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1. Introduction

A knowledge of the three-dimensional structures of

biological macromolecules is the key for understanding

molecular processes occurring in living systems. For a rather

long time, the availability of suitable objects such as folded

proteins was the main limitation for the application of the

two most important experimental methods for structural

determination at atomic resolution, X-ray crystallography

and NMR spectroscopy. This has been changed in the last

few years where a dramatic methodological progress has

been made in biosciences. Especially, new developments in

molecular biology and genetics allow the investigation of
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previously inaccessible information such as the complete

genome of whole organisms. In turn, structural biology has

to adapt to these new developments.

1.1. Automated structure determination methods

in the postgenomics area

The most prominent example for the new genomic area

was the successful effort to decode the human genome. With

the experimental methods created for solving this central

problem, subsequently the elucidation of small genomes is

now routine work and the number of available DNA

sequences and hence of protein sequences has increased

almost exponentially. However, to fully make use of the

genomic information, it is necessary to know the three-

dimensional structures of the encoded proteins. The spatial

structures allow one to understand the function and course

of biological processes on a molecular level, to establish

previously unknown evolutionary relationships between

large protein sequence families, and to investigate inter-

molecular interactions on an atomic scale. The last point is

of particular importance to pharmaceutical research.

In contrast to the large number of available protein

sequences only about 21,500 protein structures have been

solved so far (date: 31.07.03). In addition, a large number of

these deposited structures stem from identical or highly

homologous proteins. The gap between the number of

solved structures and the number of known protein

sequences is huge and will continue to widen in the future

since today the complete elucidation of whole genomes is

essentially automated and thus almost routine work which

can be performed in a few months. As an example, the

protein database SWISS-Prot contains 141681 131945

proteins sequences (date: 14.01.03), the number of

sequences deposited increases much faster than that of the

structures deposited in the protein database (which is

probably much smaller than the number of protein

sequences solved since many are not accessible in public

databases) (Fig. 1).

The two major methods for structure elucidation of large

biomolecules are X-ray crystallography and solution NMR

spectroscopy. Of the two methods, X-ray crystallography is

older and more mature and allowed as early as 1958

determination of the first three-dimensional structure of a

protein (myoglobin) [1]. In contrast, the first protein NMR

structures, that of bovine pancreatic trypsin inhibitor, were

solved almost 30 years later [2]. Both structural methods

have their specific advantages and disadvantages so that

they complement each other in many aspects. The main

advantage of X-ray crystallography is that virtually no size

limit exists for the system under investigation; on the other

hand, only crystallizable systems can be analyzed. While

NMR spectroscopy has the advantage that analysis is

performed in solution under nearly physiological conditions

and dynamic properties can be studied in detail.

As long as the computational methods are not sufficiently

well-developed to predict an unknown structure for a

particular protein sequence with high accuracy and

reliability at atomic resolution, experimental methods for

structure determination will play a dominant role in

structural biology. These methods need to be optimized

for higher efficiency to keep pace with the rapid increase of

genetic information available. The only practical solution to

this problem is a complete or almost complete automation of

the experimental structure determination process. For X-ray

crystallography, a rapid automated structure determination

will be straightforward when the problem of automated

protein production and crystallization is finally solved and

when, for example, synchrotron radiation and anomalous

scattering of seleno-methionine enriched samples are used.

However, there are classes of proteins which will probably

not be crystallizable such as proteins which are only partly

folded or which exist as multiple fast exchanging

conformers. The alternative method, solution NMR

Fig. 1. Protein sequences and structures deposited in databases. (Black) Number of sequences deposited in SWISS-Prot. (Stripes) Number of three-dimensional

structures deposited in the protein database PDB (Rütgers, formerly Brookhaven). Entries are listed until mid 2003.
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spectroscopy will probably only begin to play a major role

in structural genomics when automation decreases

drastically the time necessary for a structure determination

and allows medium to high-throughput. In the following we

will try to describe the new developments which are

required for this aim and discuss and review the progress

that has been already made in this field. We will also discuss

more specifically the project AUREMOL (to be published)

developed at the University of Regensburg in cooperation

with a major manufacturer of NMR instruments which is

aimed to solve the problem of automated NMR structure

determination.

2. Automated structure determination by solution
NMR spectroscopy

NMR structural determination of small well-behaved

proteins (well soluble, globular and uniquely folded) is

nowadays a manageable scientific problem which leads at

the end to a safe solution. However, an expert must be

involved and needs several months for completing the

structure. This is in general not acceptable in proteomics

research where a large number of structures will have to be

solved essentially automatically.

2.1. General aspects of high through-put structure

determination

High through-put NMR structure determination has

much in common with high through-put crystallography

(Table 1), some steps in this process are virtually

identical for the two methods. Automated structure

determination implies that essentially all steps can be

fulfilled with one fundamental strategy and that no

experts are required for solving unexpected specific

problems or for devising new strategies. This implies

that always only a subset of all existing proteins is

amenable to automated structure determination because

there are always limits in the methodology which exclude

some proteins from automated structure determination.

In target selection for NMR spectroscopy solubility, size,

and lack of significant unspecific aggregation are the

main determinants. In X-ray diffraction, size does not

play a role but usually only well soluble, non-aggregating

proteins crystallize properly. A uniquely folded state

is usually required for crystallization, whereas NMR

spectroscopy can also deal with proteins which are partly

unstructured.

Robotized high through-put methods for protein

expression are now under development and are required

for the two methods equally. Once the protein is available,

sample preparation is usually easy for NMR but often

provides a bottle-neck in X-ray diffraction since crystals are

required. Here, major efforts are being made to automate

crystallization procedures. Data collection is easy to

automate for both methods. Although the total recording

time of a minimal NMR data set probably can be

substantially reduced, it will be difficult to decrease it to

the short time required by crystallography when synchrotron

radiation is used. Data evaluation is the true bottleneck in

NMR spectroscopy and major efforts should be made to

solve this problem. In X-ray spectroscopy this aspect is

almost routine and a first structure can be obtained within a

few hours after recording the data. Structure calculation has

many similarities in the two methods; however, a main

drawback in this regard is the fact that in NMR spectroscopy

the spectra cannot be simulated satisfactorily from the

structure alone. In contrast, the calculation of diffraction

patterns from structures is simple and can be performed

exactly. Structure validation such as determining the

stereochemical quality of the results follows similar routes

in the two methods.

In conclusion, we have to keep in mind that a selection

and definition of the class of proteins and their properties is

mandatory in NMR spectroscopy when we want to create a

working method for automated structure elucidation.

This also means that we have to apply the whole set of

existing specialized methods and possibly have to generate

new methods if a particular protein is not a member of the

class of proteins actually solvable by automated methods.

Here again, an expert is required. However, in the long term

the number of special cases will decrease when the methods

have been refined.

In the context of structural genomics, the type of

automated NMR structure determination really required

has to be distinguished from already existing partly

optimized ‘automated’ methods and has to compete with

those commonly used in X-ray crystallography which is

much easier to automate.

2.2. Fundamental steps in automated NMR structure

determination

Automated structure determination in solution can be

separated in the main steps: (1) target (protein) selection,

(2) protein production and isotope labeling, (3) data

Table 1

Comparison of high through-put structure determination by NMR and

X-ray crystallography

Step # NMR-spectroscopy X-ray crystallography

1 Target selection

2 Protein expression

3 Protein purification

4 Isotope labeling Seleno cysteine incorporation

5 Buffer optimization Crystallization

6 Data recording

7 Data evaluation

8 Structure calculation and refinement

9 Structure deposition
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recording, (4) data evaluation, (5) structure validation,

and (6) submission of the structure to a database. For highest

performance, these main steps should be performed

sequentially since repeating some of the main steps causes

unnecessary delays in the structure determination.

However, in practice it often happens that the general

procedure has to be restarted. When working with protein

domains it is only after the first structural information

(step 4) is available that educated guesses may help to find

the optimal length of the construct or to define mutants with

better spectroscopic properties (step 1). In other cases,

insufficient data during the data evaluation (step 4) may

require the recording of new spectra (step 3) or even the

production of protein with different isotope labeling.

2.2.1. Target selection for NMR-spectroscopy

Suitable target selection is one of the most important

factors determining the success of a structural project.

It depends largely on the specific goal one has. In the case of

traditional structural genomic projects, the typical goal is an

even coverage of the fold space but other goals are also in

the focus of newer structural genomics programs.

The motivation behind the search for new folds is the

hope that with a complete set of folds all proteins can be

modeled by homology modeling techniques. Currently, it is

expected that between 1500 and 5000 distinct stable folds

exist [3]. Based on sequence similarity, proteins are

grouped in sequence families and one tries to solve the

three-dimensional structure of at least one member of each

family with either X-ray crystallography or NMR spec-

troscopy [4]. In this regard, it is also wise to screen the

possible candidates for properties allowing a rapid structure

elucidation such as good solubility (.1 mM), sufficient

stability under conditions typically used for NMR

spectroscopy (.1 week at 298 K), negligible unspecific

aggregation, a unique fold, and in the case of NMR

spectroscopy limited size (,25 kDa). This screening also

includes the definition of the optimum domain borders in the

case of large proteins and still needs to be done mainly

experimentally since safe prediction of these properties is

not yet possible. When automated methods for NMR

structural determination are being applied, the last aspect

is most important since the obtainable spectral quality

and completeness of the data determines the success of the

approach.

Other goals for high through-put structural determination

of proteins, which are at least as interesting as the fold

recognition projects, are the elucidation of an almost

complete set of structures coded in a small viral or bacterial

genome, or the investigation of the protein structures of

important classes of proteins independent of the species they

originate from. Here, for non-membrane-bound proteins a

screen of selected proteins from several different species

increased the output from typical ,50% soluble proteins to

more than 90% [5]. In summary, in the field of

target selection substantial methodological development of

bioinformatical tools and experimental screening methods

will be required in the future.

2.2.2. High through-put protein production

Establishing the automated production of proteins is

mainly necessary for two different reasons: (1) experimental

optimizations of protein properties such as solubility and

minimum aggregation tendency require the simple and fast

production of protein varieties. (2) High through-put NMR

methods are dependent on mass production of proteins.

For task (1), in principle, only low quantities of protein have

to be produced; for task (2), protein has to be produced in

mg quantities and usually has to be isotope enriched for

NMR spectroscopy. This implies that different techniques

may be optimal for fulfilling these tasks.

Automated production of expression constructs for genes

without introns should be straightforward, while for

expression constructs of intron containing genes full-length

cDNA clones are required. Libraries of full length cDNA

clones are currently developed and also tools are available

for finding a suitable cDNA library for a specific task, e.g.

(http://cgap.nci.nih.gov/Tissues/Tissues/LibraryFinder).

For automation purposes, it will probably be necessary to

attach at least one affinity tag to the protein and to

isotopically enrich by growing the bacteria in isotope

enriched minimal media or special commercial full media.

Proteins with disulphide bonds and proteins that require

glycosylation or other post-translational modifications are

often difficult if not impossible to obtain from expression in

E. coli. In these cases, yeast expression systems such as

Pichia pastoris can be used [6]. Baculoviral systems [7] in

insect cells or mammalian cell cultures are only used when

the target protein cannot be expressed in other systems since

mass production of isotope enriched proteins is extremely

expensive here.

Cell-free expression systems [8] have a very large

potential for automated production of proteins at small or

intermediate scale. They have the principal advantage that

interference of a toxic target protein with the cell

metabolism cannot occur and that the environment during

the protein expression can easily be manipulated by addition

of molecular components such as protease inhibitors or

chaperons [9]. High yields of proteins can be obtained under

favorable conditions in the combined protein transcription

translation assay [10–15] and optimized as described in

Refs. [16–19]. Up to 8 mg protein/ml translation assay can

be expressed with this method [20]. When isotope

enrichment is necessary it can be as cost effective as

expression in E. coli. When amino acid type specific

labeling is necessary in vitro translation is extremely

powerful since virtually all the labeled compounds are

introduced in the target protein. Also site-specific labeling is

possible by using the amber stop codon [21]. However, this

is not yet a routine method applicable in automation.

Specific isotope labeling can simplify the assignment

procedure. An example is the fast identification of certain
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amino acid types from simple 2D 1H–15N HSQC spectra by

selective amino acid labeling [22]. However, for each amino

acid type a separate sample is required. Since high through-

put NMR structure determination aims to minimize the

spectrometer time required, these specific labeling schemes

are not useful for smaller proteins but may be helpful when

the structure of larger proteins has to be solved automati-

cally. Here, also the intein method for regio-specific isotope

enrichment is promising [23–27]. However, in contrast to

the initial expectations in our experience it is far away from

being a generally applicable routine method.

2.2.3. Optimized strategies for spectra recording

The number of pulse sequences published which are

meant to improve NMR structure determination of proteins

increases steadily with time. A good overview of the pulse-

sequences currently used for the structure determination of

biological macromolecules in solution is given in Ref. [28].

However, in the context of automated structure determi-

nation only a small number of experiments is necessary.

When defining a minimal set of NMR-experiments, it is

obvious that the experiments which contain the necessary

structural information are indispensable. That is actually at

least one experiment relying on dipolar couplings (NOEs or

residual dipolar couplings), although in the long-term

chemical shift information together with molecular model-

ing techniques may be sufficient [29]. Actually, it is not yet

settled what the minimal set of experiments is and it is

obvious that this will depend on the software approach used.

An additional important parameter is the complexity of the

problem which mainly depends on the size of the protein

under consideration and its spectral dispersion. Both,

experiments and programs have to be optimized simul-

taneously with respect to the problem encountered. As an

example isotope enrichment with 13C seems not to be

necessary for small proteins but is probably mandatory for

larger proteins.

Higher dimensional experiments are, in principle, useful

for automated data evaluation since the main problem in

automation remains ambiguity. However, they increase the

minimum spectrometer time required. Here, reduced

dimensionality 3D and 4D triple resonance experiments

may be useful [30–32]. Using these experiments, it is

possible to reduce by one the number of dimensions

compared to the corresponding conventional experiment.

It is based on a projection technique where the chemical

shifts of the projected dimension are encoded as an in-phase

doublet splitting.

To facilitate semi-automatic assignments using these

experiments the program SPSCAN [30] was developed and

this includes a peak picking routine adapted to the observed

peak patterns and allows the mutual interconversion of

frequencies detected in conventional and reduced dimen-

sionality spectra, respectively. Using a best first method, a

search for adjacent spin-systems is performed to help the

user in the interactive sequential assignment process.

Recently, the so-called GFT approach [33] was devel-

oped by the same group to reduce the required amount of

NMR time. In this approach a joint sampling of several

indirect dimensions is applied leading to so-called chemical

shift multiplets, where the individual chemical shift values

can be obtained from a suitable combination of the various

multiplet components.

With a new approach described by Frydman et al. [34], it

is in principal possible to acquire multidimensional spectra

with a single scan allowing a drastically reduction in

measurement time. The key of this method is a position

dependent evolution of the indirect dimension(s) using

pulsed field gradients. However, in practice due to the

limited signal to noise ratio of this approach usually more

than one scan will most probably be necessary.

Experiments that are selective to the amino acid type can

be used to resolve ambiguities in the assignment process.

A set of two-dimensional triple resonance 1H–15N corre-

lation experiments is presented to achieve this goal [35–37].

They are based on incorporation of the MUSIC [38] pulse

sequence elements in triple resonance experiments. MUSIC

basically accomplishes an in-phase magnetization transfer

for either XH2 or XH3 groups, while for other multiplicities

this transfer will be suppressed (X can be either 13C or 15N).

Two-dimensional versions of CBCACONH experiments

can also be used to select for different amino acid types.

The experiments are based on the existence or absence of

the 13Cb– 13Cg coupling in a certain residue type.

Therefore, these experiments are selective for groups of

residue types and not for one specific type [39].

This approach was also adapted to the use of deuterated

samples [40]. By incorporating phase labeling techniques

into standard triple resonance experiments used for

sequential assignment it is possible to obtain information

about the type of residue [41] in addition to connectivity

information [42].

2.2.4. Automated NMR data evaluation and image analysis

Besides the optimization of the protein production,

automated NMR data evaluation has the highest potential

for substantially reducing the total time needed in

automated NMR structure determination. Independent of

the specific strategy used in the automated NMR structure

determination, the analysis of the multidimensional NMR

data comprises the following steps that can be viewed as a

special problem of image analysis. Image analysis is

usually characterized by three different stages of operations:

(1) data processing including improvement of image quality

and feature enhancement, (2) pattern recognition and

classification of objects, and (3) interpretation of objects

and classes of objects.

After recording a set of multidimensional spectra, the

proper processing of that data (i.e. improvement of image

quality and feature enhancement) is the first critical step,

since all subsequent operations are based on the information

obtainable from the processed spectra. Optimal processing
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of the data is especially important in automated data

evaluation since computer programs are usually not as good

as human experts in distinguishing artifacts from

meaningful signals. Although the full data analysis process

could be performed, at least in principle, using the complete

NMR data matrices, the computational efficiency is

significantly increased when the resonance peaks are

recognized and isolated from the noise and artifacts

(separation of the relevant objects from the background).

This separation leads to a large reduction in the size of the

data matrices that must be handled by the computer since

consecutive operations can now be performed exclusively

on these objects, which can often be sufficiently described

by a few parameters such as spectral position (or chemical

shift), peak intensity, integrated area or volume and line

shape. In the next step, the spectral peaks must be assigned

to multiplet and spin system patterns (classification of

objects). Finally, these partial solutions must be combined

to form a consistent solution which contains the complete

(or nearly complete) resonance assignment and an

exhaustive interpretation of all structure relevant

information, e.g. observed NOEs, J-couplings, residual

dipolar couplings, hydrogen bonds, secondary chemical

shifts, and relaxation data (i.e. interpretation of objects and

classes of objects). In the context of this article, the last part

of the interpretation of the objects would then include the

calculation of three-dimensional structure of the protein.

2.2.4.1. Data processing. Careful processing of raw NMR

data is very important since the processed data determines

the quality of the results of peak recognition and other data

reduction procedures. Moreover, after the data reduction

step is performed, all information not recognized as part of

the spectra is lost from all subsequent analysis procedures.

Several multidimensional NMR data processing packages

have been developed in the past. AZARA [43], DELTA

[44], FELIX [45], GIFA [46], NMRLAB [47], NMRPipe

[48], NMR Toolkit (Hoch, 1985), NMRZ [49]

(New Methods Research Inc., Syracuse, NY), Pronto [50],

PROSA [51], TRIAD [52], TRITON (Boelens, unpub-

lished), VNMR [53], and XWINNMR [54].

Enhancement of spectral quality. Usually, a single

method of image enhancement which is optimal in every

respect does not exist, although each method has advan-

tages. In computer aided spectral evaluations, as in manual

evaluation, it can be useful to compare the results for spectra

processed in various ways. This approach is best exempli-

fied by the time-domain filtering process discussed below.

The enhancement of the spectral quality always depends on

(often not obvious) additional knowledge about the system,

such as the expected line widths of the signals or the

frequency distribution of the noise. It improves as more

information is available and is used for this purpose.

A simple example is time domain filtering of NMR data

before Fourier transformation. The same procedures can

also be performed in the frequency domain by convolution

of the Fourier transformed data with the Fourier transform

of the filter function. Although the two methods are

fundamentally equivalent, time domain filtering is

computationally much more efficient, and hence is usually

preferred. In practical applications, one usually starts in the

time domain, applies time domain image enhancement

methods, Fourier transforms the data, and then continues

with frequency domain methods. However, this sequence is

not the only conceivable one because it is possible to jump

between time and frequency domain at will with the aid of

forward and inverse Fourier transformations

without information loss (apart from usually insignificant

rounding errors).

Time domain filtering. Appropriate time domain filtering

of the data is one of the most important steps performed

prior to Fourier transformation. The key assumption used in

these filtering methods is that resonance signals, noise, and

artifacts have different time-constants so that their

contribution to the total detection signal varies during the

acquisition period. Accordingly, a reduction in the intensity

of the initial part of the time domain signal decreases

contributions from component signals which slowly vary in

the frequency domain, such as baseline rolls and tails of

resonance signals. A reduction in the intensity of the final

segments of time domain signal decreases the intensity of

rapidly varying components such as instrumental noise and

as a consequence enhances the signal-to-noise ratio but also

increases the line width (line broadening). These effects are

discussed in detail by DeLikatny et al. [55] for the sine bell

function. The choice of the filter function depends on the

type of acquired spectra and the kind of information desired.

