
(or failure) of such protein design experiments will aid us in the
validation of our understanding of the physics of protein stability
and structure.

Most recent work on structural protein design adopts a
paradigmatic representation of a protein as a fixed backbone
structure. Also, the amino acid side chain conformations are not
permitted to move continuously in space; rather, the allowed
conformations consist of a library of discrete, energetically favorable
empirical observations [termed ‘rotamers’ (Dunbrack and Karplus,
1993)]. The two former assumptions artificially limit the spatial
degrees of freedom of the protein structure but are adopted for
computational tractability. Additionally, pairwise atomic energy
terms are used to confer pseudo-physical energetic values to pairs of
atoms (Gordon et al., 1999). These energies are employed in scoring
individual sequences, either through per-sequence consideration
of the minimal-energy rotamer conformation (as in Shifman and
Mayo, 2002) or of the rotamer-based free energy partition function
(Kamisetty et al., 2007; Lilien et al., 2005). It should also be noted
that there exists a line of work that attempts to overcome the use
of a fixed backbone by iterating between cycles of fixed backbone
design and backbone improvements, e.g. Kuhlman et al. (2003).

Ultimately, the results of computational methods for this task
must be experimentally verified in the wet lab. This typically leads
to cycles of computational prediction of top-scoring sequences,
synthesis of these sequences and biological characterization, and
fine-tuning of the computational methods and inputs based on these
empirical results (Kuhlman et al., 2003). However, this strategy
only permits the biophysical screening of relatively few sequences
(conceivably, hundreds at the most). Computational design of a small
set of candidate sequences has been termed directed protein design
(Park et al., 2005).

1.1 Probabilistic protein design
On the other hand, recent revolutionary advances in molecular
biology have provided scientists with combinatorial sequence-
screening techniques, such as phage display (Pal et al., 2006),
which can produce 109–1010 randomized protein sequences that
are then simultaneously tested for relevant biological function.
This randomized synthesis and screening process is schematically
illustrated in Fig. 1. This technology has lead to an alternative
protein design protocol, designated probabilistic protein design
(Park et al., 2005), which incorporates powerful computational tools
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Fig. 1. The principle of combinatorial sequence screening is depicted for
a protein of length 4, where amino acid types are represented by green,
yellow, blue and red. The wild-type (WT) protein is mutated at its leftmost
and rightmost positions, according to position-specific probabilities, yielding
random proteins to be screened through a selection assay; dashed boxes
indicate mutations from WT. In this scenario, four of the seven random
protein sequences were positively selected.

into large-scale biological screening of candidate protein sequences.
Overall, it involves two steps:

(i) Computational prediction of amino acid probabilities at each
position for the given design problem (considering all other
possible amino acid sequences at other positions).

(ii) Use of these predicted probabilities to ‘bias’ the synthesis of
random gene sequence libraries, which can be experimentally
selected for relevant biological function (Hecht et al., 2004;
Kono and Saven, 2001; Park et al., 2005).

Despite the ability of the aforementioned experimental methods
to screen billions of sequences, the computational aspect remains of
utmost importance, since many relevant design problems involve
tens of positions where all 20 amino acids could potentially be
placed, exceeding the biological screening capability by many
orders of magnitude. The goal of this two-step technique is
that the computationally predicted positional probabilities will
significantly enrich the randomized sequences with those that
are highly likely to possess the target biological characteristics
and thus pass the screening stage, resulting in much higher
success rates. Nevertheless, we emphasize that the predicted
probabilities are only intended to bias the sequence space towards
optimality, but do not guarantee the exclusive synthesis of low-
energy sequences; this derives from the use of site-specific amino
acid probabilities, independently employed for the various design
positions.

Computational methods for calculation of positional amino acid
probabilities based on structural information have been developed
in the context of both directed protein design (Calhoun et al., 2003;
Delarue and Koehl, 1997) (where they were intended to build highly
probable sequences) and probabilistic protein design (Biswas et al.,
2005; Kono and Saven, 2001; Park et al., 2005; Voigt et al., 2001;
Yang and Saven, 2005). These methods include the use of mean field
(Delarue and Koehl, 1997; Voigt et al., 2001), Monte Carlo sampling
techniques (Yang and Saven, 2005), and Lagrangian optimization
based on simplifying approximations (Biswas et al., 2005; Calhoun
et al., 2003; Kono and Saven, 2001; Park et al., 2005). Overall,

these approaches have been met with some success (e.g. Park et al.,
2006), depending on the criterion utilized to assess performance.