An important example is the computer-aided extraction of

J-coupling constants from the separations between reson-

ance peaks. In this case, it is necessary to obtain the smallest

possible line width, even at the cost of decreased signal-to-

noise ratios so that the individual multiplet components are

clearly resolved. On the other hand, peak-picking, multiplet

recognition, and pattern recognition are controlled by the

signal-to-noise ratio, therefore a slight line broadening is

usually acceptable. In TOCSY and NOESY spectra of

macromolecules, the multiplet structure of the in-phase

components is only barely resolved and a maximum signal-

to-noise ratio is usually required to detect even weak

signals, so that in general it is possible to adjust the window

functions to larger line widths. For practical purposes, the

Lorentzian-to-Gaussian transformation is well-suited for

such applications. When a good estimate for a line width is

available, a single parameter then defines the resulting

filtered line width [56–58]. For any predetermined line-

broadening, the optimal suppression of truncation errors can

be obtained by use of the so-called Dolph-Chebycheff

window. However, due to its complexity this window is

normally not used, but it is useful for evaluating the efficacy

of other filter functions. Maximum signal-to-noise ratio is

achieved by applying a matched filter function prior to

Fourier transformation. The matched filter is equal to
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the envelope function of the time domain signal. In an ideal

solution experiment, the signal can be described as the sum

of exponentially decaying sinusoids. Therefore, if

sufficient data has been recorded to minimize truncation

artifacts, e.g. in the acquisition domain optimal sensitivity

can be obtained by applying a matched exponential filter

function [59].

Time domain manipulations for ridge suppression.

The first row and column of the time domain data matrix

must, in accordance with the initial delay, be scaled for

proper integration during the FFT. The first FID must be

multiplied by C1 ¼ D1=2Dt1 [60], where D1 is the smallest

t1 variable delay and Dt1 is the sampling interval.

Analogously, the first point of every FID, i.e. the first

column of the time domain data matrix, must be

multiplied by C2 ¼ D2=2Dt2 when D2 is the delay between

the last pulse and the start of acquisition and Dt2 is the

sampling interval in t2: However, the intensity of the first

point is also influenced by the dead time of the receiver

and the response of the analog filters which strongly

attenuate the signal. Therefore, in practice, application of a

modified multiplication factor, C0
2 (e.g. C0

2 ¼ 6:6) is

recommended [60]. Alternatively, scaling of the first row

can be omitted if D1 is chosen to equal 1/2 Dt1 ðC1 ¼ 1Þ

which has the additional advantage that the spectrum is

easier to phase [61].

Oversampling. Oversampling of the NMR spectra was

first proposed by Delsuc and Lallemand [62] as a mean to

improve the detectability of very weak signals, for removing

folding artifacts and for improving the baseline [63]. Using

oversampling the demands placed on the analog audio filters

being used are considerably reduced. It is simply the

recording of a spectrum with time increments Dt1 which are

smaller than required by the Nyquist theorem at a given

spectral width Dn

Dt1 ¼
1

2Dn
ð2:1Þ

It can be performed with any NMR spectrometer and the

degree of oversampling possible depends only on the speed

of the analog-to-digital (AD) converter. However, the size

of the time domain data to be stored is proportional to the

degree of oversampling and can be very large. A simple

(and in principle optimal way) would consist of a fast

forward Fourier transformation followed by a fast backward

Fourier transformation of the data of the spectral range of

interest only.

A faster way to reduce the data size of the oversampled

data consists of the digital frequency filtering of the time

domain data before storage on the disc. To filter out

frequencies above a certain frequency from the time domain

signal, the signal must be convoluted with the Fourier

transform of the rectangular function, a sinc function.

After digital filtering decimation of the data is used

which eliminates each nth data point, where n is the degree

to which the data have been oversampled [64].

The corresponding program is implemented in hardware

of commercially available spectrometers directly after the

AD-converter. Since this time domain filtering is not perfect

artifacts at the edges of the spectra are usually observed.

They can be reduced by a subsequent baseline correction.

Also it has been shown that linear prediction algorithms

benefit from oversampled data [65].

Frequency domain filtering. Frequency domain filtering

has the advantage that it is performed on the Fourier

transformed data so that various filters can be rapidly tested

with the same frequency domain data. Examples of such

filters include the polynomial filters where each point, xi; is

replaced by x0i

x0i ¼
XN

n¼2N

anxiþn ð2:2Þ

where an ðn ¼ 2N;…;NÞ is a series of coefficients defining

the filter [66]. The most common of these filters is the

moving average filter (defined by an ¼ 1=2ðN þ 1Þ) which

leads to a smoothing of the spectrum. Experience shows that

time domain filtering gives superior results and is preferred

for the preparation of spectra to be used for automated

pattern recognition.

Base plane correction in the frequency domain. A flat

base plane is not only important for the correct integration

of multidimensional NMR spectra, where base plane

variation can dominate the integral, but also for peak

recognition where a threshold must be defined in order to

sort resonance peaks from noise spikes. The fundamental

assumption used in this process is that the base plane is flat

in the absence of signals and that the slopes of resonance

peaks are greater than those of base plane artifacts.

Published base plane correction methods differ in the

functions used for approximating baseline artifacts and in

the way regions where the ideal baseline should be zero are

defined. Those regions which contain no cross peaks can

either be defined by the user [67–69] or identified

automatically by the program [70–72]. When the user

defines the regions where the base plane should be flat,

external information can be incorporated, e.g. evidence

derived from other experiments, such as well-resolved 1D

spectra. Incorporation of this additional information poten-

tially leads to improved results. However, the methods

which are more convenient for the user are those which

automatically identify base plane points. At least for spectra

with similar signal-to-noise ratios, line widths, and spectral

resolution, these automated routines work well. However, a

few general parameters must be adapted to the experiment

(i.e. external knowledge must be incorporated into the

program). The simplest base plane correction method fits

the baseline of each row to a cubic Lagrange polynomial

where only three reference columns which contain no

signals, are defined [68]. After correction of all the rows,

the same method is applied to the corresponding columns.

A similar method is implemented in the program,
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XWINNMR, where the baseline points are automatically

identified and the baseline is fitted to a polynomial of up to

sixth order.

Better results are obtained using the spline method [67],

where an arbitrary number ðn . 4Þ of cross-peak free rows

and columns can be defined. The spline function then

approximates the base plane between two neighboring

points using a cubic polynomial function. A simple

variation of this is the sectionally linear interpolation

method [69]. Here, the base plane is approximated by short

sections of straight lines. This method has the advantage of

being computationally very fast and avoids over correction

which often results from cubic interpolation.

In the case where the baseline points are not defined by

the user, the performance of the baseline correction program

critically depends upon the quality of the automated

identification of those points. Two published procedures

are both based on the assumption that small stretches of

baseline can be fitted by a straight line [72], or have a first

derivative significantly smaller than regions containing

peaks [70]. In an another procedure, the standard deviation

of the signal intensities in a small window of data points is

used to decide if a particular data point belongs to the

baseline [71]. After selection of specific baseline points, the

programs then calculate from these points fragments of a

smoothed spectrum connected by straight lines to approxi-

mate the baseline [71] or a fifth order polynomial [70] or a

sum of cosine and sine functions with various amplitudes

and frequencies [72] is used for baseline approximation.

The approximation used in the latter method, e.g. the

program FLAT, appears to be somewhat more appropriate

than others since most base plane distortions originate from

intensity fluctuations in the first points of the FID. These

intensity changes can be viewed as an additional time-

domain signal consisting of a few non-zero points super-

imposed onto the unperturbed FID. Fourier transformation

of such a signal results in a sum of cosine and sine functions

which are therefore well-suited for approximating the

resulting baseline artifacts.

Removal of spectral artifacts. A typical artifact which

often dominates spectra recorded using older instruments is

t1-ridges. A simple method for their attenuation, the mean

row subtraction, was devised by Klevit [73]. In this method,

the user defines a region, usually several rows near the

border of the spectrum, where no cross peaks, but t1-ridges

are present. The mean of these rows is calculated and then

subtracted from all other rows. This method initially was

devised for absolute-value spectra, but was later generalized

to include phase-sensitive spectra [74–76].

Phase-distortions which originate from a delayed acqui-

sition, unavoidable in experiments using soft pulses, can be

corrected by a computational projection back to time zero

(backward prediction, see also linear prediction) [77,78].

The oscillatory components of ridges that originate from

truncation effects can be effectively removed by a frequency

domain filter developed to suppress periodic features [79].

The signal of the physiological solvent, H2O, is by far the

most intense feature in 1H NMR spectroscopy of biological

macromolecules and causes spectral artifacts even where

strongly attenuated by pre-saturation or selective excitation.

The dispersive tails of the water resonance can be largely

removed from spectra by fitting these tails to a hyperbolic

function which is then removed from the data. After

interactively defining cross-peak-free data points on the

water tail, the hyperbolic function is fitted to these points.

The fit is further improved by including a linear and a

constant term to account for baseline variations arising from

other sources [80]. A computationally simpler method,

similar to the diagonal peak suppression method for

phase-sensitive COSY spectra [81], makes use of the fact

that the water resonance is usually positioned at the center

of the spectrum (i.e. at v ¼ 0). Therefore, its time domain

signal is a non-modulated exponential. The contribution of

the water signal is reconstructed by filtering out the

oscillatory parts of the FIDs and then subtracting those

parts from the original FID [82]. The dispersive tails of the

water resonance can also be suppressed by phasing the water

signal in absorption mode, zeroing the relatively small

absorption signal in the frequency domain data, discarding

the imaginary part and regenerating the signal from the

processed real part via a Hilbert transformation. After

phase-correction of the spectrum, the water signal is largely

suppressed [83]. Another possibility is to calculate the

second derivatives of the FIDs and to Fourier transform

these which also suppresses signals at v ¼ 0; such as the

solvent peak [84]. Application of the Karhunen–Loeve

transformation to multidimensional data can be used for the

removal of the strongest signals, which are usually the

solvent resonances, from the data matrix [85]. Similar results

can be obtained from a principal component analysis of the

frequency domain data [86] or a linear prediction of the time

domain data (see below) and removal of very strong

singular values (signals) [87].

Another possibility for water peak suppression is the

wavelet transformation, which allows one to decompose a

signal in terms of elementary contributions called wavelets.

By discarding components corresponding to low

frequencies before data reconstruction the water signal can

be suppressed (assuming that the water is located in the

middle of the spectrum) [88–90]. Independent component

analysis appears to be a promising ansatz for the reduction

of base plane artifacts since no spectrum dependent

parameters have to be adjusted [91,92] (Fig. 2). However,

details of its application are still under development.

Symmetry enhancement. Inherent symmetries in multi-

dimensional spectra provide redundant information useful

for discriminating resonance signals from noise and

artifacts. Under ideal conditions, i.e. sufficient digital

resolution, identical filtering and equal digital resolution

in each dimension, and proper phasing, absorption peaks

have C4 symmetry. This local symmetry is useful for

enhancing moderately isolated peaks which show no
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overlap with other signals [93]. A more powerful method of

enhancing pertinent information is the exploitation of global

symmetries such as cross-peak symmetries about the main

diagonal present in many homonuclear 2D spectra or

multidimensional spectral planes. A more general way of

using global symmetry information consists of comparing

areas of symmetry-related peaks at positions ði; jÞ and ðj; iÞ;

calculating a ‘match factor’, m; which is a measure of

the symmetry, and then modifying the original intensities

Iði; jÞ and Iðj; iÞ to I0ði; jÞ and I 0ðj; iÞ in accordance with the

match factor [74,94,95].

The match factor can be defined in a way that it adopts a

value of 1, if the two related signals possess the same shape

and intensity and is negligible if the shapes do not correlate.

In fact, all published symmetrization procedures are special

cases of this general formalism. All symmetry enhancement

Fig. 2. Artifact reduction by independent component analysis. (Top) First trace of the experimentally determined 1H 500 MHz 2D-NOESY spectrum of the 24

residue peptide P11 measured in 90%/10% H2O/D2O (v/v). For water suppression presaturation was applied during the relaxation delay and during the mixing

time. (Bottom) Reconstructed P11 spectrum with the water artifact removed using independent component analysis.
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procedures work best when the symmetry of the raw data is

optimized. This means that, when applying symmetry

enhancement algorithms, identical zero-filling and filter

functions should be used for each dimension. Other artifact

reduction methods should be applied before the symmetry

enhancement procedures. As for conventional time-domain

filtering, symmetry enhancement methods must be carefully

adapted in accordance with the information desired. This is

especially true for homonuclear NOESY spectra which are

asymmetric by definition when a finite relaxation delay is

used. In this case symmetrization procedures can cause loss

of information.

Linear prediction and related methods. In high-resol-

ution NMR the frequency domain line shapes are closely

approximated by a Lorentzian function which corresponds

to a cosine-modulated exponential in the time domain.

This property is useful in peak fitting procedures applied to

experimental data as discussed by Gesmar and Abildgaard

[96]. These fitting procedures can be used either to reduce

artifacts such as truncation wiggles or to fit and describe all

cross peaks in a spectrum. In the latter case, these

fitting procedures simultaneously represent peak recog-

nition methods.

Linear prediction [65,96–107] is a method for directly

obtaining resonance frequencies and relaxation rates from

time domain signals, which are a superposition of

exponentials, by solving the characteristic polynomial.

Phases and intensities, however, must be calculated

iteratively using a least square procedure. In the presence

of noise the total number of exponentials assumed must

be greater than the number of cross peaks expected. In the

one-dimensional case, depending on the algorithm used,

the number of operations is roughly proportional to mn2;

where n is the number of unknowns and mðm . nÞ is the

number of data points used for the prediction. Thus, the

computational complexity increases rapidly as the number

of resonances to be observed increases.

Most of the methods proposed for simplifying linear

predictions are based on a reduction in dimensionality.

A simple method consists of limiting predictions to only a

part of the n-dimensional data matrix. In typical

applications, the FIDs are first Fourier transformed as a

function of the time variable of the acquisition dimension

(that is, t2 in the 2D NMR spectra and t3 in 3D NMR

spectra) since the number of data points, m; and the number

of resulting resonance frequencies, n; to be considered is

usually rather large. The columns of the data matrix

obtained are then analyzed using linear prediction

methods [104,108–112]. The speed of the prediction

process is significantly improved since the number of data

points, m; in the remaining direction is usually small

(especially in 3D and 4D spectra), and only a limited

number, n; of the resonances contribute to the signal and so

must be considered.

In macromolecular multidimensional NMR, linear

prediction is most often used in the indirect dimensions of

3D and 4D data sets, where the experimentally obtainable

resolution is usually rather limited, since it avoids truncation

errors and leads to an increase in resolution. With increasing

computer power, it has become feasible to use two-dimen-

sional linear prediction approaches for data that are severely

truncated in both dimensions, e.g. planes of 3D and 4D

spectra [106]. Spectral distortions which arise from delayed

acquisition and non-linearities of the receiver can also be

corrected by replacing the first points of the FID by applying

a backward prediction. When only those frequencies in a

restricted spectral window are of interest, the prediction can

be accelerated using the LP-ZOOM [100,105] or the

VAPRO method [113]. In cases where the signal-to-noise

ratio is low a priori knowledge about the expected frequency

intervals of the damped sinusoids can be used to obtain

reliable predictions [114]. Other line fitting methods which

do not necessarily rely on the assumption of combined

exponential functions are the HSVD and LPSVD methods

[97,115–117]. Alternatively, fitting of the data can be

performed in the frequency domain [118].

Maximum entropy reconstructions and related methods.

The maximum entropy method (MEM) [119] has attracted

considerable interest as an alternative to Fourier transform-

ation [120–157]. The principle behind maximum entropy

reconstructions involves finding all spectra which are

consistent with the experimental data (as tested, for

example, by the x2 test) and identifying the spectrum that

has the minimum information content, or equivalently, the

maximum entropy.

The following advantages of that approach are purported

to include that the information content of the spectrum is

used in an optimal and unbiased way, free from any a priori

assumptions. Also, since one starts the calculation from a

uniform or random distribution of frequencies, the ‘true’

solution is selected by the entropy, a notion which suggests

an absolute physical measure. Finally, compared to Fourier

transformation, a simultaneous enhancement in both

sensitivity and resolution seems to result from MEM

reconstructions. In contrast to linear prediction methods,

no assumptions about line shape are usually applied.

Therefore, MEM can be applied to spectra with components

having unknown line shapes. Furthermore, the computing

time needed for a MEM reconstruction does not depend on

the number of resonance lines, but only on the size of the

data set. Although ‘entropy’ in physics and information

theory are well-defined terms, this is not true for its

application to complex-valued NMR data. The Shannon

entropy, S; can be applied in a straightforward manner only

for real positive functions as they occur in standard image

reconstructions. The entropy, S; is defined as

S ¼ 2
XM
i¼1

pi ln pi ð2:3Þ

where pi is the probability of the state i and M is the total

number of such states. For real-valued NMR spectra, pi can
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be simply replaced by the normalized intensities xi=b at

position i in the spectrum [121–123,138]. The normalization

constant, b; can be defined as the sum of all intensifies xi:

For complex-valued NMR data, the treatment of probabil-

ities, pi; as real quantities incorporated into the definition of

entropy cannot be simply defined using the intensities.

Therefore, several different notions of entropy in this context

have been proposed [125,131,132,145,146,148,150,151].

Although typical MEM reconstructed NMR spectra seem

to have much better signal-to-noise ratios with simultaneous

resolution enhancement compared to conventionally

processed spectra, a closer inspection shows that this is

only partially true [138,147,150,151]. In simple cases, the

noise-suppression in MEM reconstructed spectra is only

cosmetic when compared to the corresponding Fourier

transform reconstruction. Moreover, equivalent results can

be obtained by using a non-linear plotting scale on the

vertical coordinate and by applying a threshold to the data

(i.e. setting points with intensities lower than a given

threshold to zero) [126,147,150]. Similar resolution

enhancement can be obtained by appropriate filtering of

the data. In one application, 13Ca–13Cb splittings in protein

triple resonance spectra are eliminated by deconvolution

with MEM reconstruction [157]. An advantage is that in

cases were broad and narrow lines occur, MEM leads to

an optimal representation in one spectrum, whereas

conventional processing would require two different

transformations [126,147]. However, this is not surprising,

because in the traditional MEM processing no additional

information is incorporated during the data evaluation.

The situation changes when varying amounts of

supplementary information is included, leading in the

extreme case to the more general framework of Bayesian

analysis of which maximum entropy analysis is only a

special case [127,129,140,149]. A simple example is the

reconstruction of strongly truncated data, where, in contrast

to zero-filling followed by Fourier transformation, the

information that the FID is not simply zero after time t, is

an inherent part of the MEM reconstruction, therefore,

truncation ripples can be avoided as in the case of linear

predictions [122,123,126,131,133,145].

Bayesian statistics together with Metropolis Monte Carlo

simulations are used to determine parameters like coupling

constants from time domain data [158]. It is based on the

comparison between a model and real data. Time domain

data are modeled as a linear combination of exponentially

damped sinusoids. The parameter space of the model is

searched using Metropolis Monte Carlo simulations and

hereby employing Bayesian statistics to determine the

probability of the current set of parameters.

Non-linear sampling of the data promises a somewhat

better signal-to-noise ratio than equidistant sampling of the

data according to the Nyquist theorem. The spectrum

from these non-linearly sampled data cannot be recon-

structed by the FFT, and so the MEM method appears to be

best-suited in such cases. Exponential sampling was used in

the first applications of non-linear sampling [134], and this

was later generalized to more variable sampling schemes

[136,152–154]. However, similar results can be obtained

with conventional processing in conjunction with

application of the CLEAN algorithm used in astronomy

[137,138]. Line width information can also be included in

MEM reconstructions [130,141,144]. MEM can also be

used for suppressing zero-quantum peaks in NOESY spectra

[136] and removing baseline artifacts from acoustic ringing

or pulse breakthrough [133,143]. Another reconstruction

method related to MEM is the maximum likelihood

deconvolution method [159–161]. Using a least squares

procedure ‘maximum likelihood’ minimizes the variance

between the measured FID and the parameterized data

model. However, the entropy is not maximized in these

approaches. In the ChiFit [161] method, data are modeled

by a linear combination of exponentially damped sinusoids.

It was applied to enhance the resolution in the indirect

dimensions of 3D and 4D NMR spectra. Other reconstruc-

tion methods related to MEM are the constrained iterative

spectral convolution [142] and the parametric estimation

using simulated annealing [162]. In general, all of these

methods give results that are similar to MEM reconstruc-

tions; the selection of the optimal method depends on

the problem under consideration (and on the availability of

the corresponding software).

In a recent article, a detailed comparison of linear-

prediction extrapolation and maximum-entropy reconstruc-

tion was performed on simulated and experimental data

[163]. It was concluded that in most cases maximum-

entropy is superior to linear-prediction although linear-

prediction is much more widely used. This is especially true

for the accuracy of peak positions and the introduction of

false peaks. In addition, the ability of maximum-entropy to

accommodate non-linearly sampled data can provide

significant improvements in both sensitivity and resolution

for short data sets, compared to linear sampling.

Filter diagonalization. The multidimensional filter

diagonalization method [164,165] offers an alternative to

standard Fourier transformation of multidimensional spec-

tra. The aim of the method is to obtain good resolution in the

indirect dimensions even when only a limited number of

points have been sampled. One can say that by using this

method sensitivity is converted into resolution. Basically, it

is an efficient way to fit the time domain data to a sum of

multidimensional exponentially damped sinusoids.

The fitting is done locally over small overlapping regions

in frequency. In addition, the different spectral dimensions

are not independent of each other in this method. This means

that information in one dimension provides improvement in

the quality of the overall fit and therefore, for example, the

resolution in another dimension can be increased.

Data filling. Data filling is a method for increasing the

resolution in the indirect dimensions of symmetric 2D

spectra [166]. In comparison to linear prediction and

MEMs, it is computationally less demanding. The method
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utilizes redundant information in the direct dimension to

predict time domain data points in the indirect dimension to

increase the overall resolution.

Three way decomposition. The program MUNIN [167]

for the automated analysis of three-dimensional NMR

spectra is based on the concept of three-way decomposition.

In the MUNIN approach, a spectrum is decomposed into a

sum of components, where each component is represented

as the product of three (one for each dimension) one-

dimensional shapes. Each component then generally

represents a single peak or a group of peaks. Exemptions

are, for example, E. COSY data where several components

are required for a single cross peak. An important feature of

MUNIN is that the method can be applied to frequency-

domain or time-domain data or to a mixture of both.

Therefore, uniform sampling of the time domain data as

required for FFT is not necessary in the MUNIN approach.

In the given example of a 3D 1H–15N NOESY–HSQC

spectrum peak picking and peak integration of the resulting

one-dimensional 1H shapes should be much easier than in

the corresponding conventional processed spectrum.

In addition, the method can be used for a substantial data

compression.

2.2.4.2. Peak and multiplet recognition. Since in general a

set of spectra is used in any automated structure determi-

nation process, it is important that all spectra have been

referenced properly, for heteronuclei it is advisable to use an

indirect referencing scheme [168–170]. Although it is

theoretically possible to simultaneously recognize all

multiplet and spin patterns in a set of multidimensional

data by fitting the data with a general model function

characterized by a suitable number of parameters, in practice

this approach is only possible for very simple systems

involving only a few variables. The more economic way is

to try to quickly reach a level of abstraction that can reduce

the size of the data set to be handled by the computer.

The simplest objects in NMR spectra for such an abstraction

are the resonance peaks which must be separated from the

background. If the spectral resolution is sufficient to resolve

single multiplet components, those components can then be

combined to form multiplets. Finally, the multiplets have to

be assigned to complete spin systems.

Since the first program was published for performing

pattern recognition in two-dimensional NMR spectra of

polypeptides [171], this general strategy has been used

almost exclusively. In practical applications, the signal-to-

noise and the signal-to-artifact ratio is usually not sufficient

for unambiguously observing all theoretically expected

cross peaks. Therefore, cross peaks may be missed and noise

or artifact signals may be recognized as true cross peaks.

With this incomplete and erroneous information, only

partial solutions are possible. In our experience, it is

extremely important to be able to control any step in the

assignment procedure removing incorrect hypotheses

and including correct hypotheses whenever possible.

Specifically, after peak picking, one should remove the

peaks which are obviously artifacts (i.e. ‘clean the peak

list’) and, after multiplet recognition, one should control the

identified multiplets, remove incorrect hypotheses or correct

these hypotheses, if possible. It is clear that in routine work

all of these tasks should be performed in a fully automated

fashion. However for more complicated problems

(e.g. involving very large proteins), interactive routines

are required which allow the expert to introduce general

knowledge or to create new, problem-adapted strategies.

Peak picking. Peak picking in multidimensional spectra

is a straightforward procedure since a maximum is defined

by the property that all adjacent data points have a lower

intensity, and conversely, a minimum is defined by the

property that the adjacent points have a greater intensity.

However, since resonance peaks must be distinguished from

the large number of noise peaks, additional criteria must be

defined which allow this classification. Approaches to

automated peak picking can usually be divided into three

types: (1) threshold-based methods, (2) peak-shape-based

methods, and (3) Bayesian approaches.

(1) The simplest and most widely used criterion is the

intensity threshold criterion, that is, only peaks with

absolute intensities above a specific threshold are recog-

nized as resonance peaks [171–176]. Since the reliability of

automatic assignment procedures improves when a

minimum number of ‘false’ peaks must be considered,

optimal reduction of the number of noise and artifact peaks

has proved to be beneficial. A simple method for

significantly reducing the number of noise and artifact

peaks is the exclusion of areas from the peak search where

no meaningful resonances can be expected. Such spectral

areas include regions outside the spectral range of the

molecule under investigation and spectral regions where

resonance peaks cannot be separated from artifact peaks

(e.g. near the water t1-ridge). In programs such as

AURELIA and AUREMOL, these spectral regions can be

defined interactively by the user. Improved results for the

automated NOE signal identification in 2D and 3D NOESY

spectra can be obtained with ATNOS [177] by including

local baseline corrections, evaluation of local noise

amplitudes, spectrum specific threshold values, symmetry

criteria and incorporation of chemical shift and preliminary

structural information.

(2) Additional information can be derived from the

line shape itself. With a segmentation procedure, the

n-dimensional line widths can be determined and peaks

with very small line widths (i.e. noise spikes) or very large

line widths (ridges and baseline rolls) can be automatically

removed [178]. A more involved method of eliminating

noise and artifacts used in STELLA [179] ‘learns’ from

user-defined real and artifact peaks the typical line shapes of

both of them and stores them in an internal database.

STELLA compares the automatically picked signals with

the database shapes by calculating the cosine between the

vectors representing the line shapes of the picked
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and database shapes. The position of the peak maximum is

in this approach refined by a polynomial interpolation of its

surrounding points.

CAPP [180] uses peak shapes to discriminate between

noise and artifacts as the STELLA algorithm. However,

CAPP does not require the user to select a set of real and

artifact peaks interactively, but is based on the calculation of

ellipses which best fit the contour lines. To discriminate

between signals and artifacts, the calculated ellipses are

evaluated by several criteria: the peak contours must be

approximated sufficiently well at different levels by the

ellipses, the radii of the ellipses (line widths) and the ratio

of the radii (line shape) must be within user-defined limits.

The position of the peak maximum is defined by the

average of the centers of the ellipses used for peak

recognition. The CAPP approach is applicable to up to

four-dimensional data.

Also GIFA [46] uses a peak-shape based signal filter to

discriminate between real signals and noise and artifacts.

Important features of AUTOPSY [181] are a routine for

local noise level calculation, symmetry considerations of

peak shapes and the use of peak shapes obtained from

well-resolved cross peaks to resolve spectral overlap.

To save computer memory, the spectrum in use is

segmented into connected regions of data points above the

noise level before the actual analysis.

Stoven et al. [175] define an additional criterion that the

slope of a putative peak should exceed a given threshold

(which also helps to separate resonance peaks from ridges).

The line shape data can be used to even greater advantage by

fitting the data to theoretical line shapes. However, in the

frequency domain this is complicated because after filtering

of the data in the time domain, in general, there is no simple

analytical expression available to describe the resulting line

shapes. In addition, frequency-domain fitting of data is

extremely time-consuming, therefore, linear prediction

methods, which also give peak intensities and coordinates,

are probably superior, although also very time-consuming

and in most applications unnecessary. However, the

determination of the exact peak position is mainly hampered

by the low digital resolution of multidimensional NMR

spectra and is only improved insignificantly by the methods

just described.

(3) A Bayesian approach coupled to a multivariate linear

discriminant analysis of the data [182] can be used as a

generally applicable method for the automated classification

of multidimensional NMR peaks. The analysis relies on the

assumption that different signal classes have different

distributions of specific properties such as line shapes,

line widths, and intensities (Fig. 3). In addition, a non-local

feature is included that takes the similarities of peak shapes

in symmetry related positions into account. The calculated

probabilities for the different signal class memberships are

realistic and reliable with a high efficiency of discriminating

between peaks that are true NOE signals and those that are

not [183]. A Bayesian method was also reported for the

recognition of baseline artifacts [184].

Cluster analysis and multiplet recognition. In crowded

spectra which are typical for homonuclear 2D spectra of

proteins it is extremely difficult to analyze the many

overlapping cross peaks and cross peak multiplets all at

once. Here, clustering of the cross peaks which may be part

of the same class and are located in close neighborhood can

reduce the complexity of the problem. Typical examples are

multiplet structures arising from J-coupling or residual

dipolar coupling. Most programs for multiplet analysis were

originally developed for the analysis of J-coupling patterns.

However, residual dipolar couplings are nowadays routinely

used for the structure determination of biological

macromolecules. As in standard J-coupling experiments

such as COSY that are used to obtain dihedral angle

information, signals are split by the residual dipolar

coupling. In typical heteronuclear applications,

dipolar coupling leads only to a change of the magnitude

Fig. 3. Separation of signals and artifacts by Bayesian analysis. Probability distributions of the reduced variable Y for peaks belonging of the class of true

signals (—) and for peaks belonging to the class of noise and artifacts (–-). The reduced variable Y is a linear combination of statistically independent peak

properties. Figure adapted from Ref. [182].
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of the already observable J-coupling induced splitting.

Here, a typical example is the splitting of the amide nitrogen

resonances by the J-coupling which is modified by the small

additional residual dipolar coupling. However, additional

multiplet structures can also be induced by residual

couplings which is especially evident in homonuclear

COSY or TOCSY-type spectra [185,186]. As a consequence

methods previously proposed for the automated analysis of

clusters and multiplets from COSY type spectra can be

used with minor modifications for the automated analysis of

residual dipolar couplings.

The digital resolution in 2D and sometimes in 3D

NMR spectra recorded with modern instruments is

usually sufficient to resolve the cross-peak multiplets.

These multiplet structures can be accentuated by resolution

enhancement methods or greatly suppressed by the

application of filter functions that expand the line widths.

Especially for COSY-type spectra containing anti-phase

peaks, extensive broadening of the multiplet components is

not advisable since the components with different phases

will partially cancel each other.

Numerous different procedures for multiplet recognition

have been proposed. The simplest approach assumes that all

cross peaks which are separated by less than 2Jmax;

where Jmax is the largest expected coupling constant, are

part of one cross-peak multiplet in a given spectral region

[171,187]. This algorithm represents a simplified version of

a cluster analysis which is the first step in most of the

multiplet recognition procedures. Peaks which could

possibly be part of a multiplet are combined in a cluster

which then can be analyzed separately by a multiplet

recognition algorithm. Clusters are usually defined using the

assumption that peaks which are separated by a distance less

than a given threshold value are members of a cluster.

The maximum separation of sub-peaks in a cluster is limited

by the magnitude of the coupling constants and the kind of

multiplet structures detected by the n-dimensional

experiment; only peaks of the same cluster can be part of

one multiplet [188,189]. In very crowded regions of the

spectrum these clusters tend to become very large. In such

cases, it is more economical to split these large clusters into

smaller sub clusters by automatic iteration of cluster

parameters such as intensity differences of the peaks

[189]. Multiplet recognition starts first with the smaller

sub clusters. Peaks in these clusters which are not part of

recognized multiplets will form new reorganized clusters

which are then analyzed in a consecutive manner. Cluster

reorganization is continued until all peaks are analyzed, that

is, are either assigned to a multiplet or recognized as noise

or artifacts [189].

Multiplet analysis programs operate based on predefined

models of multiplet structure. Information on multiplet

structure can be introduced into the program in several

possible ways [190].

(1) The program can learn about multiplet structure

variations by analyzing a set of typical multiplets defined by

the user [74,189,191]. Introduction of these user-defined

multiplets into the program can be performed by marking

representative multiplets in an experimental spectrum or by

independently entering multiplet data in a more or less

abstract form.

(2) The user can define multiplet templates with fixed

geometry. The program then searches the spectrum for a

match to these templates.

(3) The spectrum can be analyzed for the occurrence of

some general features of specific multiplets such as

distinctive local symmetry [172,174,176,192–199].

(4) Multiplets can be completely modeled by fitting their

patterns to model equations that describe the complete spin

system and the evolution of the magnetization under the

experimental conditions [188].

The first method is probably the most flexible since

multiplets of any form can be defined. Continued learning of

multiplet features in a training set and subsequent

recognition of those features in experimental spectra can

be performed elegantly using neural networks [191].

A computationally more efficient procedure extracts

representative features from multiplet patterns defined by

the user in an interactive fashion using a graphics display

terminal. The experimental spectra are then analyzed using

these representative multiplet features [74,189]. The method

performs well even where multiplet overlap and artifacts are

present in spectra.

Method 2 is computationally very efficient but is only

useful for small, rigid molecules. In protein spectra the

number of possible multiplets is enormous, since the

J-coupling constants often are not fixed and, therefore, a

continuous set of multiplets is expected. However, the

procedure can be extended to a special case of method

(1) where the computer creates a multitude of templates of

a basic pattern by varying the coupling constants [173,

200–202]. The local symmetry of cross-peak multiplets is

the fundamental feature most frequently used for multiplet

recognition [172,174,176,188,192–198,203,204]. The local

symmetry of a cross-peak multiplet depends on the type of

multidimensional NMR experiment used to generate a

spectrum. Although this cross-peak symmetry is ideally

conserved only in the weak-coupling limit, in practical

cases, the effect of intermediate couplings can usually be

neglected. The computationally most straightforward appli-

cation of local symmetries involves the computerized

checking of a group of peaks in a given cluster to determine

whether the required symmetry relationships are fulfilled.

There are two main criteria used: (i) the geometrical factor,

that is, are cross peaks present at the correct resonance

positions, and (ii) do those cross peaks have the correct

intensities and signs [172,203]. Some variance in peak

positions must be allowed because of shifts due to

digitalization (at least ^ 1 data point) and overlap with

other multiplets. The same is true of cross-peak intensities;

in the worst case cross peaks of opposite sign may cancel

completely. Therefore, during multiplet recognition it must
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be remembered that a few cross peaks in any given multiplet

are likely to be missing. The symmetry of candidate

multiplets must be measured in some fashion. Cross-peak

symmetry can be calculated from the peak intensities [196]

or an area surrounding the peaks [172,193] (e.g. a

rectangular box surrounding the peaks at half height) [172].

It is not absolutely necessary that peak picking be

performed before multiplet recognition. Alternatively,

symmetry filters can be applied to the complete two-

dimensional spectrum or to spectral areas identified by

cluster analysis [174,188,192–197]. Ideally, these filters

generate a peak in the center of a multiplet when the form

and couplings of that multiplet agree exactly with a

multiplet in the test set. The program then suppresses all

other combinations. This peak can be recognized later by a

peak-picking algorithm which also simultaneously provides

information on the multiplet. However, the performance of

these filters is not very satisfactory for those cases where

line widths are of the order of the peak separations and

where multiplets overlap with other signals or artifacts.

The theory of symmetry recognition by application of

symmetry operations to higher dimensions has been

described by Shen and Poulsen [198].

Peak and multiplet integration. The basis for macromol-

ecular structure determination in solution is still given by

distance information from NOE data. As a consequence,

automated routines for automated NOE integration are

required. Accurate integration of spectral cross peaks

demands a reliable definition of the cross-peak area.

However, such a definition is always a compromise between

requirements that the integration area be as large as possible

so that a complete integration is obtained, but also, as small

as possible to reduce the inclusion of area arising from

artifacts associated with baseline rolls and tails of other

peaks. The simplest method of defining peak integration

areas is interactively using a graphics display terminal,

e.g. in the Bruker program, XWINNMR, where the user

defines a box around the peak in which all pixels are

summed. However, this manual integration procedure is not

useful for a protein spectrum where several thousand

integrals must be determined. One way of defining the

integration areas automatically makes use of the observation

that the slope of a peak decreases monotonically with the

distance to the peak center, at which point it approximates

zero. This feature can be used to define a rectangular

integration area by determining the points where the slope is

smaller than a predetermined value in a row and a column

through the peak maximum [205]. A more elaborate

procedure determines the peak contour at which this

condition is met [175].

A similar approach defines the peak integration area using

an iterative ‘region-growing’ algorithm [172,178,206],

which recognizes all data points that are part of a given

cross-peak, the integration can be performed based on a

user-defined threshold level (Fig. 4). If not zero this

threshold should be defined relative to the maximum

value of the peak since otherwise the relative volumes are

not directly proportional to the strength of interaction.

This automatic integration procedure works surprisingly

well even for overlapping peaks as long as the peak maxima

are separately visible and therefore recognizable by the peak

picking procedure.

In a different approach the peaks are fitted by a set of

reference peaks defined by the user [176,207]. This approach

is probably best suited in cases where peaks strongly

overlap; however, it demands a careful selection of the

reference peaks by the user.

A completely different solution of the integration

problem is provided by the LP-related methods when

those methods are used to completely predict the two-

dimensional data set. From the peak intensities and the

decay constants, the integrals of the resonance peaks can be

calculated directly. When comparing various integration

procedures, one must always keep in mind that many

problems other than imperfections in the integration

procedure can easily lead to very large errors.

A common source of such errors is baseline variations

and an insufficient digital resolution [208]. However, even

an error in volumes of a factor of 2 (þ100 or 250%),

which is usually much larger than the error produced by

integration routine per se, only leads to a distance error of

211 and þ12%, respectively. Therefore, convenience and

reliability of the integration procedure is of prime

importance, especially in three- or four-dimensional

experiments, where manual integration is not practical.

2.2.4.3. Assignment of resonance lines. Very different

approaches have been published in the literature for this

stage of the automated structure determination process.

In this section we will summarize the methods in use for

spin system recognition and sequential resonance assign-

ments that are necessary steps in most schemes proposed for

automated structure determination in solution. Although, we

will see later that it is also possible to obtain a structure

without these steps.

For the methods described in this section usually four

separate steps are necessary, that can vary in the order they

are applied and sometimes several steps are performed

simultaneously [190]. These steps are (a) grouping of

resonances from one or more spectra to spin systems,

(b) association of spin systems with amino acid types,

(c) linking of spin systems to smaller or longer fragments,

and (d) mapping of fragments obtained from step (c) to the

primary sequence.

The initially proposed procedures for the assignment of

resonance lines were developed for homonuclear NMR

data, but could be used analogously to the heteronuclear

data predominantly used nowadays. The classical method

for sequential assignment consists of the following steps.

First, identification of all resonances which are part of the

elementary building blocks of the molecule, e.g. amino

acids in the case of proteins, and then the assignment of
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these spin systems to specific positions in the sequence via

the use of sequential NOEs [209] between, for example,

directly neighboring amino acids. This approach was

realized in the CLAIRE [210] program that is designed

for the automated assignment of smaller proteins from two

homonuclear 2D TOCSY and NOESY spectra. It involves

tools for pattern (spin system) generation, for mapping of

these patterns to residue types using standard chemical shift

information and tools for linking individual patterns

using NOE connectivities to obtain the sequential

assignment. This approach basically tries to automate the

manual assignment approach originally suggested by

Wüthrich [211].

The other extreme is the main chain directed (MCD)

approach to the spectral assignments, a method for the

automated backbone and partial side-chain assignment of

peptides and small proteins [212–214]. It is based on

homonuclear 2D J-correlated and 2D NOESY spectra, but

has similarities with the now most used method for

sequential assignment via heteronuclear 3D-NMR

spectroscopy. The MCD method concentrates mainly on

protons from the protein backbone. Residue fragments

containing the NH, Ha and Hb protons are generated from

COSY and TOCSY spectra while the fragments are linked

by NOE connectivities. In this approach typical NOE

patterns for the various secondary structure elements are

Fig. 4. Iterative cross-peak integration by a region-growing algorithm. (A) Schematic representation of the integration procedure in multidimensional NMR

spectra. (B) Growing conditions and sector arrangement in two-dimensional NMR spectra. (A) Three different conditions for the segmentation of neighboring

data points are defined: ‘isotropic growth’, ‘parallel growth’, and ‘diagonal growth’. (B) Definition of the sectors around a central peak in a rectangular

integration box. Each sector will be combined with a separate growing mode according to the actual arrangement of the seeds. The inner sector around the peak

is set to isotropic growth. Figure adapted from Ref. [206].
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employed. Complete spin systems of the side-chains are

identified later, a task that is usually easily performed for

smaller proteins since the type of spin system (amino acid

residue) is known from the primary structure.

In practice, most manual and automated assignment

procedures use a mixture of these two methods, since

complete assignments are usually obtained by an iterative

process where main chain and side-chain information is

used in repetitive cycles. This is even more evident in

multidimensional heteronuclear NMR spectroscopy where

sequence and spin system information is present in the same

spectrum.

A problem common to all automated assignment

procedures is missing peaks (multiplets), which must be

expected even for spectra with excellent signal-to-noise

ratios, and non-perfect peak and multiplet recognition when

peaks are near to the diagonal of the spectrum (chemical

shift degeneration) or are in very crowded regions of the

spectrum. Great difficulties and erroneous assignments also

result from artifact peaks which should be removed from the

spectrum as far as possible in the preceding steps.

Chemical shift prediction. It is obvious that it would be of

considerable advantage for automated assignment processes

to have a precise prediction of the expected 1H, 13C, and 15N

chemical shifts. This is especially true for the association of

spin systems with amino acid types and for mapping

fragments to the primary sequence. Another application of

predicted chemical shifts is the completion of side-chain

assignments based on NOESY spectra (see in the structure

calculation paragraph the section concerning ambiguous

NOE restraints). Chemical shifts can either be predicted

from a statistical database (knowledge based chemical shift

prediction) or from a physical model for chemical shifts

including quantum chemical computations. Of course,

even in the latter case empirical data such as random-coil

shifts usually enter the calculation and present, principally,

statistical data.