In this paper, we describe a novel formulation for modeling
the probabilistic design problem, following the structural design
paradigm and the corresponding assumptions described above.
Furthermore, we apply an innovative technique for efficient and
accurate calculation of the marginal amino acid probabilities. We
show that our novel method obtains quicker and more accurate
results than those derived from previously applied approaches, as
compared with exact results on the paradigmatic model. On the other
hand, quantitative analysis of the results obtained by this model,
as compared to evolutionary and experimental results, indicates
inherent deficiencies in the modeling of the probabilistic protein
space by this widely used paradigm.

2 PROBABILISTIC PROTEIN DESIGN: THEORY
AND EFFICIENT MODELING

The input to the protein design problem consists of a spatial structure,
N positions to be designed, and the amino acids (and their respective
rotamers) permitted at each position. We denote by r= (r1,...,rN ) an
assignment of rotamers for all positions. For a given energy function,
the energy of assignment r, E (r), is the sum of interaction energies
between a rotamer ri at position i and the fixed template (Ei (ri)),
and pairwise interaction energies between rotamers ri and rj for
neighboring positions i,j (Eij(ri,rj)). We define T (k) as the amino
acid type of rotamer k and let T (r1,...,rN )= (T (r1),...,T (rN )).
Let S= (S1,...,SN ) denote an assignment of amino acids for all
positions.

2.1 Sequence probability space
Consider the Helmholtz free energy of a specific amino acid sequence
S at system temperature T , as defined in Yedidia et al. (2005):

F(S,T )=−T lnZ(S,T ) (1)

where

Z(S,T )=
∑

r:T (r)=S
e
−E(r)

T (2)

is the per-sequence partition function for sequence S (Lilien et al.,
2005) at system temperature T .

Since free energy is the operative value in measuring the
thermodynamic compatibility of various sequences with the
structure, and conceptually following Meyerguz et al. (2004) in
assuming the applicability of Boltzmann’s law over the sequence
space, we define the probability of a given sequence S at system
temperature T as:

Pr(S)∝e
−F(S,T )

T ≡Z(S,T ) (3)

It is easy to see that the normalization factor for Pr(S) is

Z(T )=
∑

r
e
−E(r)

T (4)

thus yielding:

Pr(S)= 1

Z(T )
Z(S,T ) (5)
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Boltzmann’s law has been shown to describe physical systems
in thermal equilibrium at a given temperature level (Huang, 1987;
Yedidia et al., 2005). Since we are dealing with an energetic system
where the states and energies are sequence assignments and their
free energies, respectively, Equations 3–5 are applicable. In essence,
this perspective regards the system of all sequences as competing
among themselves to be chosen during the stage of experimental
(or possibly evolutionary, e.g. Meyerguz et al., 2004) selection.

2.2 Rotamer probability space
We wish to follow Equation 5 but would like to work directly with
the rotamers of all sequences simultaneously. Therefore, we consider
a probability space over all rotamer assignments for all sequences,
where the probability of rotamer assignment r, at system temperature
T , is defined as:

Pr(r)= 1

Z(T )
e
−E(r)

T (6)

where Z(T ), the rotamer space partition function, is as defined
in Equation 4. We note that Equation 6 follows Boltzmann’s law
over the rotamer space and, more significantly, substitution into the
intuitive definition for sequence probability:

Pr(S)=
∑

r:T (r)=S
Pr(r) (7)

directly yields Equation 5. Now, by definition, the marginal amino
acid probabilities at position i are given by:

Pr(Si)=
∑
S\Si

Pr(S) (8)

However, due to Equation 7, this result could equivalently be
generated if Pr(Si) were directly defined as:

Pr(Si)=
∑

ri:T (ri)=Si

Pr(ri) (9)

where Pr(ri)=
∑

r\ri
Pr(r) is the marginal probability of rotamer ri

at position i. Note that, in fact, Equation 9 was used as the definition
for amino acid probabilities in previous work (Biswas et al., 2005;
Kono and Saven, 2001; Park et al., 2005; Voigt et al., 2001; Yang and
Saven, 2005). In contrast to the theory developed above, however,
no explicit definition of the probability space over the sequences or
justification for such amino acid probabilities was given.

At this point, we find it pertinent to emphasize that although our
model accounts for the per-sequence free energy partition function
(Lilien et al., 2005) in defining the probability for a particular
sequence (Equation 5), these values are never actually calculated for
any individual sequences. Rather, these per-sequence free energies
form the theoretical basis of the site-specific amino acid probabilities
(Equation 8), but we do not actually resort to the exponential
summation of sequence probabilities (see below).

2.3 Protein design using probabilistic graphical models
With a clearly delineated model for positional amino acid
probabilities in hand, we now present our novel approach.
A probabilistic graphical model (Lauritzen, 1996) is built to
represent this probabilistic protein design problem, where each
designed position is a variable in the model, and its values
correspond to the allowed rotamers (for all permitted amino acids)

at that position. The exponentiated rotamer-backbone energies are
the local potentials in the model:

ψi(ri)=e
−Ei (ri )

T

and the rotamer-rotamer energies define the pairwise potentials:

ψij(ri,rj)=e
−Eij (ri ,rj )

T

Since the size of the rotamer space is exponential in protein
length, the calculation of exact probabilities (Equation 8) using this
graphical model is computationally infeasible for large proteins.
Therefore, an approximate inference method is required. Herein,
we apply sum–product loopy belief propagation (Pearl, 1988), to
which we simply refer as BP. Thus, belief messages of the form:

mi→j(rj)=
∑

ri

⎛
⎝e

−Ei (ri )−Eij (ri ,rj )

T

∏
k∈N(i)\j

mk→i(ri)

⎞
⎠

are passed from position i to position j, where the contents of mi→j
indicate the relative likelihood of each rotameric state at position j.
Note that N(i) denotes the set of variables neighboring variable i.

After convergence of BP, the resulting marginal rotamer
probabilities are defined as (after normalization):

Pr(ri)=e
−Ei (ri )

T

∏
k∈N(i)

mk→i(ri)

These rotamer beliefs at each position (which account for all possible
sequences at all other designed positions) are then marginalized per
amino acid to obtain the per-position amino acid probabilities for
the design problem, as described in Equation 9.

We note that the method described here puts to use, and thus
assesses, the actual values of the sum–product marginals derived
through loopy BP on a graphical model built to describe a protein
structure (and all of its possible sequences), and is thus conceptually
similar to the method utilized by Moore and Maranas (2003), to
predict residue–residue clashes in protein hybrids. On the other hand,
most previous related methods seek the minimal-energy assignments
(using max-product BP) (Yanover and Weiss, 2003; Yanover et al.,
2006) or utilize the sum–product beliefs (Kamisetty et al., 2007) or
pruning methods (Lilien et al., 2005) to approximate the free energy
for a single protein sequence.

3 METHODS

3.1 Test cases and benchmark probabilities
PDB dataset and evolutionary data Protein structures were culled from the
PDB database (Berman et al., 2000) in the following manner: experimental
X-ray structures containing a single protein chain of length 30−70 amino
acids, with a minimal resolution of 2 Å were considered, where a cut-off
level of 30% sequence identity was applied to remove homologues. For
these cases, the ground truth probabilities were taken to be those derived
for the PDB structures from evolutionary data by the HSSP (Homology-
derived Secondary Structure of Proteins) database (Dodge et al., 1998).
We further required that the HSSP entry for the protein structure contain
a minimum of 10 alignments; the final set of 29 structures is listed in
Table 1. For each of these structures, all positions were designed using the
pairwise atomic energy function of the Rosetta design package (Kuhlman
and Baker, 2000) with default parameters and the backbone-dependent
rotamer library of Dunbrack and Karplus (1993). The energy function
includes terms for the 12-6 Lennard-Jones potential, implicit interaction
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Table 1. Dataset of 29 proteins from the PDB database, for which
full sequence probabilistic design was computationally performed.
Representative structures for each structural class are taken from (Berman
et al., 2000).

PDB Classification Length Alignsa Classb

1AIE P53 Tetramerization 31 63 all alpha
1WY3 Structural Protein 35 104 all alpha
1KFN Membrane Protein 53 35 all alpha
2CMP Terminase 56 88 all alpha
1DF4 Viral Protein 57 2868 all alpha
1NKD Transcription Regulation 59 34 all alpha
1L2P Hydrolase 61 165 all alpha
1KU3 Transcription 61 1496 all alpha
1R69 Gene Regulating Protein 63 371 all alpha
2OCH Chaperone 66 1500 all alpha
2G7O DNA Binding Protein 68 19 all alpha
1UTG Steroid Binding 70 15 all alpha
1A8O Viral Protein 70 1500 all alpha
1AIL RNA-binding Protein 70 1500 all alpha

all alpha

2GQV Oxidoreductase 59 18 all beta
1MHN RNA Binding Protein 59 74 all beta
1TG0 Contractile Protein 66 122 all beta

all beta

1WKX Allergen 43 345 (a+b)
1EJG Plant Protein 46 42 (a+b)
2ERW Blood Clotting, Hydrolase Inhibitor 53 314 (a+b)
1YP5 Contractile Protein 58 115 (a+b)
4PTI Proteinase Inhibitor (Trypsin) 58 394 (a+b)
1ZLM Signaling Protein 58 1209 (a+b)
2FJZ Metal Binding Protein 59 91 (a+b)
2PST Unknown Function 61 178 (a+b)
1UCS Antifreeze Protein 64 52 (a+b)
1YPC Proteinase Inhibitor (Chymotrypsin) 64 109 (a+b)
1AHO Neurotoxin 64 207 (a+b)
2FHT Chemokine 68 180 (a+b)