Systematic, empirical relationships between chemical

shift homology and sequence (structural) homology have

been established in the past few years [215]. Often the

similarity of the 1H chemical shifts of a protein to those of a

homologous one are used as an indicator of similar global

folds. With complete or nearly complete chemical shift

assignments for a large number of proteins now deposited in

the BioMagResBank [216] it seems logical to use all this

prior knowledge for predicting chemical shifts for a new

protein. The program ORB [217] predicts 1H, 13C, and 15N

chemical shifts of previously unassigned proteins.

The program makes use of the information contained in a

chemical shift database of previously assigned proteins

supplemented by a statistically derived averaged chemical

shift database in which the shifts are categorized according

to their residue, atom, and secondary structure type [218].

The prediction process starts with a multiple sequence

alignment of all previously assigned proteins with the

unassigned query protein. ORB uses the sequence

and secondary structure alignment program XALIGN

[219] for this task. The prediction algorithm in ORB is

based on a scoring of the known shifts for each sequence.

The scores determine how much weight one particular shift

is given in the prediction process.

In some regards similar to ORB is the program SHIFTY

[220] that make use of the information content present in the

BioMagResBank, but uses only the most homologous protein

for which shifts are available for its predictions. Standard

sequence alignment techniques are used to compare the

sequence of the trial protein with the sequences of previously

assigned proteins contained in the BioMagResBank. The

chemical shifts of the most homologous previously assigned

protein are then used for chemical shift prediction of the trial

protein. In addition the algorithm adjusts for differences in

the primary sequences of the two proteins.

A large empirical database of 13Ca and 13Cb chemical

shifts together with the corresponding three-dimensional

X-ray structures was constructed to investigate the effects of

backbone geometry, side-chain geometry, hydrogen

bonding, ring currents, and sequence on chemical shifts

[221]. Itwas found thatcontributions frombackboneandside-

chain geometry, as well as hydrogen bonds have significant

effects on 13Ca and 13Cb chemical shifts, while the other

factors can be neglected in most cases. The results from this

study should be a useful tool for the refinement of protein

structures employing 13Ca and 13Cb chemical shifts. Predic-

tions were made using the program TANSO.

When chemical shifts from homologous proteins are not

available, but three-dimensional structural information is,

this information can be used for chemical shift predictions.

Semi-empirical methods have been developed for the

prediction of proton chemical shifts [222–225] as well as

ab initio methods for the prediction of 1H, 13C, 15N, and 19F

chemical shifts [226–230]. Note that the paper by Ando

et al. [230] concerns peptides and polypeptides in the solid

state. Another approach was developed by Xu et al.

Their program SHIFTS [231] predicts 15N and 13C shifts

from a known structure using previously calculated shifts

from a database. This database of chemical shift patterns for

1335 tripeptides is calculated using density functional

calculations. The backbone angles of the tripeptides are

limited to the regions of regular secondary structure.

Therefore, predictions made by SHIFTS are limited to

these regions. In addition to backbone dihedral angles, the

program takes side-chain dihedral angles of the trial residue

and the preceding residue and estimated hydrogen bond

effects into account. The program PROSHIFT uses neural

networks trained on solved structures together with the

corresponding experimentally determined chemical shifts to

predict chemical shifts for a new protein when three-

dimensional structural information is available [232].

2.2.4.4. Extraction of structurally relevant information.

The next step after the resonance line assignment has been

finished is usually to apply this knowledge to extract
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structure relevant information. This is still predominantly

distance information obtained from NOESY spectra,

supplemented with additional information obtained from

J-couplings, residual dipolar couplings, chemical shifts, and

hydrogen and/or disulfide bonds.

Computer aided assignment of NOESY spectra.

The assignment of the NOE-cross-peaks in two-, three-,

and four-dimensional spectra is a tedious and error-prone

process simply because the number of cross peaks is

very large. Consequently, it appears reasonable to

automate this part of the spectra evaluation. One major

problem in manual and automated evaluation of NOE

data of proteins is the chemical shift degeneracy in the

NMR spectra. Therefore, for a high percentage of

the NOESY signals no unambiguous assignments can

be obtained based on chemical shifts alone. An example

is shown in Table 2 for the small coldshock protein Csp

from Thermotoga maritima [233]. It shows the very high

degree of ambiguity in a 2D-NOESY spectrum since in

principle any combination of proton chemical shifts of

the protein represents a NOESY cross peak (in most

cases a very weak signal). One important aspect in this

regard is the set of restrictions applied to the assignment

of the individual cross peaks. These can include tolerance

values describing how close the shifts of the sequential

assignment table match a particular NOESY spectrum in

the various dimensions and how well a tentative assign-

ment agrees with the current structure model. Too loose

Table 2

General ambiguity of NOE assignments in Csp from T. maritima

Nab D/ppm Number of NOE cross peaks with ambiguous assignments

correctly foldedb extendedc without structured

A B C A B C A B C

1 0.01 548 462 614 268 242 364 8556 7500 11830

0.02 170 136 176 80 70 100 2256 1836 2850

0.03 54 40 50 18 16 22 650 518 720

2 0.01 790 654 1100 420 368 560 16926 13758 22670

0.02 390 302 456 176 152 244 7776 6348 9864

0.03 196 148 186 86 76 102 3224 2528 3542

3 0.01 282 202 424 148 108 280 6138 4620 10114

0.02 190 150 326 122 96 200 3360 2814 6624

0.03 62 50 152 38 30 94 1664 1496 3584

4 0.01 876 710 682 478 398 388 19908 14484 15100

0.02 564 484 596 302 266 308 11472 9216 12102

0.03 336 256 290 180 138 150 6642 5206 6060

5 0.01 176 122 158 94 76 74 4278 3156 3202

0.02 118 68 84 48 32 56 2784 1650 2106

0.03 82 64 94 34 28 50 1352 1040 1826

6 0.01 506 382 392 280 222 250 12516 8196 9694

0.02 418 352 538 220 192 320 8454 6646 12648

0.03 260 246 456 138 130 250 5320 4458 9558

7 0.01 66 38 22 32 24 12 1302 840 390

0.02 74 58 78 32 30 30 1536 1116 1380

0.03 28 26 54 20 20 30 832 568 1078

8 0.01 534 360 196 286 200 136 14628 8898 4120

0.02 378 294 306 222 172 178 9768 7386 6996

0.03 406 292 264 202 152 140 7652 5928 5108

.8 0.01 2472 1046 388 1454 674 248 62820 24858 9190

0.02 3948 2132 1416 2258 1302 876 99666 49298 31740

0.03 4826 2854 2430 2744 1722 1474 119736 64568 54834

–e –e 6250 3976 3976 3460 2312 2312 147072 86310 86310

The numbers of signals for which at least one possible assignment was found are shown. Signals were generated using published data. The resonance

assignments of TmCsp were taken from Ref. [395]. The number of ambiguous NOEs was calculated for three different sets A, B, C. Nab specifies the number of

assignment possibilities for a given cross peak. Set A considers all possible NOE cross peaks and for the assignment process it is assumed that the correct

stereospecific assignments of the resonances are not known. In comparison to set A all NOEs corresponding to side-chain to side-chain contacts are excluded in

set B. In set C the same NOE cross peaks as in set B are considered, however in this case it is assumed that the stereospecific assignment is known (as given in

the assignment table). In the application of the automated assignment described, D is the maximum separation of the chemical shift dij of a candidate

assignment from the experimental cross peak, that is two resonances can be separated by 2D and correspond to one cross peaks. For the calculations two

resonances dij and dml are assumed as not distinguishable if ldij 2 dlml # 2D:
a Distance cutoff of 0.5 nm for possible assignments, the final structure of TmCsp was used as test structure.
b Distance cutoff of 0.5 nm for possible assignments, an extended strand of TmCsp was used as test structure.
c No distance cutoff was assumed.
d Total number of cross peaks considered.
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restrictions lead to an unmanageable number of assign-

ment possibilities, while too tight restrictions may

prevent the correct assignment from being considered.

Use of ambiguous NOESY restraints. The problem of

calculating three-dimensional structures with ambiguous

restraints was approached by a number of groups. ARIA

[234–236] is using an iterative combination of resonance

assignments and structure calculations. All possible assign-

ments are listed for each peak that are compatible with the

resonance assignment using a fixed chemical shift tolerance

value. In ARIA the restraints from ambiguous assignments

are included as an r26 weighted sum Ds in the NOE target

function. A typical NOE-potential VNOE is then given by

VNOE ¼ kNOElðDs 2 DNOEÞl
a

ð2:4Þ

with

Ds ¼
XM
i¼1

D26
i

 !21=6

for ðDs 2 DNOEÞ . U; for ðDNOE 2 DsÞ . L and

VNOE ¼ 0 otherwise

with the NOE force constant kNOE; the number M of all

assignment possibilities contributing to a specific cross

peak, the corresponding distances Di in the trial structure,

the distance DNOE determined from the experimental cross-

peak volume, and an exponent a (typically 2). The upper

and lower errors U and L, respectively, define a range

outside which VNOE becomes effective. Inside this range

VNOE adopts a value of 0. The equation shown above is often

modified so that when the discrepancy between the summed

distances and DNOE exceeds the upper limit U plus a certain

cutoff value, then VNOE increases only linearly until it

approaches a maximum value for large violations. This is

done to prevent single cross peaks from dominating the

whole structure determination process and to make

optimization numerically more stable.

After the following structure calculation the ambiguous

assignment possibilities will be judged, based on the fit of

the corresponding restraints to the obtained structures.

For each assignment possibility k to the ambiguous NOE,

the minimum distance Dk
min in the ensemble of converged

structures is determined and from this minimal distance the

contribution Ck to a cross peak is calculated by

Ck ¼
ðDk

minÞ
26

XM
i¼1

ðDi
minÞ

26

ð2:5Þ

In the next iteration only contributions that exceed a

certain threshold are further considered. When all but one

contribution are excluded the NOE is unambiguously

assigned.

ARIA [234,237] can also be applied to solve ambiguous

disulfide connectivities provided that a sufficiently high

density of NOE or other restraints is present. In this

approach the ambiguous disulphide bonds are treated as

ambiguous NOE contacts.

When a preliminary structure but only partial side-chain

assignments are available the method can be extended to

make sequence-specific assignments of the side-chain

protons [238]. For this approach it is necessary to have

approximate chemical shift estimates for the protons in

question. Several methods are available for obtaining these

chemical shift predictions, e.g. use of random coil shifts or

shifts from a previously assigned close homolog. Since in

the latter case the approximate three-dimensional structure

is known in addition semi-empirical or ab initio methods

can be used. Ambiguous assignments are obtained for the

set of unassigned signals using the predicted chemical shifts

together with error ranges reflecting the expected accuracy

of the chemical shift predictions. In contrast to the original

ARIA protocol, ARIA is here used to refine existing

structures. After refinement, the assignment possibilities

that correspond to large distances in the resulting structures

are discarded. In the case where additional cross peaks can

be unambiguously assigned by this procedure these cross

peaks are used to obtain new sequential assignments.

Recently, ambiguous restraints have also been success-

fully used in the HADDOCK approach for the docking of

protein–protein complexes. Here for both proteins, the

residues involved in complex formation must be identified

using, e.g. chemical shift perturbation data originating from

NMR titration experiments. However, knowledge about the

exact pairwise interactions is not required, since the

experimental information is coded as ambiguous restraints

between the interacting residues [239].

The SANE method for automated NOE assignment is

similar to the ARIA program. However, while ARIA is

interfaced with X-PLOR/CNS, the program SANE is compa-

tible with the MD programs DYANA and AMBER [240].

The automated NOE assignment approach from Savarin

et al. [241] also uses ambiguous distances constraints in an

iterative NOE assignment/structure determination process

that is similar to ARIA. Assignments are considered based

on chemical shift tolerance values and a distance cutoff in

the trial structures. In the case of ambiguity a maximum

number of assignment possibilities contributing to one cross

peak and their relative volume contributions to this signal

are considered. Calculations are usually started employing

small chemical shift tolerance values and a small distance

cutoff. In later iterations, these values are increased to allow

the assignment of all signals. The aim of this procedure is to

obtain intermediate structures presenting only a few

violations.

Filtering of NOESY restraints by violation analysis.

The self-correcting distance geometry based NOAH/DIA-

MOD approach [242–245] is an iterative method using a

combination of automated NOE assignments, structure

calculations, and violation analysis to obtain the final

solution structures. As in ARIA for each peak all possible
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assignments are listed that are compatible with the

resonance assignment using a fixed chemical shift tolerance

value. For each assignment possibility, a restraint is created

if the number of assignment possibilities does not exceed a

user specified value (typically two to four) and put into the

list of test assignments. After structure calculations

candidate assignments are judged by the violations in the

set of obtained structures. If a peak has only one possible

assignment and is not heavily violated it is transferred to the

list of unambiguous assignments. If a peak is ambiguous

three different cases have to be distinguished: (1) If more

than one assignment are equally compatible with the

structures, the peak with all its compatible assignments

will be transferred to the list of ambiguous peaks. (2) If one

assignment is substantially more compatible with the

obtained structures than the second best assignment it will

be transferred to the list of unambiguous assignments. (3) If

none of the proposed assignments are compatible with the

structure, the peak is put back to the pool of unassigned

peaks. Peaks from the unambiguous list fall back to the

unassigned peak list if their assignment has become

incompatible with the rest of the assignments. For the

next iteration of structure calculations new test assignments

are created as described above and also by taking into

account their compatibility with the structures of the

previous round. In subsequent structure calculations signals

from the unambiguous assignment list are weighted five

times stronger than peaks from the ambiguous and test

assignment lists. Similar to the approach described above

the program NOAH has also been implemented in the

distance geometry program DIANA [246]. The main

difference between ARIA and NOAH is that ARIA tries to

avoid assignment errors by using the sum of properly

weighted ambiguous distance restraints for ambiguous

assignments, while NOAH purposely uses incorrect

restraints and hopes to identify them by violation analysis.

CANDID [247] is an iterative approach for automated

NOE cross-peak assignment and automatic 3D protein

structure generation. It combines features from NOAH and

ARIA, such as the use of ambiguous constraints and the use

of filters based on the three-dimensional trial structures.

To deal with noise and artifacts, which is of special

importance in the first iteration where no trial structure is

available CANDID includes tools for network anchoring

and constraint combination. It is interfaced with the

molecular dynamics algorithm DYANA.

AutoStructure (Huang et al., in preparation) is an expert

system that uses rules like the ones applied by a human

expert for restraint generation from experimental spectra.

Structures are then obtained in an iterative approach using

the program DYANA. Here also violation analysis is used.

Calculation of assignment probabilities for ambiguous

NOESY restraints. The program KNOWNOE [233] presents

a novel, knowledge based approach to the problem of

automated NOE assignment. KNOWNOE is devised to

work directly with the experimental spectra without

interference of an expert. Besides making use of routines

already implemented in the new program AUREMOL,

it contains as a central part a knowledge driven Bayesian

algorithm for solving ambiguities in the NOE assignments.

KNOWNOE will be explained in more detail in the second

part of this review.

Use of back-calculated spectra to obtain NOESY

restraints. NOESY spectra back-calculated from a single

trial structure or a set of trial structures offer various

possibilities for computer assisted assignment procedures

by automatically comparing them with their corresponding

experimental counter parts to automatically assign the

experimental signals. However, this procedure has to be

applied with care in cases where strong deviations between

the trial structures and the real structure can be assumed.

Another application is the calculation of NMR R-factors that

is based on the comparison of experimental and simulated

intensities to judge how well the trial structure fits the

experimental data. The same method can also be used to

distinguish between different structural models. An example

is given in Fig. 5 where the back-calculation of a NOESY

spectrum demonstrates that the structure of HPr from E.

faecalis as obtained in single crystals using X-ray diffraction

is not the dominant structure in solution [248].

Using back-calculated spectra it is also possible to obtain

accurate distance information from the corresponding

experimental spectra. This allows the replacement of

distance constraints in three-dimensional structure calcu-

lations by including the difference between simulated and

experimental intensities as a pseudo energy. The compari-

son of experimental and simulated spectra should also

permit the extraction of motional parameters of the protein

of interest. During the last few years several programs have

been developed that allow the simulation of multidimen-

sional NOESY spectra using the full relaxation matrix

approach CORMA [249], BCKCALC [250], IRMA [251],

MORASS [252], MARDIGRAS [253], DINOSAUR [254],

MIDGE [255], NO2DI [256], a program by Kim and Reid

[257], X-PLOR [258], BIRDER [259], RELAX [260,261]

and, SPRIT [262].

The first of these calculations were mostly performed for

theoretical reasons [249] and to test the influence of spin

diffusion on NOESY signal intensity [263]. The main

differences between the various approaches are the treat-

ment of internal motions, if non-isotropic tumbling can be

considered, and if the effects of finite relaxation delays can

be simulated. As an example RELAX allows the simul-

taneous application of different motional models describing

the internal and overall motion of the molecule under

investigation for individual spin pairs or groups of spins. It

will be described here in more detail.

RELAX [260,261], a program for the back-calculation

of NOESY spectra based on complete relaxation

matrix formalism, is part of AURELIA [264], an

improved version has been implemented in AUREMOL.

RELAX allows the simulation of 1H 2D NOESY spectra
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and IS (I ¼ 1H, S ¼ 13C or 15N) NOESY – HSQC

spectra. The IS NOESY–HSQC experiment is basically

a concatenation of a homonuclear 1H-NOESY and a

heteronuclear IS HSQC-experiment.

For a NOESY experiment the evolution of the deviation

of longitudinal magnetization from thermal equilibrium

DMz is described by the generalized Solomon equation

d

dt
DMzðtÞ ¼ 2DDMzðtÞ ð2:6Þ

The dynamics matrix D that governs the time evolution of

the cross-peak intensities in a 2D-NOESY experiment is

given by

D ¼ R þ K ð2:7Þ

K is the kinetic matrix that describes chemical and/or

conformational exchange [265], while R is the relaxation

matrix [56,266,267]. If the effects of chemical exchange are

neglected, as in the current version of RELAX, the solution

of Eq. (2.6) simplifies to

DMzðtÞ ¼ DMzð0Þexpð2t·RÞ ð2:8Þ

wherein DMzð0Þ is the deviation of the longitudinal

magnetization from thermal equilibrium at time zero.

However, fully relaxed spectra are hardly ever recorded.

An improved signal-to-noise ratio can be obtained if more

experiments are accumulated with a shortened relaxation

delay td: In this case the longitudinal magnetization Mz;j of

a nucleus j recovers only partly during the recovery time

tr: Sometimes purge pulses are used prior to td to enhance

spectral quality. In this case it can be assumed that

Mzð0Þ ¼ 0 at the beginning of td and the magnetization

Fig. 5. Comparison of 1H 800 MHz NOESY spectra of the histidine-containing phosphocarrier protein (HPr) from E. faecalis to verify differences between the

X-ray and NMR structure. Structural differences were observed especially for the region of the active site (His 15). In the displayed spectra this region is

surrounded by a rectangle. (A) Experimentally determined spectrum. (B) Spectrum back-calculated from one of the final set of NMR structures. (C) Spectrum

back-calculated from the X-ray structure. Figure adapted from Ref. [248].
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recovers only during td ðtr ¼ tdÞ: In the absence of purge

pulses under ideal conditions Mzð0Þ ¼ 0 is fulfilled after

the 908 detection pulse. Therefore, there is in this case

an additional contribution from the acquisition time tac to

the total recovery time tr ðtr ¼ td þ tacÞ: The z magnetiza-

tion MzðtdÞ at the beginning of the mixing time ðt1; t2 ¼ 0Þ

can be written as

Mz;jðtrÞ ¼
1

a

X
k

½1 2 expð2trRÞ�jk ð2:9Þ

where k runs over all nuclei in the relaxation matrix and a

is an arbitrary scaling factor.

For dipolar homo- or heteronuclear relaxation and spin

I ¼ 1=2 the rates of auto-relaxation Rii and the cross-

relaxation Rij between two spins i and j are given by

Rii ¼
X
j–i

qij½J
0
ijðvi 2 vjÞ þ 3J1

ijðviÞ þ 6J2
ijðvi þ vjÞ� ð2:10Þ

and

Rij ¼ qij½6J2
ijðvi þ vjÞ2 J0

ijðvi 2 vjÞ� ð2:11Þ

with Jn
ij ðn ¼ 0; 1; 2Þ being the spectral densities for

n-quantum transitions characterizing the motion of a vector

connecting spin i and j relative to the B0-field. The dipolar

interaction constants qij are given by

qij ¼ ð1=10Þg2
i g

2
j h2ðm0=4pÞ

2 ð2:12Þ

where gi and gj are the gyromagnetic ratios of spin i and j;

respectively.