(a+b)

aNumber of HSSP alignments from which the evolutionary probabilities were derived.
bStructural class, as defined by the SCOP or CATH databases (as available).

with the solvent, electrostatics, a hydrogen-bonding potential, backbone
dependent internal free energies of rotamers, and amino acid reference
energies (wref ).

Human growth hormone As an in-depth case study, we further considered
the structure of the human growth hormone (hGH) complexed with the
extracellular domain of its receptor (hGHR), PDB code 3HHR. For this
case, 35 positions of hGH (Fig. 4), which lie on the interface with hGHR
were designed under a variety of scenarios (see Experiments). We attempted

to recover the experimentally derived positional probabilities detailed in Pal
et al. As above, the Rosetta energy function was employed with default
parameters, except where otherwise noted. For this case, we arbitrarily added
pseudo-counts of 0.5 to the raw experimental data from Pal et al. in order to
compensate for sample bias (unobserved amino acids).

Since Rosetta does not fully support the design of the amino acid cysteine,
all references to design for all possible amino acids should be interpreted as
meaning design of all other 19 natural amino acids; in order to compensate for
this, we manually removed all references to cysteine from the HSSP-derived
probabilities and the experimental results of Pal et al. For all experiments
described herein, we use a temperature value corresponding to human body
temperature (37◦C), scaled by the Boltzmann constant to yield an energetic
term (Huang, 1987).

3.2 Prediction algorithms
Belief propagation (BP) Sum–product loopy belief propagation (Pearl,
1988) was run until numerical convergence, or a maximum of 100 000
messages passed. BP converged for all proteins in the PDB dataset and for
almost all cases for the hGH–hGHR problems; in any event, the sum–product
marginals at termination were utilized to predict the positional marginal
amino acid probabilities (Equation 9).

Mean field (MF) Self-consistent mean field theory (Delarue and Koehl,
1997) was applied to the problems, using a randomized update order for the
positions. The first-order mean field iterative update formula is:

qi(ri)←αi ·e
−Ei (ri )

T ·e

( ∑
j∈N(i)

∑
rj

qj (rj )
−Eij (ri ,rj )

T

)

where αi is a normalization factor. At termination, Equation 9 was applied
to obtain amino acid probabilities from the rotamer probabilities (qi(ri)).

Gibbs sampling (Gibbs) Gibbs sampling was performed such that each
atomic step consisted of randomly switching all of the positions in the
problem (in random order), based on the local posterior probabilities; the
sampler was burned in for 50 steps, with an interval of 20 steps between
samples. Equation 9 was utilized here as well.

Exact probabilities For the smaller hGH–hGHR cases, exact results were
obtained by iterating over all possible sequences and explicitly calculating
the per-sequence partition function defined in Equation 2 [using the junction
tree method (Cowell, 1998)] and applying Equation 5. For all other instances,
this was not feasible because the junction tree method is exponential in the
largest clique size formed, which is intractably large for even moderate-sized
design problems.

3.3 Assessment of predicted distributions
To quantitatively compare probability distributions, we use the symmetric
Jensen-Shannon divergence (JSD), which ranges from 0 (identical) to 1
(‘distant’ distributions), so that lower JSD scores reflect higher similarity
between distributions. The JSD between distributions P and Q is given by:

JSD(P,Q)= 1

2
DKL(P||R)+ 1

2
DKL(Q||R)

where R= 1
2 (P+Q) is the average distribution, and

DKL(A,B)=
∑

x

a(x)log
a(x)

b(x)

is the Kullback-Leibler divergence between distributions A and B.