Within RELAX, the following motional models can be

used to describe internal and external motions of the

molecule:

Rigid in cases where isotropic overall tumbling of a rigid

molecule is assumed:

Jn
ijðvÞ ¼

1

r6
ij

tc

1 þ v2t2
c

� �
ð2:13Þ

Slow Jump for the description of internal movements

which are slow relatively to the time scale of the overall

tumbling as it is the case for aromatic ring-flips. It is also

often referred to as r26 averaging:

Jn
ijðvÞ ¼

1

NiNj

tc

1 þ v2t2
c

� � XNi

m¼1

XNj

n¼1

1

r6
imjn

ð2:14Þ

Fast Jump where the correlation for the internal jumps

between equilibrium positions is much smaller than that of

the whole molecule as it is found for fast rotating methyl

groups:

Jn
ijðvÞ ¼

1

2N2
i N2

j

tc

1 þ v2t2
c

� � XNi

m;y¼1

XNj

o;p¼1

1

ðr5
imjn

r5
iojp

Þ

� ð3ðr!imjn
r!iojp

Þ2 r2
imjn

r2
iojp

Þ ð2:15Þ

Average 3 represents the r23 averaging for the descrip-

tion of fast motions:

Jn
ijðvÞ ¼

1

N2
i N2

j

tc

1 þ v2t2
c

� � XNi

m¼1

XNj

n¼1

1

r3
imjn

������
������
2

ð2:16Þ

Lipari model free approach for internal motions not

easily to describe by a simple motional model. In this

approach the motions of the molecule are assumed to be a

superposition of a slow overall motion with correlation

time tc and rapid internal motions with correlation times

t1;ij and generalized order parameter Sij with t21
e;ij ¼

t21
c þ t21

1;ij :

Jn
ijðvÞ ¼

1

r6
ij

S2
ijtc

1 þ v2t2
c

þ ð1 2 S2
ijÞ

te;ij

1 þ v2t2
e;ij

 ! !
ð2:17Þ

Lipari 1 a simplified version of the above definition that

is sufficient in most cases when t1;ij p tc :

Jn
ijðvÞ ¼

1

r6
ij

S2
ij

tc

1 þ v2t2
c

� �
ð2:18Þ

By a suitable combination of the spectral densities

presented above, it is possible to set up a detailed model for

the internal and overall motions of the molecule. Such a

model describes these motions as a superposition of a slow

overall rotational diffusion, with a rotational correlation

time tc and fast internal motions, that may vary from spin

pair to spin pair in the molecule. Usually, an isotropic

overall diffusion is assumed for the overall rotational

reorientations.

However, that is only true for spherical molecules or only

a good approximation if the anisotropy of rotational

diffusion of the molecule is relatively small. For molecules

that undergo anisotropic rotational diffusion described by

the diffusion coefficients Dk and D’ for rotation around the

main the transverse axes, a practical limit where the

anisotropy can be neglected is given by Dk=D’ # 1:3

[268]. It turns out that for many proteins the isotropic

approximation does not apply. As a consequence in RELAX

an automatic optional anisotropy correction is included

which models the molecule as an ellipsoid. The necessary

parameters are automatically calculated from the given

structure [260]. However, no internal motions are con-

sidered in the current implementation of RELAX when the

anisotropy correction is turned on.

The theory to combine internal motion with anisotropic

reorientation exists [268], and introducing this should

improve the simulation of NOEs substantially if a large

anisotropy exists.

In 3D NOESY–HSQC spectra, the NOESY-parts of the

3D pulse sequences differ slightly from the standard

homonuclear NOESY pulse sequence, since it is

advantageous to decouple the heteronuclei during the

evolution period t1: This is often done by an additional

1808 pulse on the S-spin at the midpoint of the t1-evolution.
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Alternatively, the S-spin can be decoupled during

the evolution time by broadband decoupling; this means

that the initial value of the S-magnetization is then zero in

the ideal case. Finally, the influence of the S-spin can be

completely removed from the NOESY part by additional

broadband decoupling during the NOE mixing time. In the

following we consider the standard case, where a 1808 pulse

on S is used during t1 and both the I- and S-magnetizations

are inverted at the beginning of the mixing time.

In NOESY–HSQC spectra, ideally the HSQC-part of the

3D-pulse sequence reflects only the polarization transfer

produced by the NOESY-part of the sequence. However, the

signal amplitude is modified by several factors during the

HSQC-sequence. For the quantitative analysis only factors

are important which change the relative intensities of the

NOE-signals. Two main sources are responsible for such

changes, the differences in the indirect IS-spin coupling

constants which are essential for the INEPT-transfer, and

the differences in individual transversal relaxation times. In

principle, the IS coupling constants could be determined

independently and the transversal relaxation times could be

calculated for every individual IS spin pair from the three-

dimensional structure and the motional parameters.

The cross-peak volume Vijk of two protons i and j

obtained at the end of the pulse sequence is given by

Vijk ¼ cIijfjk ð2:19Þ

with the NOESY intensity after the NOESY mixing time Iij

which is finally transferred from atom j to the directly

bonded heteronucleus k by the HSQC sequence, a

general scaling factor c and fjk the transfer efficiency for

the INEPT transfer from atom j to k or back to atom j: As a

first approximation the transfer factor fjk can be expressed

by [262]

fjk ¼ ðsinðpJjktÞe
2ðR

Ij

2
þ 1

2
R

Sk
1
ÞtÞn ð2:20Þ

with Jjk the coupling constant between the proton j and the

heteronucleus k; t the INEPT mixing time (typically 1/2J),

n the number of INEPT periods, R
IJ

2 the relevant transversal

relaxation rate of the directly bonded proton j, and R
Sk

1 the

longitudinal relaxation rate of the corresponding

heteronucleus.

The individual transfer factors fjk can also be obtained

experimentally by recording a two-dimensional data set

under identical conditions but with a zero NOESY-mixing

time and a constant value of t1 ¼ 0: This method works fine

under almost all conditions.

In both RELAX and CORMA several jump models are

available to treat methyl group rotation, and for considering

internal motions the Lipari Szabo ‘model free’ approach can

be used. In addition, it is possible to specify separate

effective correlation times for each interaction. In the case

where an X-ray structure is available an auxiliary program

in CORMA allows to provide the automatic calculation of

atomic diffusion times from the crystallographic B-factors.

Solvent and/or chemical exchange are modeled by

an exchange matrix, and calculations can be performed for

an ensemble of structures where it is possible to specify the

relative contribution of each ensemble member, and

occupancy values can be specified separately for each

atom which might be useful for example for partially

deuterated samples.

In the program DINOSAUR [254] internal motions like

methyl group rotation, aromatic ring flip and fast local

motions can be considered. Within X-PLOR [258] internal

motions can be described by the model-free approach from

Lipari and Szabo, and the rotation of methyl groups and

aromatic ring-flips are modeled by distance averaging.

In IRMA [251] the molecule is assumed to be

isotropically tumbling and internal motions such as

aromatic ring-flips and methyl group rotation are allowed

for. As in SPIRIT [262], the molecule is generally assumed

to be rigid, however, slow and fast internal motions,

e.g. rotation of methyl groups are considered. MORASS

[252] assumes a rigid molecule with fast rotating methyl

groups. The molecule is treated as rigid in BIRDER [259],

BCKCALC [250], MIDGE [255], and NO2DI [256].

In BIRDER anisotropic tumbling for non-spherical

molecules is incorporated, and differential external relax-

ation rates for protons in different chemical environments

are possible. For anisotropic tumbling the molecule is

considered as a rigid symmetric top with diffusion

coefficients Dk and D’ parallel and perpendicular to the

symmetry axis, respectively. However, the user has to

provide the ratio of Dk=D’ to the program that can be

calculated from the hydrodynamic theory of Tirado and de

la Torre [269] using for example their program

HYDRONMR. Also the differential external relaxation

rates that adjust for differences between the simulated and

experimental data have to be provided by the user.

In SPIRIT as in BIRDER, additional manual input is

required for anisotropic tumbling and for the use of

differential external relaxation rates.

In experimental NOESY spectra z-magnetization usually

recovers only partially between scans. As a consequence it

is important for a realistic simulation to allow the back-

calculation with finite relaxation delays, as it is done in the

programs BIRDER, RELAX, and SPIRIT on the basis of

Eq. (2.8).

In NMR the three-dimensional conformation of a

molecule is usually described by an ensemble of structures.

As a consequence in RELAX, CORMA and SPIRIT a single

trial structure or a set of trial structures can be used as input.

To simulate effects like exchange with solvent or

partial deuteration it is possible in programs such as

RELAX and X-PLOR to define separate occupancies for

the various atoms.

The programs RELAX and SPIRIT allow the simulation

of 15N or 13C edited 3D NOESY spectra. Different transfer

efficiencies of the INEPT and reverse INEPT steps can

be calculated directly by SPIRIT or can be taken from
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the corresponding 2D HSQC spectrum as implemented in

both programs. In SPIRIT it is possible to simulate the

different effects on CH, CH2, and CH3 groups caused by

sensitivity enhancement schemes used in pulse sequences.

The program CORCEMA [265] may be viewed as an

extension of CORMA, it is aimed at the investigation of

interacting systems such as ligand-enzyme complexes that

undergo multistate conformational exchange. In contrast to

most other programs that use matrix diagonalization to

calculate NOE signals BCKCALC [250] applies numerical

integration of the Bloch equations. In this approach a cross-

relaxation rate scaling parameter and a so-called ‘Z leakage’

parameter are used for an empirical spectral density

description.

Deriving accurate distance information from

NOESY spectra. One important application of NOE back-

calculation approaches is to derive accurate distance

information from NOESY spectra as is done in IRMA

[251], MARDIGRAS [253], MORASS [252], NO2DI [256],

MIDGE [255], and a program by Kim and Reid [257].

In some approaches an initial relaxation matrix is iteratively

refined until the difference between experimental and

simulated intensities is minimal, e.g. in MARDIGRAS

[253], MORASS [252], NO2DI [256], and MIDGE [255].

Relaxation matrix calculations can be applied iteratively

with three-dimensional structure calculations, e.g. in IRMA

[251] and a program by Kim and Reid [257] but these are

quite time-consuming approaches. In IRMA the program

starts with an initial structure model. For this model the

relaxation matrix is set up and the corresponding NOE

matrix is calculated. If possible theoretical off-diagonal

elements are now replaced by the corresponding

experimental values. This combined NOE matrix is back-

transformed to obtain a relaxation matrix where the

off-diagonal elements now include spin diffusion effects.

A set of these matrices for a series of mixing times is

averaged and from this averaged matrix improved distance

restraints (in the first cycle to obtain distance restraints at

all) are obtained, which in turn can be used to obtain a

refined structural model.

The program by Kim and Reid [257], which is similar to

IRMA, combines relaxation matrix analysis and structure

calculations for refinement purposes. It is based on the

program BCKCALC. In each cycle corresponding

experimental and simulated volumes are compared with

each other and in cases with large differences between

simulated and experimental volumes the corresponding

distance constraints are scaled accordingly. With the refined

distance restraints new structures are calculated which allow

an improved NOE simulation.

MARDIGRAS is based on the program CORMA

described above. In contrast to IRMA, for example, new

structure calculations are not required in each iteration step.

Using CORMA and a starting model a theoretical NOE

matrix is calculated and merged with the corresponding

experimental NOE matrix. An improved relaxation matrix is

back-calculated from the embedded NOE matrix to allow

the calculation of a refined theoretical NOE matrix.

The procedure is repeated until the error between simulated

and experimental NOEs reaches a minimum. Distances are

then calculated from the final cross-relaxation rates.

MARDIGRAS has been extended to the determination of

distances from ROESY spectra using the CARNIVAL

algorithm [270]. Experimental cross-peak intensities can be

symmetrized with the program SYMM in order to use

partially relaxed experimental spectra [271].

In the program NO2DI [256] no knowledge about the

three-dimensional structure of the molecule is required.

Therefore, the starting distances in the relaxation matrix

calculations can be far off from the real distances. In an

iterative procedure these distances will be scaled by the

sixth root ratio of calculated and experimental volumes to

obtain an improved set of distances which will be used for

the next round relaxation matrix calculations. Also the

program MIDGE [255] requires no starting structural model

for its calculations.

Recently, we have included the REFINE algorithm (to be

published) within RELAX to obtain accurate distance

information from NOE data. All features of RELAX,

e.g. all motional models are also available in REFINE.

The implemented iterative algorithm is in some regards

similar to NO2DI. However, in contrast to NO2DI a

distance matrix is not required in REFINE. Instead the

already available relaxation matrix is iteratively refined.

The rates sij of step n þ 1 are calculated from the rates of

the previous one, sijðnÞ by

sijðn þ 1Þ ¼ sijðnÞ
lncAijðexpÞ

lnAijðn; simÞ
ð2:21Þ

with an arbitrary scaling factor c to take into account

unknown experimental and instrumental factors, the exper-

imental cross-peak volumes AijðexpÞ; and the corresponding

simulated volumes Aijðn; simÞ of step n. After the auto

relaxation rates have been adjusted, new NOEs are

calculated from the refined relaxation matrix and the next

iteration step is performed. After convergence, distances are

obtained from the refined relaxation matrix (manuscript in

preparation).

In the programs DINOSAUR [254] and X-PLOR [258]

relaxation matrix calculations are used for structural

refinement by directly minimizing the difference between

observed and simulated NOE intensities. Therefore, it is not

necessary to convert the experimental NOEs into distances.

Calculations within X-PLOR [258] can be restricted to a

subset of cross peaks to save time, and the occupancy of

separate atomic sites can be specified, e.g. to account for

solvent exchange processes and to take partial deuteration

into account. In order to save time X-PLOR allows

restriction of the calculations to a subset of cross peaks.

For the molecular dynamics calculations performed in

DINOSAUR the program is interfaced with the GROMOS

force field [272].
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Secondary structure determination from chemical shifts.

Three-dimensional structure calculations are usually not

solely based on NOE derived distance restraints but are

supplemented with additional information. Even before the

extraction of exact structural information for, e.g. the

assignment of the NOESY spectra it is helpful to have an

idea about the secondary structure of the molecule. A

statistical analysis of more than 70 proteins has revealed a

strong relationship between secondary chemical shifts and

a proteins secondary structure [218]. As a consequence after

a completed resonance line assignment the secondary

structure of the molecule can be deduced from chemical

shifts reasonably well. However, it should be noted that in

most cases for a precise determination of the secondary

structure elements additional information such as NOE

pattern information is required.

Automated procedures for secondary structure identifi-

cation have been developed by several groups [273–275].

In the chemical shift index method CSI [273,274] Ca, Cb,

C0, and Ha shifts are compared with random coil values and

a set of rules is applied for secondary structure determi-

nation. In the probabilistic method from Wang and

Jardetzky the experimentally derived N, Ca, C0, Cb, Ha,

and HN chemical shifts from the trial protein structure are

automatically compared with a set of database values. The

program uses its own database derived from a statistical

analysis of 36 distinct proteins. PSICSI [276] combines

information from chemical shifts and the primary sequence

to obtain secondary structure predictions using neural

networks. The program was trained on 92 proteins for

which chemical shifts as well as secondary structure and

tertiary structure information was available. In this approach

sequence information can be used as a substitute for sparse

NMR data.

Automated determination of backbone and side-chain

dihedral angles. Since chemical shifts can be used for

secondary structure determination it is obvious that they can

also be used for the prediction of dihedral angles. The

following three methods are based on the use of databases

constructed from known structures. In the approach

described by Beger and Bolton [277] experimentally

observed HN, N, Ca, Ha, and Cb chemical shifts are

empirically correlated with the corresponding observed f

and c dihedral angles in 49 known X-ray and NMR

structures. This allows the chemical shift based prediction

of backbone dihedral angles for proteins of unknown

tertiary structure.

TALOS [278] uses a slightly different set of chemical

shifts (Ca, Cb, CO, Ha, and N chemical shifts). The

TALOS approach makes use of a database constructed from

20 proteins for which high resolution X-ray structures and

chemical shift tables are available. In comparison to the

program by Beger and Bolton local sequence information is

also included in the prediction process. TALOS searches its

database for tripeptides with chemical shift and residue type

homology to the query sequence. The backbone dihedral

angles of the central residues of the 10 best matches are then

averaged to obtain the predicted values.

Using Cb and Cg chemical shifts it is also possible to

differentiate between cis and trans peptide bonds that are

preceding prolines [279]. In the program POP predictions

are made in a probabilistic fashion based on a database

generated from 1033 prolines for which Cb and Cg

chemical shifts and three-dimensional structural infor-

mation are available.

In the following methods dihedral angles are more

directly calculated from experimental data other than

chemical shifts. Most of these programs employ one- or

multidimensional grid-search methods. MULDER [280]

and a program by Kloiber et al. [281] employ one-

dimensional methods, ANGLESEARCH [282], FOUND

[283], and HYPER [284] use multidimensional methods.

The multidimensional grid search algorithm in HYPER

is hierarchical in the sense that constraints that greatly

limit the conformational space are searched first. Exper-

imental input includes usually distance and/or scalar

coupling restraints. An exception is the program by

Kloiber et al. [281] that uses five cross-correlated

NMR spin relaxation rates for the backbone nuclei and

the 3JC0 – C0 scalar-coupling constant to determine backbone

dihedral angles. In addition to experimental restraints

FOUND takes steric, and stereochemical restraints into

account as well. All the programs provide torsion-angle

restraints, and more specifically backbone f, c, and side-

chain x1 dihedral angles together with the stereospecific

assignments of the Hbs are automatically determined

within HYPER. In ANGLESEARCH x2 angles are also

determined.

The program by Kloiber et al. [281] specially aims at the

automated determination of backbone dihedral angles. In

FOUND the results include allowed torsion-angle ranges,

and stereospecific assignments for diastereotopic substitu-

ents. A special feature of FOUND is that it can be applied to

contiguous nucleic acid or protein fragments of arbitrary

length. FOUND has been incorporated in the structure

determination package DYANA.

2.2.4.5. Structure calculation. In most cases it is still not

feasible to sample the conformational space of a biological

macromolecule in an exhaustive way for all conformations

in agreement with the experimental restraints. Traditionally,

the main methods in use are distance geometry (DG),

restrained molecular dynamics (rMD), and simulated

annealing (SA) although pure distance geometry methods

are only rarely used now.

In pure distance geometry, a matrix of distances between

all atoms that is consistent with the input is created from the

experimental restraints together with the covalent structure

of the molecule. This set of distances from n-dimensional

space is projected into three-dimensional Cartesian coordi-

nate space in Metric Matrix Distance Geometry Methods,

e.g. DISGEO [2]. The advantage of this method is that
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a direct method for solving the structure exists, that it is

computationally very fast, and that no initial structure model

is required. A disadvantage of distance geometry is that

distances are not sufficient to define the chirality of a

structure. However, in the case where local or global mirror

images occur these can be rejected at an early stage since the

chiralities of the amino acids and helices are known.

Structures obtained by distance geometry usually contain

violations in bond lengths and bond angles and closer

distances than van der Waals interatomic distances. As a

consequence the structures obtained by distance geometry

should be refined with, for example, restrained molecular

dynamics techniques.

Another possibility is to work in dihedral angle space

where bond lengths and bond angles are kept fixed and

only the torsion angles are allowed to be varied, e.g.

DISMAN [2] and DIANA [285]. In this approach the

conformation of the protein can be calculated from a set

of distance constraints by minimizing a target function

that is zero if all distances are compatible with the

constraints.

In the FANTOM (Soman et al., unpublished) approach

energy minimizations and Monte Carlo simulations can be

performed in torsion-angle space.

Several programs for restrained molecular dynamics

have been developed in the last years for protein structure

calculation, e.g. X-PLOR [258], GROMOS [272],

DL_POLY [286], DYANA [287], CNS [288], NAMD2

[289], CYANA [247], AMBER [290], X-PLOR-NIH [291],

and INSIGHT II-CHARMM [292].

In restrained molecular dynamics (mostly combined with

a simulated annealing protocol), the total potential energy

Vtotal of the molecule is minimized. Vtotal usually comprises

the following terms:

Vtotal ¼ Vbond þ Vangle þ Vdihedr þ VvdW þ Vcoulomb þ Vexp

ð2:22Þ

The first five terms are empirical energy terms that

describe the physical interactions of the atoms such as the

strength of the covalent bond ðVbondÞ; the bond angle

ðVangleÞ; the dihedral angle ðVdihedÞ; the van-der-Waals

interaction ðVvdWÞ; and the electrostatic interaction

ðVcoulombÞ: In contrast, Vexp contains the experimental

NMR information such as distance and dihedral angle

restraints. It should be noted that Vexp does not correspond to

any real physical force. Thus the form of the potential is not

predefined and is often assumed to be a simple harmonic

potential. For distance restraints from NOE data VNOE can

thus be defined as

VNOE ¼
X

VNOEðijÞ ¼ kNOE

X
ðrij 2 rij;0Þ

2 ð2:23Þ

with kNOE an arbitrary constant, rij and rij;0 the actual and the

expected distances between the atoms i and j: For

computational stability potentials should not exceed some

threshold values with the condition VNOE ¼ TNOE if it would

be larger than the threshold. The estimated error of r;0ij is

usually expressed in the form of a lower and upper limit

rij;low and rij;up of the distance.