4 EXPERIMENTS
We assessed our framework for probabilistic protein design in
two main contexts: using wide-ranging evolutionary data and in
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Fig. 2. The JSD values for 1700 design positions spanning 29 fully designed proteins from the PDB, where the ground truth probabilities are derived from
the HSSP database. Left: Comparison of JSD obtained by Gibbs (200 sampling steps), MF, BP and the uniform distribution, where each column denotes the
mean JSD for all positions of a single protein in the dataset; proteins are ordered as in Table 1 and structural classes are as marked. Numbers on the right
indicate the mean JSD values, over all proteins, for the respective methods. Right: Histogram of JSD values for all 1700 design positions.

a case study of experimental data for hGH. For both scenarios, we
demonstrate enhanced performance using BP on our modeling of
the problem, yet find the ubiquitous structural paradigm to be quite
lacking.

4.1 Evolutionary data
Firstly, we applied our novel approach to the comprehensive dataset
culled from the PDB (Table 1). It must be noted that we should not
expect to fully predict evolutionary profiles exclusively using protein
energetics, since there exist additional selective pressures for which
we do not account. Nonetheless, due to the sparsity of experimental
data (see hGH experiments below) in which the energetic sequence
landscape was more directly probed, in this section we resort to
utilizing the distribution of amino acids in the HSSP database for a
given protein structure as the ‘ground truth’.

All protein positions were designed to all amino acids, and
we measured the correspondence of our BP-predicted amino acid
probabilities (using the JSD measure) to those derived by the HSSP
database (Fig. 2). Furthermore, we used the same paradigmatic
models for each structure to compute amino acid probabilities
using Gibbs sampling (200 samples) and MF. A naive alternative to
predicting positional probabilities for probabilistic design is simply
to allow all amino acids with equal probability at all positions
(the uniform distribution). We thus also include this distribution in
our analysis.

Overall, our results (Fig. 2, left) show that for most proteins
the mean JSD for the various methods (excluding uniform) are
highly correlated; since they all use the same pre-calculated
Rosetta energies, this is not completely surprising. Nevertheless, this
indicates that for cases where the paradigmatic model corresponds
to the evolutionary data, the prediction methods will yield
similarly good results (albeit with some performing better than
others, see below), and vice versa. In particular, it seems that
for the mixed α and β proteins, the paradigmatic model works
better to predict the evolutionary data than for other structural
classes.

Class PDB Run Time

all alpha 1AIL

36.4 m
26.6 m

25.3 m

all beta 1TG0

35.6 m
35 m
35.8 m

(a+b) 2FHT

35.8 m
24.5 m

32 m

Fig. 3. Computational run-times for representative proteins from the dataset
in Table 1, where bar colors are as in Fig. 2. m = minutes.

Expectedly, the uniform distribution performs most poorly
(highest mean JSD), which attests to the need for computational
methods to predict the relevant positional amino acid probabilities
for specific proteins. Moreover, BP and Gibbs sampling significantly
outperform MF (lower mean JSD and leftward shifted distributions,
Fig. 2), despite using the same pre-computed Rosetta energies and
requiring approximately the same run-time (Fig. 3). We also found,
in most cases, that Gibbs sampling takes slightly longer to achieve
results comparable to those of BP.

We observed that, for positions where the JSD is larger for the BP
probabilities than for the MF ones, it is only slightly higher (mean
increase of 0.035 in JSD for 760 positions). On the other hand, there
are a very large number of positions where BP has significantly
improved the performance of the paradigmatic model in recovering
HSSP-derived probabilities, i.e. the JSD is decreased as compared
to the state-of-the-art MF method (mean decrease of 0.134 over 884
positions). Note that a comparison of BP with Gibbs sampling did
not show significant differences in per-position performance.

Despite the fact that BP and Gibbs sampling outperform the MF
method in the prediction of amino acid probabilities, their mean
JSD from the HSSP-derived probabilities nonetheless indicate that
the paradigmatic model does not strongly correspond to the amino
acid probabilities found in nature. We hypothesized that this could
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Fig. 4. Left: The hGH–hGHR complex (PDB code 3HHR). The 35 design residues are colored in cyan (positions included in small-scale testing) and blue.
The shell of 106 positions (in hGH and hGHR), allowed to conformationally vary in the large-scale testing, is colored yellow. All other positions are colored
red. Structures were drawn using Chimera (Pettersen et al., 2004). Right: The JSD for the designed positions in the small-scale problems, for the methods
tested (compared to the exact probabilities): Gibbs sampling after 200 and 2000 samples, MF and BP. Results are depicted in log scale and non-existent
columns (e.g. for BP) indicate values lower than 10−10. For position 168, the Gibbs sampler failed to converge to accurate probabilities even after 200 000
samples. Also for this position, depending on the update order, MF often yielded highly inaccurate probabilities (not shown).

be due to other, non-energetic constraints that may exist for natural
sequences (e.g. Humphris and Kortemme, 2007). To investigate this
matter, we proceeded to perform a case study of recently published
large-scale experimental probability data, for which it is expected
that non-energetic considerations are less significant.

4.2 Experimental design data for hGH
Although some of the techniques described above for probabilistic
protein design have been applied with some success (e.g. Park
et al., 2006), they have not yet, to the best of our knowledge, been
applied to perform large-scale unsupervised combinatorial protein
design (as suggested in Park et al., 2005), or even tested on a
comprehensive dataset of experimentally-derived probabilities. The
dataset presented in Pal et al. is the first such data of its kind, in that
it experimentally estimated the site-specific amino acid probabilities
for a large number of positions of a given protein structure.
Specifically, it calculated the positional amino acid probabilities
for 35 positions (Fig. 4) on the interface of hGH with its receptor
(hGHR), by grouping them into 6 groups of 5 or 6 positions each
and uniformly allowing for all possible sequences within each group.
Random sequences were phage displayed by fusion to the M13 coat
protein and subsequent biological selection was performed by either
binding to hGHR or an antibody that specifically binds the side of the
protein opposite this interface. These two selection criteria were used
to assay either for hGH functionality or hGH stability, respectively.
Herein, we attempt to recover these experimental probabilities by
application of our method to the six sub-problems explored in
Pal et al.

For all subsequent experiments in this paper, we employ the
structure of hGH complexed with the extracellular domain of hGHR.
We analyze the probabilities calculated at the hGH positions for the
case of binding to hGHR. Qualitatively similar results were obtained
for the case of antibody binding (where we removed hGHR from
the structure to perform our calculations).

Small-scale problems Before testing our method by comparison
with the large-scale data from Pal et al., we wanted to test the efficacy
of our method in recovering the marginal probabilities as compared
to an exhaustive enumeration of the exact sequence space, assuming
correctness of the paradigmatic model. We created some ‘artificial’
small-scale examples, similar to those assessed below: from each
group of six positions in hGH defined in Pal et al., we chose two
of the spatially proximal ones to be designed and allowed for a
small shell of approximately seven nearby native amino acids in the
hGHR protein to change side chain conformations (rotamers). For
all other positions, the side chain conformations were held constant.
The positions tested (12 in total) are colored cyan in Fig. 4 (left
panel).

We compared the results of three approximate inference
methods — BP, Gibbs sampling and MF theory — with the exact
results (Fig. 4, right). The run-times for MF and BP were comparable
(∼1 s), as was the run-time for 200 samples of the Gibbs sampler.
We also ran the sampler for 2000 samples, with an approximately
proportional increase in run-time.

Figure 4 demonstrates that BP performs best, being the lowest
scorer for all positions. MF is next best and does comparably well,
since for almost all positions it achieved low JSD just as quickly.
The Gibbs sampler fares the worst, since in order to achieve JSD
comparable with MF (at best) it had to be run approximately 10 times
as long. Overall, we conclude that, for the paradigmatic model, both
previous prediction algorithms and BP are relatively successful in
yielding accurate positional probabilities.

Large-scale experimental data To simulate the experiments
reported in Pal et al., we divided the 35 hGH interface positions
into the 6 groups defined there. For a given group, its members were
permitted to assume all amino acid identities, while other positions
in the set of 35 were allowed to change rotameric state for the native
amino acid. In addition, we defined a shell of ∼11 Å (7 Å for the
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Fig. 5. Left: The JSD for all 35 designed hGH positions, compared with the experimental data. Each pair of rows portrays the results for MF and BP. The three
pairs of rows depict the results using default Rosetta parameters, an enhanced rotamer library, and the enhanced library where the wref term was eliminated.
Numbers on the right indicate mean JSD values. Right: The JSD values resulting from the inference performed by BP in the +Rotamers, −wref case (left
panel, 5th row) are color mapped onto the Cα atoms of the hGH structure, where the whiter the color, the better the prediction at that position.

longest side chain and 4 Å interaction distance) around each of the
group’s Cα atoms such that all residues in this shell (in hGH and
hGHR) whose side chain could directly interact with a side chain in
the designed group were allowed to change rotameric state (Fig. 4).
Here, we compare the results of both MF and BP for three different
Rosetta parameter sets: default parameters (Default), addition of
rotamers for both χ1 and χ2 angles (+Rotamers) and addition of
rotamers with nullification of the wref energy term intended to
enhance native sequence recovery (+Rotamers, −wref ) (Kuhlman
and Baker, 2000). We do not show the results of Gibbs sampling,
since (as observed above for both the evolutionary and small-scale
hGH data) it requires more computation time to achieve accurate
results comparable to those of BP.