To most users it is not clear that these values are only

defined if a confidence level of, e.g. 0.995 is predefined for

the hypothesis that the distance is expected to be located in

these error limits. Even worse, the error is usually just set to

an arbitrary value, e.g. a certain percentage of r;0ij without

considering if the data would require completely different

values. However, it is possible to obtain reasonable error

estimates for individual cross peaks directly from the data

(Trenner et al., in preparation).

For including the presumed error equation (2.23) is often

modified to

VNOEðijÞ ¼ 0; for rij;low # rij # rij;up ð2:24aÞ

VNOEðijÞ ¼ kNOEðrij 2 rij;lowÞ
2
; for rij;low $ rij

ð2:24bÞ

VNOEðijÞ ¼ kNOEðrij 2 rij;upÞ
2
; for rij;up # rij

ð2:24cÞ

and

VNOE ¼ minðVNOEðijÞ;TNOEÞ ð2:24dÞ

There is a similar definition of the NOE potential for

ambiguous NOEs (Eq. (2.4)). However, since the potential

should reflect the error distribution p of the measured

quantity one can derive more reasonable potentials.

According to Sippl [293] the appropriate potential V is

related to the probability p and the state integral Z by

V ¼ 2kBT lnðpZÞ ð2:25aÞ

with

Z ¼
ð

· · ·
ð

exp 2
VðxÞ

kT

� 	
dx ð2:25bÞ

where VðxÞ is the potential of a particular state x. This means

for a normal distributed quantity (as, for example, to a first

approximation the peak volume), a harmonic potential is in

fact an adequate description. For the distances derived from

NOEs one obtains (Kalbitzer and Gronwald, to be

published)

VNOEðijÞ¼kBT ln
ffiffiffiffi
2p

p
sþ

1

2s2

1

r12
ij

2
2

r6
ijr

6
ij;0

þ
1

r12
ij;0

 !
2lnZ

 !

ð2:26Þ

Here, T is the absolute temperature and s the standard

deviation of the measured values of the cross-peak

volume.

In molecular dynamics, structures are calculated by

solving Newton’s equation of motion (for a review, see

Ref. [294])

Fi ¼ miai ð2:27Þ
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The force Fi on atom i can be obtained from the derivative

of Vtotal with respect to the coordinates ri as

Fi ¼ 2
dV

dri

¼ mi

d2ri

dt2
i

ð2:28Þ

Since the atom masses mi and Vtotal are known this equation

can be solved in order to obtain future atom positions in time

ti: If the temperature T of the simulation is given, the atomic

velocities are related to the temperature by

3N

2
kBT ¼

XN
i¼1

1

2
miv

2
i ð2:29Þ

and should be described by a Maxwell-distribution. Thus

temperature can be simulated by assigning to the individual

proteins velocities from a Maxwell distribution. Usually

rotation around and translation of the center of mass are

removed from the system. During the simulations the

temperature T can be kept constant by scaling the velocities

vi after each step Dt; with a scaling factor l this is often

referred to as coupling to a bath of constant temperature T0:

The scaling factor l is given by

l ¼ ½1 þ ðT0=T 2 1ÞDt=tT �
1=2 ð2:30Þ

where tT is the time constant for the temperature coupling.

To overcome local minima a restrained molecular

dynamics and simulated annealing protocol can be used.

First the system is allowed to increase its kinetic energy

(temperature) and then the kinetic energy is slowly

decreased. Compared to distance geometry methods the

required amount of computational time is drastically

increased especially in cases that start from random

structures. However, with the constantly increasing com-

puter power molecular dynamics calculations can nowadays

also be started directly from random conformations. Key

advantages include that local minima can be overcome, an

even sampling of the conformational space, that the

deviations from ideal geometry of, e.g. planar rings are

usually small, and that usually good non-bonded inter-

actions can be obtained.

Therefore, both methods are often combined where an

initial structure is calculated using distance geometry which

is then refined using simulated annealing. Also a consider-

able amount of time can be saved by simulated annealing

techniques operating not in Cartesian space but in dihedral

angle space as it is implemented in DYANA [287] and

CYANA [247] or by using programs that were especially

designed for parallelizing the molecular dynamics calcu-

lations, e.g. DL_POLY [286] and NAMD2 [289].

Distance geometry algorithms are used by the programs

DISGEO and DISMAN [2]. The DISMAN program first

calculates local conformations of the polypeptide chain

from short-range restraints and then gradually adds long-

range restraints to obtain the global structure. In contrast

DISGEO tries to obtain the global structure first and then

improves the local geometry. The next step was the distance

geometry program DIANA [285] that, like DISMAN, has a

variable target function that is minimized during structure

calculations in torsion-angle space.

The successor of DIANA called DYANA [287] performs

torsion-angle dynamics to obtain three-dimensional struc-

tures from NMR derived distance and torsion-angle

constraints. In comparison to calculations in Cartesian

space the required amount of computational time is

drastically reduced due to the reduced number of degrees

of freedom and the absence of high frequency bond and

angle vibrations. DYANA was further developed into the

program CYANA [247] that contains as a main new feature

the combination with the automated assignment module

CANDID.

INSIGHT II [292] contains the CHARMM module that

enables molecular dynamics calculations and energy

minimizations to be done in Cartesian space of proteins,

nucleic acids and other biological macromolecules. Exper-

imentally derived distance and dihedral angle restraints can

be incorporated. X-PLOR, which was initially derived from

CHARMM is one of the most widely used programs. It

allows simulated annealing structure calculations in torsion

angle and/or Cartesian space. A new development based

upon X-PLOR is CNS [288]. Data input for CNS includes

NOE-derived distances, NOE intensities, torsion-angle

restraints, coupling constants, homo- and heteronuclear

chemical shift information, residual dipolar couplings,

heteronuclear T1=T2 ratios, and a full relaxation matrix

approach can be used for the direct refinement against NOE

intensities.

The original X-PLOR and CNS programs are no longer

in active development. New additional NMR specific

features are now incorporated in X-PLOR-NIH [291] and

this contains all the functionality of X-PLOR 3.851. In

addition to the features mentioned for CNS XPLOR-NIH

includes the automated NOE assignment module ARIA,

additional potentials for NMR observables, e.g. 1JCa– Ha

coupling constant restraints related to f and c angles, and

three bond amide deuterium isotope effects on 13C0 shifts

related to c angles. An important addition is the inclusion of

knowledge-based potentials of mean force generated from

known high resolution 3D structures. These potentials

should be especially important in regions of the molecule

where only a limited number of experimental restraints are

available. Multidimensional torsion angle database poten-

tials of mean force for proteins and nucleic acids are also

included. Joint NMR/X-ray refinement calculations are also

possible.

The name AMBER [290] usually refers to a set of

molecular mechanical force fields for molecular dynamics

simulations of biomolecules, and to several programs to

perform these simulations. The AMBER module SANDER

is the general molecular dynamics and energy minimization

program working in Cartesian space. It allows simulated

annealing structure calculation based on NMR derived

restraints. Experimental input includes NOE-derived
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distances, NOE intensities, torsion-angle restraints, scalar

coupling constants, proton chemical shifts and residual

dipolar couplings. For the refinement against NOE inten-

sities a full relaxation matrix approach is included.

The GROMOS [272] program also allows the NMR

based three-dimensional structure calculation of biological

macromolecules in Cartesian space using molecular

dynamics. Restraints obtained from experimental data can

be defined for NOE-derived distances, dihedral angles and

J-coupling values.

In contrast to most other known programs, Gippert et al.

[295] have developed an approach (DTAGS/NEWMOL) for

systematic grid searches in torsion angle conformational

space to obtain all structures in agreement with experimen-

tal restraints. The main idea to increase efficiency in this

method is to use the allowed conformational space of

smaller fragments to restrict trial conformations of larger

fragments. It is feasible to apply the method to smaller

peptides and to overlapping fragments of medium sized

proteins. For larger macromolecules such as proteins the

main applications will probably include systematic searches

for allowed loop conformations and the validation of

experimental restraints and stereospecific assignments.

One of the most versatile programs for biomolecular

structure determination from NMR data is X-PLOR in its

current version since it allows for a very broad range of

input from experimental data. Also it is capable of

performing distance geometry calculations as well as

molecular dynamics simulations in Cartesian and dihedral

angle space. A computationally very efficient program that

allows calculating a set of structures in a comparably short

amount of time is DYANA/CYANA. This might provide an

important advantage in cases where automated peak

assignments are combined with structure calculations in

an iterative manner.

Structure determination using sparse NMR data. One

avenue to speed up the structure determination process is to

reduce the required number of restraints and/or to use only

restraints that are relatively easily available, e.g. backbone

dihedral angles, chemical shifts, residual dipolar couplings,

hydrogen bonds, or HN–HN NOEs. These methods should

be applicable in particular to cases where one is more

interested in the global fold of the molecule than in a highly

detailed structure. In the easiest application one can check if

the trial protein adopts a previously known fold [296].

Several of the methods published so far rely on the

combination of modeling and NMR techniques. Bowers

et al. describe an approach that combines the ROSETTA ab

initio protein structure prediction method with sparse NMR

data [297]. The ROSETTA method assembles protein

structures from fragments of known structures with

sequences similar to the target protein [298,299]. Here in

addition chemical shift and NOE data are used in the

fragment selection process.

More specifically chemical shift data are employed to

generate backbone dihedral angles, using the TALOS

algorithm described above [278], which are then used

together with NOE data in the fragment selection process.

From the selected fragments models are built by minimizing

an energy function that emphasizes terms for hydrophobic

burial, b-strand pairing, and NOE restraint satisfaction.

In the MFR approach of Delagio et al. [300] a starting

structure is generated searching a database of three-

dimensional protein structure fragments generated from

the PDB database. Fragments are selected whose predicted

residual dipolar couplings best fit the set of measured

values, and also the fit between measured and predicted

chemical shifts is considered to a less degree in fragment

selection. Average values for the backbone dihedral angles

of the selected fragments are calculated, and are used to

generate initial models. Models are further refined by

adjusting the backbone dihedral angles to optimize the fit

between predicted and measured values of the residual

dipolar couplings and chemical shifts, respectively.

Since it is possible to back-calculate residual dipolar

couplings from known structures experimentally measured

residual dipolar couplings can be used to search a database

of structural fragments to find the best-fitting fragments

[301]. Using overlapping fragments a structural model of

the trial proteins backbone is generated.

In a different approach it is demonstrated that fold

prediction by protein threading can be shown to be

improved by including experimental distance constraints

obtained from, e.g. mass spectroscopy or NOE measure-

ments [302].

Other methods rely solely on the use of NMR data [296,

303–306]. The approach by Bonvin et al. uses hydrogen

bond restraints obtained from experimentally measured

cross-hydrogen bond 3hbJNC0 coupling constants and back-

bone dihedral angle restraints obtained from an analysis of

secondary chemical shifts. Using this limited set of

restraints calculations with CNS resulted in a set of

structures which did not converge into one single fold.

Therefore, the structures were further analyzed by grouping

similar structures into clusters. It was shown that the correct

fold could be obtained by calculating the average structure

from the cluster containing the most similar structures.

In another investigation it was shown that three different

residual dipolar coupling measurements together with

sparse long-range HN–HN NOE contacts are sufficient to

define the global fold of Ubiquitin [304]. Using only

residual dipolar couplings it is possible to determine if a

protein adopts a previously known fold [296]. The method is

based on the comparison between measured residual dipolar

couplings and the corresponding values computed from

known structures. In this process an explicit structure

determination of the target protein is not necessary.

In fully deuterated proteins it is possible to obtain long

range NOEs between amide protons corresponding to

distances up to 0.8 nm. Together with secondary structure

restraints obtained from a chemical shift analysis this
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information is sufficient to calculate structures of medium

precision [305].

Another method is based on the use of deuterated

proteins with selectively protonated side-chain methyl

groups [306]. Here the programs AUTOASSIGN and

AUTOSTRUCTURE (described above) are combined

with the STAC algorithm that allows classification of spin

systems based on the presence of methyl groups. Structures

are calculated using relatively few NOEs, hydrogen bonds

and residual dipolar couplings. This limited set of

constraints is sufficient for fold determination.

2.2.5. Structure validation

One of the most important points in any automated or

manual structure determination process is the assessment of

the quality of the resulting structures. As a final aim one

wants to know if the solved structure really reflects the true

structure present in the natural environment of the molecule

of interest. However, an intermediate but still worthwhile

aim is to show that the obtained structures do optimally

explain all the experimental evidence available. In fact, the

question about the true structure is ill posed as long as it is

not defined what is meant by ‘structure’. Since the ensemble

of all structural states of a protein is infinite when

characterized by continuous variables such as Cartesian

coordinates or torsion angles, it can only be characterized by

a limited subset of all structures. Here, the ‘lowest-energy’

structure that is the structure with lowest Gibbs free energy

at given external conditions is a rather well-defined concept

although more than one structure could possibly have the

same energy. The use of a ‘mean’ structure makes sense

only when a subset of closely related structures are selected

since averaging of very different structures (e.g. a second

structural state or random-coil structures) does not give

information of practical use in structural biology.

The overall precision of an NMR structure is usually

expressed either as an average pairwise root-mean-square

deviation (rmsd) of the coordinates of the selected ensemble

of structures or as an rmsd of the structures relative to the

mean coordinates of the ensemble. However, rmsd values

are a measure of the precision of the structures in the

ensemble but not necessarily for their accuracy.

Another measure for the quality of an NMR structure is

how well the obtained structures agree with the experimen-

tal data. Therefore, the number and sizes of violated

restraints, such as distance, dihedral angle, hydrogen bond,

and residual dipolar coupling restraints can be analyzed. An

NMR R-factor provides a direct measure of how well the

resulting structures fit the corresponding experimental

NOESY spectra. Often the overall quality of the exper-

imental data itself is judged by the number of restraints per

residue. A measure that is independent of the experimental

data is the quality of the geometrical properties of the

molecule, e.g. the comparison of bond lengths, bond angles,

dihedral angles, etc. with standard values obtained for

example from a set of high resolution structures. To judge

the overall quality of a protein structure it will, in most

cases, not be sufficient to rely solely on one of the indicators

mentioned above but to consider most of them

simultaneously.

A general overview of the validation of experimentally

derived X-ray and NMR structures is given by Laskowski

et al. [307]. However, we will summarize in the following

some of the methods applicable to NMR spectroscopy.

NMR R-factors. A comparison between experimental and

back-calculated NOESY spectra leads to an error function

similar to the R-factor (residual factor) used in crystal-

lography [308]. An NMR R-factor gives a direct value for

the quality of the NMR structure obtained; more precisely it

gives a measure for the agreement between experimental

data and the estimated structure. As in the case of X-ray

crystallography, the R-factor can only be interpreted in the

context of the quality of the data because poor data can

result in low R-factors and hence falsely indicate a high

quality of the structures. This is a well known fact in X-ray

crystallography where R-factors are only interpreted in

conjunction with the resolution of the crystals. In NMR a

corresponding measure does not exist yet, although the

completeness of the NOESY-spectra defined by Doreleijers

et al. [309] provides a reasonable but not ideal measure for

the quality of the data.

In the literature different NMR R-factor definitions can

be found. Generally, they are based on the comparison of

experimental NOEs with the corresponding back-calculated

NOEs obtained from a relaxation matrix analysis. However,

differences exist which parameters, such as motional

models, are taken into account in the back-calculations.

One major application of R-factors is quality determination

[254,310–312]. In the paper by Gonzalez et al. various

linear and quadratic R-factor definitions are compared with

each other. However, no major differences were found on

the sensitivity of these R-factors to structural changes. Also

the conversion of volumes into distance-like quantities by

using the sixth-root of the volume was tested to define an R-

factor that is more closely related to the NOE energy used in

structure calculations. Similar R-factor definitions were

successfully tested by Thomas et al. and Xu et al. [313,314].

An R-factor taking into account integration errors due to

noise and spectral overlap was defined by Nilges et al. [315].

In other applications R-factors are used for structural

refinement. In these generally iterative approaches the

difference between simulated and experimental intensities is

minimized during structure calculations [253,310,

316–320]. In the MARDIGAS approach by Borgias and

James an iterative relaxation matrix approach is used to

obtain accurate distance information from NOE spectra. R-

factors are used here to provide a stop criterion for the

iteration process. A hybrid relaxation matrix approach is

used for the refinement of a nucleotide structure by

Nikonowicz et al. [321]. In the approach by Mertz et al.

[322] the refinement is performed in dihedral angle space

employing the distance geometry program DIANA.
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To our knowledge in all of these approaches manually

assigned NOESY peaks are compared to their correspond-

ing back-calculated counterparts. Therefore, these R-factor

calculations are only possible after the time consuming

manual assignment of the NOESY spectra has been

performed. However, it often would be useful to estimate

the agreement of a structural model with the experimental

data independent of the completion of the NOESY assign-

ment. Typical examples could include the selection of a

proper starting model for automated or manual structure

based NOE assignments or for answering the question of

whether a structure solved by X-ray crystallography also

applies in solution.

For that we have developed the computer program

RFAC [323] which allows the automated estimation of

R-factors from protein NMR-structures and gives a reliable

measure for the quality of the structures. The R-factor

calculation is based on the comparison of experimental and

simulated 1H NOESY NMR spectra. The approach

comprises an automatic peak picking and a Bayesian

analysis of the data, followed by an automated structure

based assignment of the NOESY spectra and the

calculation of the R-factor.

The major difference to previously published R-factor

definitions is that RFAC takes the non-assigned experimen-

tal peaks into account as well. The number and the

intensities of the non-assigned signals are an important

measure for the quality of a NMR structure. It turns out that

optimally adapted R-factors should be used for different

problems. RFAC (which is implemented in AUREMOL)

allows the computation of a global R-factor, different

R-factors for the intra-residual NOEs, the inter-residual

NOEs, sequential NOEs, medium-range NOEs and long-

range NOEs. R-factors can be calculated for various user-

defined parts of the molecule or it is possible to obtain a

residue-by-residue R-factor. Another possibility is to sort

the R-factors according to their corresponding distances.

The summary of all these different R-factors should allow

the user to judge the structure in detail. A comparison with a

previously published R-factor definition shows that the

approach of RFAC is more sensitive to errors in the

calculated structure.

Automated R-factor determination. The automated

R-factor analysis consists in principle of two separate

parts: (1) the comparison of the experimental NOESY

spectrum with the NOESY spectrum back-calculated from a

given structure, and (2) the calculation of the R-factor(s)

from the data. In the first part the NOESY spectrum has to

be calculated from the trial structure using the sequential

assignments; that is, for a meaningful R-factor the spin

systems must have been assigned completely or almost

completely. The back-calculation of the NOESY-spectra

should be as perfect as possible, that is the application of a

full relaxation matrix approach should be used, which

corresponds to the state of the art, although initial slope

approaches could also be used.

A schematic representation of the steps essential for

automated R-factor determination are given in Fig. 6. Since

practical NMR spectra have a limited quality and contain a

large number of noise and artifact peaks, information about

the validity of a given cross-peak must enter in the R-factor

calculation. This can be done by using the probabilities pi of

the peaks i to be true NMR signals and not noise or artifact

peaks. They can be calculated according to Bayes theorem

Fig. 6. Schematic representation of the computation steps required for automated R-factor determination with the program RFAC.
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[182,183], for a detailed description, see Section 2.2.4.2,

and can be used as weighting factors during the calculation

of the R-factors. In a next step of the R-factor calculation the

experimental cross peaks must be automatically assigned to

entries of a basic assignment table. Since the general

chemical shift assignments are usually the result of many

different experiments they do not fit exactly to the spectrum

under consideration. This means that one has first to

optimally adapt the chemical shift values obtained from the

general sequential resonance assignment to the actual

experimental data by a global comparison of the back-

calculated spectrum with the experimental spectrum. The

next step would then be the actual assignment of cross

peaks, which is usually not unique, since a given cross peak

often has more than one explanation.

The experimental signals for which no corresponding

simulated peaks were found and which therefore

remain unassigned will be called the set U in the following.

The U-list can be further reduced by applying a lattice

algorithm which can be used if one assumes that the

sequential assignment is true and almost complete. In this

algorithm only non-assigned peaks are taken into account

where at least one back-calculated peak in each dimension

can be found within user defined search radii, e.g. 0.01 ppm

for 2D spectra. In this context it is important to note that for

each atom at least the structure independent diagonal peak is

back calculated. In case that more than one back-calculated

peak is assigned to a single experimental peak, the mean

volume of the corresponding back-calculated peaks is

estimated before the comparison is done while the volume

of the experimental peak is divided by the number of

corresponding back-calculated peaks.