The quantitative comparison of the methods with this
experimental data is again performed using the JSD (Fig. 5). Firstly,
we emphasize that we apply the JSD measure to the distributions
over all amino acids, since certain functional amino acid groupings
used in the assessment of results in earlier studies [e.g. Biswas
et al. (2005); Kono and Saven (2001)] were shown to be somewhat
unjustified by the results in Pal et al. The JSD results here indicate
large discrepancies between the predicted and observed probability
distributions. Nonetheless, using default Rosetta parameters, BP
obtains a mean JSD value of 0.435, which is a significant
improvement over its performance on the evolutionary data (mean
JSD 0.529). Thus, as hypothesized, the paradigmatic model performs
better when compared to experimental sequence selection studies.
Furthermore, we find that BP significantly outperforms MF for
almost all 35 positions. In addition, relatively independent of the
algorithm used, there is a trend of decreasing JSD as more rotamers
are allowed and when the energetic term intended to recover native
amino acid identities (wref ) is removed. As in the small-scale
problems, the run-times for MF and BP are comparable (an average
of 24 and 48 s for the default rotamer library and 695 and 1265 s
with extra rotamers added, respectively).

In analyzing the results obtained here, it should be noted that the
findings of Pal et al. were somewhat unexpected, as indicated by
the authors. In some positions, for example, substitutions that are
believed to be ‘conservative’ were not permitted. Additionally, they
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Fig. 6. The various amino acid contributions to the JSD values resulting
from the +Rotamers, −wref method on the hGH design. Since the JSD
consists of a sum over all amino acids, this decomposition was possible. The
contributions over all 35 positions were summed to obtain the results here.

observed an over-abundance of hydrophobic substitutions, even at
positions evolutionarily conserved as hydrophilic. In fact, the JSD
results using probabilities predicted by evolutionary conservation
were significantly worse than those reported here (not shown). The
findings in Pal et al. also seem to contradict the results of Kuhlman
and Baker (2000), where it was concluded that, for the most part,
‘native protein sequences are close to optimal for their structures’.
The unforeseen nature of these results could explain, to some extent,
the high degree of inaccuracy of the paradigmatic model (built
to describe previously characterized phenomena). Indeed, closer
inspection (Fig. 6) reveals that some of the worst predictions by
our method are due to hydrophilic (serine) and hydrophobic amino
acids (e.g. phenylalanine, valine and leucine), on account of under-
or over-prediction of these residue types (large JSD contributions).

Positional independence within designed groups Notwithstanding
the large discrepancies between the experimental and predicted
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Fig. 7. The JSD for all positions, for the computational results of the
extremal groupings: one group of 35 design positions (A) and 35 groups of
single design positions (I), as compared to the computational results obtained
by the six groupings from Pal et al. Color map values are limited to 0.2 for
presentation purposes. Numbers on the right indicate the mean JSD values
for the respective groupings.

probabilities, we used our model to test one of the basic assumptions
in Pal et al.: the non-cooperativity (independence) of the positions
in each of the six groups. In Fig. 7, we regard the positional
probabilities computationally predicted by the six groupings as a
baseline in comparison with two possible extremes: one group
of 35 simultaneous computational design positions (A) and 35
groups of single design positions (I). For each of these 36 new
design problems, the shell of amino acid positions allowed to vary
conformation was taken to be the same as that in the six groups
of design problems, as described above. Pal et al. are clearly
precluded from performing the former experiment since the phage
display technology can yield at most 1010 sequences (exponentially
<2035), and rule out the latter experiment due to its requirement of
the synthesis and biochemical analysis of 700 specific sequences.
Nonetheless, their stated goal was to simulate the latter situation.

Our calculations show that, for most of the positions, the
probability distribution obtained through individual design (I) was
indeed almost identical to that computationally predicted by the
authors’ groupings (low JSD values), especially in the loop regions.
On the other hand, the distributions derived from the simultaneous
design of all 35 positions (A) agree somewhat less with those
calculated by the authors’ groupings (higher JSD values). For
more than a third of the positions (found overwhelmingly in
the designed helices), the positional JSD value is 0.1 or greater;
for four of these positions, the JSD is even greater than 0.3.
Nevertheless, the individual probabilities (I) do provide a very
reasonable approximation of those obtained from the complete,
synchronous design setting (mean JSD 0.1).

We had expected to find larger discrepancies when considering
grouping A, since positions have the potential to participate in
cooperative interactions with other positions (directly, or through
intermediaries in the shell), unavailable when they are individually
mutated. Surprisingly, our results imply that, in some cases, the
use of probabilities obtained when only considering a single design
position at a time (or a group of relatively independent positions, as
in the authors’ experimental results) may work together to provide
optimal probabilities for simultaneous design of all positions, as
required for probabilistic protein design.