In general, the R-factor should measure the agreement

between the experimental data set and the data back-

calculated from the structure. In its simplest form it is

defined by:

R1 ¼

X
i[A

lIexp;i 2 sf·Icalc;ilX
i[A

lIexp;il
ð2:31Þ

The summation is performed over the data points i with

intensities Ii in a given set A. With this definition R is 0 if the

agreement is perfect and .0 for all other cases. In NMR

spectroscopy and X-ray crystallography one has to normal-

ize the experimental data (or the calculated data) since the

experimental values are scaled by a constant factor

depending on not exactly known instrumental and exper-

imental parameters. The optimal scale factor sf is found

when the likelihood function LðsfÞ adopts its maximum

value

LðsfÞ ¼
Y
i[A

p·ðsf·Icalc;i; Iexp;iÞ ð2:32Þ

Here, p is the probability that for a calculated value sf·Icalc;i

the value Iexp;i is measured. From Eq. (2.32) the scale factor

sf is given as:

sf ¼

X
i[A

Iexp;i·Icalc;iX
i[A

I2
calc;i

ð2:33Þ

The above definition of the R-factor is well suited for

X-ray crystallography: the exact positions of the X-ray

reflections are determined by the crystal lattice and are

exactly known. Therefore, the assignments of the reflection

spots are usually unambiguous and only the intensities of

these spots determine the R-factor. The data set A

corresponding to a given resolution can easily be assigned

and used for the calculation of the R-factor (which is

always dependent on A).

In NMR-spectroscopy, however, many assignments of

experimental peaks are ambiguous and many experimental

peaks are artifacts. Therefore, in the literature only the set A

of manually assigned peaks is used for the calculation of the

R-factor. By application of Eq. (2.31) to NOESY spectra one

can define a measure for the error (Eq. (2.34)) that

corresponds to a normalized mean deviation [312]. Note

that in the following for all R-factor calculations the

intensities will be replaced by their corresponding volumes V

R2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i[A

ðVexp;i 2 sf·Vcalc;iÞ
2

X
i[A

V2
exp;i

vuuuuut ð2:34Þ

Since unlike in X-ray crystallography the set of peaks is

incomplete and dominated by the (structurally less import-

ant) strong short range NOEs, R is dominated also by the

volumes of these ‘trivial’ peaks. Therefore, usually V is

replaced by a more meaningful function f ðVÞ which

emphasizes the more important long range NOEs. The

most common form of f ðVÞ is

f ðVÞ ¼ Va ð2:35Þ

Thus a more general form of R2 is then given by

R2ðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i[A

ðVa
exp;i 2 sfa·Va

calc;iÞ
2

X
i[A

V2a
exp;i

vuuuuut ð2:36Þ

If f ðVÞ as described in Eq. (2.35) is used, the calculation of

the scale factor must be changed accordingly

sfa ¼

X
i[A

ðVexp;i·Vcalc;iÞ
a

X
i[A

V2a
calc;i

ð2:37Þ

As Eq. (2.33) the expression fulfils the important condition

that it gives the correct value of sf in the error free case where

all experimental and back-calculated peak volumes differ

only by a proportionality factor. With a ¼ 21=6 f ðVÞ is in

first-order proportional to the internuclear distance and one
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obtains the distance related R-factor already defined by

Gonzales et al. [312].

In the automated R-factor calculation there is no user

intervention in deciding (1) which peak in the NOESY

spectrum is a true resonance and (2) if an assignment of a

cross peak is correct. In principle only probabilities pexp;i and

pcalc;i exist for case (1) and (2), respectively. A method for

estimating pexp;i has already been developed (see above). An

algorithm does not yet exist for estimating pcalc;i which

would contain information about the validity of the model

used for the simulation, including not completely adequate

motional models, and the local validity of the structural

model itself. Consequently, in the following we will

explicitly make use only of the probabilities pexp;i: With

these probabilities, Eqs. (2.34) and (2.36) can be rewritten as

R3ðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i[A

ðVa
exp;i 2 sfa·Va

calc;iÞ
2·p2

exp;iX
i[A

V2a
exp;i·p

2
exp;i

vuuuuut ð2:38Þ

The above R-factor only estimates how well the assigned

peaks are explained by the structural model but they do

not provide information on how well all experimental

peaks are explained. For doing this, the R-factor should

decrease if more peaks are assigned correctly and

explained by the structural model. A practical expansion

of Eq. (2.38) including the non-assigned peaks can be

defined by

The first summation is performed over all assigned

experimental peaks (set A) and the second summation

is performed over the list of unassigned peaks (set U).

Vcalc;i are the corresponding calculated intensities

(volumes). For set U the logical extension of R3

would assign the strongest back-calculated cross peak

with suitable coordinates as Vcalc;i: However, since

for a ¼ 21=6 very small volumes in R4 dominate the

R-value more stable results can be expected in this

case if a lower limit is set for Vcalc;i: It is

computationally efficient to set Vcalc;i to a value

which just cannot be detected safely in the experimen-

tal spectrum that is to the intensity Vnoise of a standard

noise peak. In the present implementation, it is possible

to calculate the noise intensity automatically or a user

specified noise intensity could be employed. If the

noise volume is calculated by the program the weakest

back-calculated intensity where the corresponding dis-

tance is not greater than the detection limit is selected.

In the automatic routine a detection limit of 0.5 nm is

assumed. Since in R4 ða ¼ 21=6Þ the large distances

(small volumes) dominate the expression the above

normalization of the R-factor leads to a strong depen-

dence on the exact value of the Vnoise term. This

influence can be diminished by inclusion of Vnoise in the

denominator:

In the case of a ¼ 1 the standard noise intensity Vnoise

for the R-factors R4 and R5 can be set to 0, since strong

unassigned signals will lead to increasing R-factors in

this equation. With this definition the two R-factors in

Eqs. (2.39) and (2.40) become equal.

The R-factors R4;5 indicate how well the experimental

signals are explained by back-calculated peaks. However,

one can also define an R-factor to check how well the back-

calculated signals are explained by experimental data. A

definition analogous to R5 uses the non-assigned back-

calculated signals instead of the non-assigned experimental

peaks:

The summation of the unassigned calculated peaks has

now to be performed over a different set U 0 which

R4ðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i[A

ðVa
exp;i 2 sfa·Va

calc;iÞ
2·p2

exp;i þ
X
i[U

ðVa
exp;i 2 sfa·Va

noiseÞ
2·p2

exp;iX
i[A

V2a
exp;i·p

2
exp;i þ

X
i[U

V2a
exp;i·p

2
exp;i

vuuuuut ð2:39Þ

R5ðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i[A

ðVa
exp;i 2 sfa·Va

calc;iÞ
2·p2

exp;i þ
X
i[U

ðVa
exp;i 2 sfa·Va

noiseÞ
2·p2

exp;iX
i[A

V2a
exp;i·p

2
exp;i þ

X
i[U

ðVa
exp;i 2 sfa·Va

noiseÞ
2·p2

exp;i

vuuuuut ð2:40Þ

R6ðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i[A

ðVa
exp;i 2 sfa·Va

calc;iÞ
2·p2

exp;i þ
X

i[U0

ðsfa·Va
noise 2 sfa·Va

calc;iÞ
2

X
i[A

V2a
exp;i·p

2
exp;i þ

X
i[U0

ðsfa·Va
noise 2 sfa·Va

calc;iÞ
2

vuuuuut ð2:41Þ
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contains all back-calculated non-assigned peaks with

volumes Vcalc;i $ Vnoise:

Instead of the standard noise intensity used in R4 and R5

one can assign specific volumes to all experimental peaks

which could not be assigned unambiguously by the

standard assignment routine. In this way, a new R-factor

ðR7Þ can be defined by using Eq. (2.38) but performing the

summation over all experimental peaks. The majority of

peaks which are contained in set U are originally not

assigned since the back-calculation from the test structure

has not produced a corresponding peak with sufficient

intensity. Appropriate assignments for the yet unassigned

peaks could be first obtained on chemical shifts alone and

the corresponding simulated volumes could be obtained

with, for example, the initial slope approximation from the

distances. For a more detailed description please see the

original RFAC paper [323].

The above-defined R-factors are devised primarily for

judging global properties. It is further possible to calculate

the R-factor for previously specified regions of the molecule

of interest. This allows judging how well for example

a given a-helix or b-strand is defined. In this case R3 seems

to be appropriate where only the subset of the assigned

peaks A is taken into account.

Another possibility using R3 is to calculate a separate R-

factor for each residue. This can be a useful tool for finding

miss-assigned signals. A different way to look at R-factors is

to sort them by distance. In this case R3 is used again and

signals are sorted by the corresponding distances of the

calculated intensities. Fig. 7 shows an example of the

application of RFAC on the HPr-protein. The separation of

the R-factor in distance classes allows checking if, for

example, NOEs corresponding to short distances are over

proportionally violated. And this in turn could give a hint if

the upper and lower bounds in the structure calculation

procedure have been correctly defined.

In principle the R-factor calculation could be improved

further by including the true peak shape which in addition

contains J-coupling information (dihedral angles) and

transverse relaxation (motional and distance information).

An R-factor can be defined analogous to the NOE based

NMR R-factors which is based on the comparison of

Fig. 7. Distance dependent R-factors for HPr. A polynomial smoothing of second order was applied to the data to enhance the readability of the figure. R-factors

are calculated according to R3 ða ¼ 21=6Þ using only the inter-residual NOEs. For the tests shown one of the final NMR structure was subjected to 3000, 6000

and 9000 steps of 0.005 ps of unrestrained molecular dynamics simulation to obtain increasingly disordered structures (MD3000, MD6000 and MD9000

structure). Figure adapted from Ref. [323].
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experimental residual dipolar couplings with residual

dipolar couplings predicted from a structure [324]. Also a

cross-validated free R-factor can be calculated based on

residual dipolar couplings, where this R-factor is calculated

for a subset of dipolar couplings that were not included in

the refinement.

Other methods for the validation of structures. In the

following some other computational methods for the

analysis of protein NMR structures are summarized. One

of the major problems in NMR structure determination is

the identification of bad restraints. The program AQUA

[325] automatically calculates restraint violations between

the ensemble of structures and experimental data. Violations

are classified, for example, as violations per model, per

residue, and per restraint. Another approach for restraint

analysis was pursued with the genetic FINGAR algorithm

that was developed originally for NMR-based structural

refinement [326]. Here, it is extended to allow the

automated identification of problem restraints [327]. It is

applicable to distance and dihedral angle restraints.

Complete cross validation is a statistical method to

determine the quality of a structure [317]. In this method

randomly selected subsets of the experimental data, e.g.

NOEs are excluded, while a model is fitted against the

remaining data. The resulting models are then used to

predict values for the excluded sets and the agreement

between predicted and experimental data can be evaluated

as a measure for the quality of a structure.

The completeness of observed NOEs can be used as a

measure for the quality of an NMR structure [309].

Completeness is measured as the ratio of the number of

experimentally observed NOEs, NOEobs and the number of

NOEs expected for this structure, NOEexp.

Completeness ¼ 100%
NOEobs

NOEexp

ð2:42Þ

It is shown that the completeness is independent of the

residue type, contrary to the number of restraints per

residue, which makes it easier to detect problematic regions.

It is advisable to use various distance cutoffs when

calculating the expected NOEs, to adjust for the maximum

observable distance in a spectrum. The measure of

completeness is in some regards related to the non-assigned

NOEs used in the RFAC program.

Other methods for the quality determination of protein

structures are independent of the experimental data. Instead

general structural parameters such as bond lengths, bond

angles, packing quality, etc. are analyzed [328]. The

program PROCHECK-NMR [325] offers various tools to

investigate the ‘stereochemical quality’ of an ensemble of

structures. For example, quantities like bond-angles, bond-

lengths, and backbone and side-chain dihedral angles are

taken into account. In addition probability values are given

for certain conformations. The program WHAT_CHECK

[329] is part of the larger WHAT_IF package. In addition to

standard quantities like bond-angles, bond-lengths, etc.

other properties such as the packing quality of the trial

molecule and hydrogen bonding networks can also be

analyzed.

Using a set of previously solved three-dimensional

structures one can construct a force field consisting of

potentials of mean force. In this way the energy potentials

for the atomic interactions between the various amino acid

pairs are derived as a function of the distance between the

involved atoms. Employing such a force field one can

compute energy graphs for a given structure to identify

problematic regions as is done within PROSA II [330]. High

energies correspond to stressed or strained sections of the

chain. The similarity to the approach used for the automated

NOE assignment with KNOWNOE [233] can be noted.

2.2.6. Data deposition

A constantly increasing amount of spectroscopic and

structural information on proteins is published. To access all

the data, several databases have been published. For

structural data the PDB database [331] and for spectroscopic

data, e.g. chemical shifts, coupling constants, and relaxation

data the BioMagRes [216] database are the most important

ones. Currently, developments are underway to allow an

automatic deposition in these data bases see, e.g. the CCPN

project [http://www.bio.cam.ac.uk/nmr/ccp/]. Also it has

become clear from the previous sections that a wide variety

of programs exist that perform various tasks of the structure

determination process. To allow an easy data exchange

between the various programs a common data model is

required, that is also currently being developed in the CCPN

project.

Several programs exist to automatically access the

different databases, e.g. SHIFTY [220] to search for

chemical shifts of homologous proteins in the BioMagRes-

Bank and the BBReader [332] to search the BioMagRes-

Bank databank in an inverse manner. That means for given

chemical shift values the program searches the databank for

matching possible assignments.

Also local database programs exist to organize NMR

related data in the laboratory. SPINS [333] is a local

relational database to manage raw NMR data measured in

one institute. It also creates header file information required

for data deposition in the BioMagResbank.

3. Classical bottom-up computer-aided structure

determination

In the second part of the review we will concentrate on

integrated approaches for NMR structure determination and

describe a new approach for macromolecular structure

determination in solution (Section 2.2). The automated

assignment that is a key step of any automated structure

determination process would be trivial if exactly one cross

peak in a given spectrum corresponded to one n-tuple of
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possible chemical shifts, and vice versa. This is not the case,

since practical spectra are incomplete (peaks are missing),

contain artifacts (peaks not arising from the protein under

consideration), and show overlap (degeneracy of chemical

shifts). In addition for the automated assignment of spectra

containing structurally relevant information, e.g. NOESY

spectra, the resonance frequencies of all relevant spins are

usually not known (incomplete assignment), may be

wrongly determined (false assignments) or may not fit

exactly to the spectrum used (chemical shift variations).

Also proteins can occur in different conformational states, a

difficulty that makes the assignment process even more

complicated. An optimal automated strategy must tolerate

the above difficulties at least to some degree and lead to a

stable solution in the presence of incomplete data. In fact, a

complete assignment is not feasible in practice but the

assignments must be sufficiently complete to obtain an

accurate structure of the protein with enough redundancy to

cross check the results. That is, typical bottom-up strategies

make use of experiments with some degree of redundancy

where ambiguous solutions can be checked for the overall

consistency of the solution.

An advantage of bottom-up strategies is that many sub

problems of the automated structure determination are

already solved, and automated assignment procedures

tackling specific problems have already been reported. In

the following, the partial steps of the automated structure

determination in solution which were analyzed in detail in

the previous section will be carefully examined under the

aspect of a complete automated data evaluation and

structure determination (Fig. 8). We omit in this section

the steps which are not NMR-specific, but nevertheless are

required in the automated structure determination, such as

target selection and protein expression (Table 2). We will

concentrate rather on those aspects which are essential in

software development.

3.1. General strategies

In the following we will discuss in some detail the

different assignment strategies published under the aspect of

a full automation of the assignment procedure. They have to

be of course supplemented by the automated routines for

data processing and peak recognition, for the routines for

Fig. 8. Scheme for classical automated structure determination. The main emphasis is here on obtaining an almost complete resonance assignment as a basis for

structure determination.
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automated extraction of structurally relevant information as

contained, for example, in ARIA, NOAH or KNOWNOE,

and by the structure calculation itself (Fig. 8). Implicitly, the

routines published also select for a specific set of NMR-

experiments required. In automation studies one should

state explicitly what experiments are optimal with respect to

the convergence of the assignment procedure and the

spectrometer time required.

(1) Grouping of resonances from one or more spectra to

spin systems. The resonance lines which are part of specific

spin systems must be identified at some point in the

assignment procedure. Procedures used for this assignment

process can be modeled on strategies applied in manual

evaluations. The reliability of the assignment procedure is

increased greatly when several different, complementary

NMR spectra are evaluated together. In general two

different approaches are used for spin system generation.

In the first resonances are grouped via common ‘root’

resonances found in all or most of the spectra, e.g. 3D and

4D heteronuclear triple resonance spectra [334–345]. Often

N–H pairs are used for this purpose that can easily be

identified in 2D 1H–15N HSQC spectra. SPI [344] uses

Bayesian statistics for compiling spin systems from 2D and

3D experiments and ambiguities are solved by using sets of

diverse 2D and 3D experiments. In the program by Lukin

et al. [339], Bayesian statistics are used to assemble signals

originating from different experiments to partial spin

systems. The so-called ‘root resonance’ approach has been

shown to be sufficiently robust for the analysis of large

proteins [345].

The second method, and the one applied in the earliest

attempts at automatic evaluations, is to search the peak

(multiplet) list for cross peaks expected for the primary

building blocks of the biopolymer (e.g. amino acids in the

case of proteins) in a particular NMR experiment. These

methods are usually referred to as bond pattern methods,

where for each residue a pattern is generated [210,

346–352]. As supplementary information, the expected

chemical shift ranges can also be taken into account. With

this information, which reduces the size of the data set to be

searched and, hence, reduces the number of possible

solutions, spectra of peptides and small to medium sized

proteins can be analyzed automatically. Alternatively, the

known probability distributions of the individual chemical

shifts can be used [216,218,221,353] to assess the

probability associated with an identified pattern [210,354].

It should be noted that bond pattern methods are sensitive to

missing signals and spectral overlap, therefore they are best

suited for the analysis of peptides and small proteins.

The method described by Oschkinat et al. [346] aims at

the analysis of homonuclear 3D spectra. Graphs represent-

ing spin systems are generated from 3D TOCSY–TOCSY

spectra. In the program from Croft et al. [350] the Fourier

transformed 3D triple resonance spectra are convoluted

with a mask function to emphasize real peaks and to

de-emphasize features like noise and artifacts before

the following analysis. In the exhaustive pattern search,

multiple spectra are simultaneously searched against a list

of predefined patterns, and matches exceeding a certain

threshold value are stored for further analysis. A set of rules

is applied to evaluate the results of the previous step. The

results from this approach can then be used in a subsequent

manual or automated sequential assignment procedure. The

program GARANT [347,348] represents spin systems as

graphs where peaks are connected by common resonances.

(2) Association of spin systems with amino acid types.

One of the next steps in the assignment procedure is usually

to assign amino acid types to the previously identified spin

systems. It can be performed before or after spin systems are

linked to longer fragments. Again different general

approaches exist for this task. In the first, spin systems are

matched to bond pattern templates that are typical for the

various residue types. Since this method is in general very

sensitive to missing data it is usually only applicable for

small proteins for which almost complete, well-resolved

spectra can be obtained. Improved results can be obtained

when this method is supplemented with chemical shift

information [349–351,355–357].

Within CAMRA [351] improved results can be obtained

by the inclusion of predicted chemical shifts. 1H, 15N, and
13C chemical shifts are predicted for the query protein using

the module ORB [217]. Predictions are based on a chemical

shift database of previously assigned homologous proteins

supplemented by a statistically derived chemical shift

database in which the shifts are categorized according to

their residue, atom and secondary structure type. In the

previous step spin systems were generated with CAPTURE

[352]. This module generates a list of valid peaks from

NMR spectra by filtering out noise peaks and other artifacts

and then separates the derived peak list into distinct spin

systems. PROCESS generates a set of predicted peaks using

the predictions from ORB and the experiment type. The

predicted signals are then matched to the spin systems

obtained from CAPTURE.

Another possibility for assigning residue types is to use

neural networks. Neural networks can be trained to

recognize the amino acid type from 2D and/or 3D

TOCSY data. In the approach of Hare and Prestegard

[358] sets of cross peaks belonging to a single spin system

were presented to the neural network one set at a time. The

method was refined by additionally including 15N chemical

shift data and 3JHNHa coupling constants [359]. This allows

a reliable prediction of the secondary structure, and since

the Ha proton chemical shifts are highly sensitive to the

secondary structure, a higher success rate in spin system

identification was achieved.

Similarly in the RESCUE approach [360] only signals

originating from 2D TOCSY spectra are used. In the

approach by Choy et al. [361], neural networks are used to

predict the secondary structure of homologous proteins to

obtain secondary chemical shift information. This

information is then used to improve the chemical shift
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and bond-pattern based amino acid recognition in auto-

mated resonance assignment procedures. The next common

method that is mostly used when the assignment is based

upon heteronuclear triple resonance experiments makes use

of a statistical chemical shift analysis. Ca and Cb chemical

shifts especially are used in combination for amino acid

identification [338,341,342,362].