5 DISCUSSION
Advances in research biology now permit the analysis of a vast
number of protein sequences, on the order of 1010. Nevertheless, the
number of possible sequences in a typical design problem surpasses
this by many orders of magnitude. Therefore, strategies to enrich

the screened library of sequences with potentially promising ones
are vital. In this paper, we have proposed a computational technique
to predict positional biases to achieve this end. These biases are
calculated using approximate inference on graphical models built to
represent the paradigmatic protein design problem.

A major phenomenon demonstrated here is that use of the
paradigmatic protein model results in probability distributions far
from those observed experimentally. A similar conclusion was
recently reached (to a much lesser degree) based on a smaller
dataset of only six mutated positions (Lassila et al., 2007).
However, it must be cautioned that the nature of amino acid
preferences experimentally observed for the hGH–hGHR complex
in Pal et al. may not be typical of other protein structures. Additional
experimental data are required to draw more general conclusions,
specifically regarding the accuracy of this model. Nonetheless, since
the paradigmatic model fares poorly in predicting both experimental
and evolutionary (HSSP) probabilities, it is safe to say that there
remains substantial progress to be made in the field.

To put the performance of the paradigmatic model used here
into context, we observe that the uniform distribution over all 19
amino acids obtains a mean JSD of 0.163 when compared with
the experimental hGH results. Clearly, this would seem to be a
much better result than that achieved using the paradigm applied
here (Fig. 5), as the best method (BP) yields a mean JSD of
0.358. However, since it is a safe assumption to make that not all
positions tolerate all amino acids equally in all proteins (and as also
indicated by the poor performance of the uniform distribution on
the evolutionary data), more effort needs to be made to refine the
inaccuracies and limitations described below.

5.1 Limitations and improvements of the paradigm
The structural design paradigm used here is well-known to embody
a number of limitations, including the imprecision of the energy
function (especially for protein surfaces and interfaces, Jaramillo
et al., 2002) and its decomposition into pairwise terms, the
assumption of a fixed backbone (Kuhlman et al., 2003), and
the discretization of side chain conformation. We review the
inadequacies of the paradigm through the prism of the results for
the hGH design, though they are equally pertinent to all design
problems assessed.

Since addition of rotamers for the hGH design improved
the prediction results, it can be suggested that the side chain
discretization utilized is an acute limitation of this paradigm. Also,
the wref energy term, intended to enhance the correct choice of native
amino acids, only seemed to impair performance. However, this is
somewhat unsurprising since the results in Pal et al. frequently do not
recover the native amino acids with high probability. Nevertheless,
the decreased performance realized using the wref term alludes to the
fact that refinement of the energy functions used by the paradigmatic
model could, to some degree, increase prediction accuracy. The
problematic nature of the fixed-backbone assumption was observed
for the case of position 61 (in loop 2), where the native amino acid is
proline (putting unique constraints on the backbone). The paradigm
used here over-predicts the probability of proline, since other amino
acids are energetically unfavorable due to the steric constraints of
the backbone.

One promising future direction would be to optimize a pairwise
energy function for performance of the task of amino acid probability
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prediction at interfaces (for example, conceptually as in Yanover
et al., 2007), since the energy function used here was only
optimized for single-position native amino acid recovery in
monomers (Kuhlman and Baker, 2000). However, this objective
can only be fully realized once sufficient experimental probability
data have accumulated. Alternatively, incorporation of geometric
constraints into this paradigm could be used to produce better
predictions, since this has been shown to improve native sequence
prediction (Chakrabarti et al., 2005). A complementary goal
is to permit deviations of the backbone from the native one
(Schueler-Furman et al., 2005), thus allowing for relaxation of
some of the computationally predicted steric hindrances that
may preclude certain amino acids observed experimentally and
in evolutionarily related structures (Saunders and Baker, 2005).
Finally, since each sequence could potentially fold to any of
numerous similar structures, it may be necessary to explicitly
consider these ‘competing’ structures when modeling the sequence
probabilities of a given structure (Biswas et al., 2005).

In conclusion, although our novel approach for the large-scale
prediction of amino acid probabilities for protein design significantly
improves the state-of-the-art (both in accuracy and time), there
is still considerable room for improvement of the ubiquitous
models used. This will require breakthroughs in the field of
protein structure energetics, modeling of sequence probabilities, and
efficient algorithms for probability prediction.
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