The program from Meadows et al. [363] uses proton and

carbon chemical shifts for amino acid identification. In the

programs by Lukin et al. [339] and Zimmermann et al. [340]

amino acid type information is given in a probabilistic

fashion using Bayesian statistics. The program by Andrec

and Levy [364] uses only Ca shifts since it is based on a

single HNCA experiment. PLATON [365] is an algorithm

for predicting amino acid types and secondary structure types

of individual amino acids from chemical shifts. Residue

fragments are manually generated using standard triple

resonance experiments. The chemical shifts (e.g. Ca, Cb and

C0) of these fragments are then automatically compared to a

chemical shift database generated from 51 proteins for which

chemical shift and three-dimensional structure information is

available. MONTE [345] uses C0, Ca, Cb, Cg, Ha, Hb, and

N chemical shift distributions obtained from the BioMa-

gResBank for amino acid type identification. If secondary

structural information is available the expected chemical

shift values can be adjusted accordingly in case of deuterated

proteins carbon chemical shifts are adjusted to take

deuterium isotope effects into account.

IBIS [335] also uses backbone and side-chain chemical

shift information obtained from the BioMagResBank for

amino acid type identification given in a probabilistic

fashion. In addition it takes into account whether or not the

number of observed side-chain chemical shifts matches the

number of corresponding expected chemical shifts.

In PACES [336] Ca, Cb and C0 chemical shifts are

compared to chemical shift distributions derived from the

BioMagResBank for amino acid type identification. Within

the given chemical shift ranges all of the possible amino

acid types for each spin system are recorded.

(2) Linking of spin systems to shorter or longer

fragments. The next step usually performed by most

programs is to link sequential neighboring spin systems to

shorter or longer fragments. The linking is either based on

NOEs, or on through bond information, or on a combination

of both. Using this information basically two algorithms are

used for performing the linking step. Deterministic methods

require a full comparison between each spin system. For

larger systems the required computational time can increase

drastically [30,334–336,338–340,342,357,363,364,366,

367]. The size of the problem can be reduced by establishing

the most reliable links first (best first methods) and by

keeping these fixed in the later stages, for example, by

creation of small peptides in the first steps that are extended

later.

In the other set of methods a pseudo energy is minimized

by, for example, a simulated annealing procedure [334,341,

345,368–370]. The pseudo energy herein describes the

quality of the match between neighboring spin systems.

These energy optimization algorithms are applicable to

larger systems, however, care must been taken that they do

not become trapped in local minima.

If only NOE information is available, as for example in

the homonuclear case, intuition and statistical analysis of

protein structures tell us that the protons of direct linked

neighboring residues in a sequence have a much higher

probability of being close to each other than protons of

residues which are greatly separated in the biopolymer

sequence. Although this information is not sufficient to

define a unique path from spin system to spin system, the

correct path can be selected by comparing the NMR results

with the known amino acid sequence [176,368,371]. The

main problem with this strategy is that the NOEs only

contain distance information and provide no information

concerning covalent bonds. Therefore, because of protein

folding, some of the ‘sequential’ NOEs arise from residues

which are only close in space but not close to each other in

the chain sequence.

The number of ambiguous solutions is reduced by

increasing redundancy in the NOE assignment procedure.

This can be achieved by considering a whole network of

possible intra-residue and inter-residue NOEs. This leads to

the already mentioned MCD strategy that tries in its pure

form to order the spin systems in a sequence without

resorting to the inclusion of information about the amino

acid type [212–214]. Strategies which also incorporate

readily available information about the type of spin systems

expected for a given macromolecule are more robust

[212–214,372,373].

In the approach developed by Oschkinat et al., homo-

nuclear 3D TOCSY–NOESY spectra are used to connect

graphs that represent spin systems obtained from 3D

TOCSY–TOCSY spectra [346]. A deterministic approach

is used in which first di-peptides are generated that are then

extended to longer fragments. The FIRE [343] procedure

uses as input only 15N edited 3D NOESY–HSQC spectra.

The program basically creates strips for observed pairs of
15N and HN frequencies. These strips representing spin

systems are then compared for signals at common positions

to obtain the spatial proximity between spin systems. Spin

systems showing the smallest spatial distance are thought to

be sequentially linked.

Most of the approaches that make use of inter-residue

through bond information are based on the use of hetero-

nuclear triple resonance 3D and 4D experiments. They map

intra- to inter-residual Ca, Cb and CO chemical shifts for

linking. The key advantage compared to NOEs is that only

sequential information is present. The method is indepen-

dent of secondary and tertiary structure effects and there-

fore, much more reliable than pure NOE based methods.

Another advantage is that the 1J and 2J scalar couplings used

are usually rather large and as a consequence give fast

coherence transfer that can compete with relaxation losses
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even for larger molecules. Improved results (signal-to-

noise) can be obtained by employing relaxation optimized

techniques, such as TROSY and CRINEPT or by the use of

deuterated molecules. Almost all approaches that are

applicable to larger proteins, e.g. MONTE [345], PASTA

[341], AUTOASSIGN [340], etc. make use of inter-residue

through bond information.

(4) Mapping of fragments to the primary sequence. The

last step in the sequential assignment procedure is usually

to map single or stretches of spin systems to the primary

sequence. In addition to the sequential NOE and/or

through bond information that was used for linking,

residue type information obtained in a previous step is

also included for mapping. Basically, the same algorithms

that were used for linking are also used for mapping.

Fully exhaustive searches, e.g. PACES [336] may become

prohibitive for larger proteins therefore, in deterministic

methods so-called best first approaches are often used to

reduce the size of the problem [334,335,338,340,342,349,

351,362–364,366,367,374].

Often sets of rules are included in these methods to

improve performance, e.g. redundant mappings are

excluded where one fragment is a subset of another

fragment or mappings must exceed a certain threshold

value to be accepted. However, it should be noted if the data

become more ambiguous and/or data are missing best first

approaches will probably fail since too many possibilities

have to be considered. Alternatives are given by optimiz-

ation procedures where a pseudo-energy is minimized, e.g.

simulated annealing like algorithms [334,337,339,341,345,

348,367–370].

One problem encountered in energy optimization

procedures are not very smooth energy surfaces caused by

discrete changes in fragment mapping. In the approach by

Buchler et al. [369], the energy surface is smoothened by

considering a large ensemble of assignments. Also genetic

algorithms as used within GARANT [347] usually work

well with rough energy surfaces. Here, sets of experimental

signals are mapped to the corresponding expected peaks.

The assignment problem can be simplified when larger

fragments are first linked in a deterministic way and the

simulated annealing is used for fragment mapping see, e.g.

Lukin et al. [339].

Since most of the programs perform more than one of the

above-described steps a short overview is given about the

capabilities of the various programs. Which program is

applicable to a certain problem strongly depends on the

available experimental input, the size of the molecule,

available homologous chemical shift and/or 3D structural

information and the required task.

A deterministic best first method using six 3D and 4D

triple resonance experiments to obtain backbone and partial

side-chain assignments has been described by Friedrichs

et al. [338]. In this approach, which is integrated within

FELIX the backbone and Cb resonances are grouped into

partial spin systems. These partial spin systems are then

linked using a best first approach based on matches between

inter- and intra-residual Ha, Ca and Cb resonances. Using

an exhaustive search procedure the linked fragments are

mapped to the primary sequence using residue dependent

chemical shift profiles for Ca and Cb resonances.

A method that relies on the use of homonuclear 3D

TOCSY–TOCSY and 3D TOCSY–NOESY spectra is

applicable for small- and medium-sized proteins in cases

where no 15N and/or 13C labeled protein is available [346,

375]. Graphs representing spin systems are generated from

the 3D TOCSY–TOCSY spectra. 3D TOCSY–NOESY

spectra are used to first link the spin systems to dipeptides

which are then combined to longer fragments. Several rules

are applied to evaluate the fragments. The mapping of the

fragments to the primary sequence is performed manually. It

is also shown that the amplitudes in 3D TOCSY–NOESY

spectra are characteristic for the various secondary structure

elements [376].

A combinatorial oriented automated assignment strategy

using a deterministic tree search algorithm has been

reported which is based upon only a single triple resonance

HNCA experiment [364]. It is aimed at the automated

backbone assignment of smaller proteins (,80 residues).

TATAPRO applies an approach where sets of chemical

shifts derived from heteronuclear triple resonance assign-

ments are grouped into eight categories according to their

chemical shifts. This information is then used together with

connectivity information obtained from the triple resonance

experiments to search with a deterministic approach for

neighboring partners in the primary sequence [342]. As a

result backbone and partial (Cb) side-chain assignments are

obtained.

A suite of three programs called CPA, FPRA, and TSA is

presented for the automated sequential assignment using 2D

proton NMR spectra [366]. CPA automatically generates

spin-coupling networks from 2D COSY and TOCSY

spectra. The obtained spin systems are then mapped by

FPRA using a fuzzy graph pattern recognition algorithm to

the various residue types. In this algorithm spin coupling

patterns and chemical shifts are considered. A tree search

algorithm then assigns the spin systems to the primary

sequence using NOE connectivities. The following factors

are taken into account (1) maximum number of NOE

correlations between neighboring residues, (2) matching of

an experimental supergraph to the corresponding theoretical

one that was obtained from the primary sequence. A

supergraph contains the spin coupling networks of the

participating residues plus the corresponding inter-residual

NOE connectivities. (3) Using the supergraph that has the

maximum number of frequencies assigned. The described

algorithm was later refined and extended to the use of non-

standard amino acids [377]. It should be noted that the

algorithm works fully automated only for relatively small

peptides of up to 20 amino acids.

Li and Sanctuary [349,357] present a set of algorithms

(DBPA/ASPA/CPA) that first create from a set of 3D
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heteronuclear triple resonance experiments a list of dipep-

tides using a best first approach. Next dipeptides are linked

to form polypeptides. Then side-chain information is

automatically added to the dipeptides (PBSMA). Amino

acid types are identified with a pattern recognition algorithm

(AAPR) [355,356] which makes use of spin coupling

patterns and chemical shifts. In the last sequential assign-

ment step the polypeptides generated in the previous steps

are mapped to the primary sequence (PMA).

The CONTRAST software package [367] for the

automated assignment of backbone resonances assembles

fragments from a set of 3D heteronuclear triple resonance

and TOCSY–HMQC experiments. In contrast to other

programs a deterministic best first approach or a simulated

annealing like method can be used for fragment mapping.

As an example the method is schematically presented in

more detail in Fig. 9.

In its published version AutoAssign [340,378,379] can

use input from up to eight 3D heteronuclear triple resonance

experiments for the automated sequential backbone assign-

ment. From these spectra generic spin systems are generated

and residue type probability scores are calculated based on

Ca and Cb shifts. Using a best first approach the spin

systems are linked and using the residue type probability

scores they are mapped to the primary sequence.

In IBIS [335] sequential assignments are obtained using a

set of triple resonance spectra supplemented with a

(H)CCONH TOCSY for providing side-chain information.

The program uses a deterministic approach for linking of

spin-systems to fragments and for mapping the fragments to

the primary sequence that resembles a manual analysis

process. The quality of a certain assignment is evaluated in a

probabilistic fashion. The program is interfaced with

XEASY for graphical display of the results.

PACES [336] obtains resonance line assignments based

on the sequential connectivity and residue type information

derived from triple resonance spectra. Especially, Ca, Cb,

C0 and Ha resonances are used by the program. Amino acid

type information is generated using amino acid specific

chemical shift distributions derived from the BioMagRes-

Bank. Exhaustive search procedures are used for linking of

residues to fragments and for mapping of fragments to the

primary sequence.

In the next approach sequential assignments are obtained

using 10 different 3D heteronuclear triple resonance

experiments [339] that give intra- and inter-residual

information. The likelihood that peaks from overlapping

experiments originate from the same nuclei is evaluated

using Bayes’ theorem. Bayes’ theorem is also used to link

cross-peak chemical shifts to positions in the primary

sequence. These two probability factors are combined into

an overall score for a tentative peak assignment. A best first

approach is used to link spin systems to fragments. Using a

simulated annealing protocol the overall score is maximized

by rearranging the assignment.

In the MARS approach (Zweckstetter et al., to be

published), global energy minimization and deterministic

search (best first) for linking of spin systems to fragments

are combined to extract reliable assignments. In this

process only consistent results are accepted. In the next

step theoretical chemical shift values used for placing

linked fragments into the sequence are optimized using

sequence based secondary structure predictions. Multiple

assignment runs (,100) are performed and in each

assignment run the, by secondary structure prediction

optimized, theoretical shifts are disturbed by addition of

Gaussian noise. Again only consistent assignments are

used.

PASTA [341] performs automatic backbone and partial

side-chain (Cb) assignments. As input any experiment

containing only HN, N, Ha, Ca, Cb, and C0 resonances can

be used. From a peak list obtained from, e.g. a 2D 1H–15N

HSQC spectrum a set of so-called pseudo-residues is

constructed that is filled with the information obtained

from the other experiments. For linking and mapping, these

pseudo-residues to the primary protein sequence a threshold

accepting algorithm is used within PASTA. It is similar to a

simulated annealing approach, but has the advantage of

converging significantly faster.

Fig. 9. Flowchart of the SBA (sequential backbone assignment) algorithm

as implemented with the CONTRAST software package. The algorithm

uses a HNCO source spectrum and HNCA, HN(CO)CA, HCACO,

HCA(CO)N and TOCSY–HMQC spectral data sets to generate and order

the fragments. Figure adapted from Ref. [367].
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A sequential assignment approach from Buchler et al.

[369] uses input from six three-dimensional, mostly triple

resonance experiments. Spin systems are manually ident-

ified from 13C edited 3D TOCSY experiments and are

grouped into different spin system categories. Connectivity

information between neighboring spin systems is obtained

from 3D triple resonance experiments. A mean-field

simulated annealing approach was used to simultaneously

link the spin systems and to match them to the primary

sequence. Resonance assignments are reported in a

probabilistic fashion.

The program st2nmr [370] is a semi-automatic approach

for the sequential assignment. It is based on the use of

expected NOEs predicted from a known 3D structure. The

user has to present spin systems obtained from 2D and/or 3D

correlation spectra (COSY and TOCSY) with assigned

residue types to the program. A Monte Carlo Algorithm is

used to map the spin systems to the primary structure, and

the match between expected and experimental NOEs is

maximized.

An automated Monte Carlo [345] (MONTE) approach

has been developed for resonance assignment of large

proteins. The program is quite flexible since it is not

dependent on a particular set of experiments. Input can

contain intra- and inter-residue chemical shifts obtained

from J-correlated experiments, NOE connectivity infor-

mation as well as residue type information obtained from

residue specific labeling. In a semi-automatic way all the

information associated with one N–H pair is compiled into

one so-called spin system. A flexible scoring function is

provided that includes, for example, the match between

intra- and inter-residual chemical shifts of two in the trial

assignment adjacent residues. The Monte Carlo approach is

then used to improve a randomly generated start sequential

assignment by, for example, swapping one or more

consecutive spin systems. In this process the simulated

annealing schedule used is defined by the user.

A Monte Carlo approach has been used in the program

ASSTOOL [337]. In this approach spin-systems generated

from a set of triple resonance spectra are presented to the

algorithm. The energy function that is minimized contains a

term that describes the match between intra- and inter-

residual chemical shifts of two adjacent residues in the trial

assignment, and a term is included that describes how well

the chemical shifts of the spin-systems match those

expected for the residue types to which they are assigned.

CAMRA [351] is a suite of programs for computer

assisted residue-specific assignments of proteins. CAMRA

consists of three units: ORB, CAPTURE and PROCESS.

ORB predicts NMR chemical shifts for unassigned proteins

using a chemical shift database of previously assigned

homologous proteins supplemented by a statistically

derived chemical shift database in which the shifts are

categorized according to their residue, atom and secondary

structure type. CAPTURE [352] generates a list of valid

peaks from NMR spectra by filtering out noise peaks

and other artifacts and then separating the derived peak list

into distinct spin systems. PROCESS combines the

chemical shift predictions from ORB with the spin systems

from CAPTURE to obtain residue specific assignments.

GARANT [347,348,380] performs automatic complete

resonance assignment for proteins. It is based on the

mapping of peaks predicted from the amino acid sequence

onto observed experimental signals obtained from two- and

three-dimensional spectra. For the mapping process genetic

algorithms in combination with a local optimization routine

are used. If available, the method is supplemented with

homologous structures and/or chemical shifts. Recently,

GARANT has been combined with the program AUTOPSY

(described above) and a new program PICS to facilitate

fully automated resonance line assignments [381]. In this

approach the peaks originating from different spectra are

automatically identified by AUTOPSY. The program PICS

performs calibration and filtering of the resulting peak lists

and GARANT the actual resonance line assignment.

Hus et al. [362] have developed an automated assignment

procedure for proteins of known three-dimensional struc-

ture. It makes use of residual dipolar couplings and the

corresponding Ca and Cb chemical shifts. A combinatorial

procedure rearranges the assignment to minimize the

difference between measured values and expected chemical

shifts and residual dipolar couplings predicted from the

structure. The expected chemical shifts are taken to be

averaged values from the BioMagResbank. No sequential

NMR connectivity information is needed.

Meadows et al. [363] have introduced various tools to

partially automate the resonance and NOE assignment

process. The approach is mainly based on the use of three-

and four-dimensional heteronuclear experiments. For the

sequential assignments a deterministic best first approach is

used. A structure-based filter can be applied to resolve

ambiguities in the NOE assignment when a preliminary

structure is available.

The program MAPPER [374] maps manually assigned

short stretches of sequentially connected residues to the

proteins primary sequence using partial knowledge of the

amino acid types. Amino acid type information is either

automatically determined from 13Ca and 13Cb chemical

shifts or is provided by the user. Fragments are first

individually mapped to the proteins primary sequence and

then, based on the accepted individual mappings, an

exhaustive search for the self-consistent mapping of all

fragments is performed.

3.2. Programs and program packages

In the following a short overview is given about some of

the programs in use for manual and/or semi-automatic

spectra assignment (Table 3).

EASY [176] and XEASY allow the semi-automatic

assignment of homo- and heteronuclear 2D and 3D spectra.

Various tools for display, spectra manipulation, automated
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Table 3

Available programs for computer aided spectral assignment

Program Properties and functions Main algorithms Source

Data processing

and visualization

AZARA Multidimensional NMR data processing Fourier transformation http://www.bio.cam.ac.uk/azara/

DELTA Multidimensional NMR data processing Fourier transformation Peabody MA, Jeol USA Inc.

NMRLAB Multidimensional NMR data processing Wavelet transformation http://www.bpc.uni-frankfurt.de/~nmrlab/index1.html

NMRPipe Multidimensional NMR data processing Fourier transformation http://spin.niddk.nih.gov/bax/software/NMRPipe/

NMR Toolkit Multidimensional NMR data processing Fourier transformation http://www.rowland.org/rnmrtk/toolkit.html

PROSA Multidimensional NMR data processing Fourier transformation http://www.guentert.com/

TRITON Multidimensional NMR data processing Fourier transformation http://www.nmr.chem.uu.nl/software/

VNMR Multidimensional NMR data processing Fourier transformation Palo Alto, CA, Varian Inc.

XWINNMR Multidimensional NMR data processing Fourier transformation Ettlingen, Bruker Biospin GmbH

Peak and multiplet

recognition

ATNOS NOESY peak picking Combination with structure calculation http://www.mol.biol.ethz.ch/wuthrich/software/

AUTOPSY Peak picking Local noise level calculation http://www.mol.biol.ethz.ch/wuthrich/software/

autopsy/

Sequential assignment

Andrec and Levy Backbone assignment Tree search Available from the authors [364]

ASSTOOL Backbone and partial side-chain assignment Monte Carlo Available from the authors [337]

AUTOASSIGN Backbone and partial side-chain assignment Best first approach http://www-nmr.cabm.rutgers.edu/

NMRsoftware/nmr_software.html

CAMRA Complete sequential assignment Use of predicted homologous shifts http://www.pence.ualberta.ca/software/camra/

latest/camra.html

CONTRAST Backbone assignment Best first or simulated annealing approach http://www.specres.com/contrast.asp

CPA/FPRA/TSA Complete sequential assignment Tree search algorithm Available from the authors [355]

DBPA/PGA/ASPA/NCPA/

PBSMA/AAPR/PMA

Complete sequential assignment Best first approach Available from the authors [349]

FELIX/MACROS Backbone and partial side-chain assignment Exhaustive search For users of FELIX the macros are available

from the authors [338]

FIRE Sequential assignment and fold information Use of pattern similarities Included in GIFA

GARANT Complete sequential assignment Genetic algorithm http://www.mol.biol.ethz.ch/wuthrich/software/

garant/

IBIS Backbone and partial side-chain assignment Best first approach http://gwagner.med.Harvard.edu/ibis/

Lukin et al. Backbone and partial side-chain assignment Simulated annealing Available from the authors [339]

http://www.cmu.edu/nmr-center/links.html

MAPPER Fragment mapping on primary sequence Exhaustive search algorithm http://www.guentert.com/

MARS Backbone assignment Best first approach and Energy minimization http://www.mpibpc.mpg.de/abteilungen/030/

zweckstetter/_links/software.htm

MONTE Complete sequential assignment Monte Carlo http://www.andrew.cmu.edu/~rule/monte/

PACES Backbone and partial side-chain assignment Exhaustive search algorithm Available from the authors [336]

PASTA Backbone and partial side-chain assignment Threshold accepting http://www.org.chemie.tu-muenchen.de/people/

jl/shell_pasta02/pasta_doc.html

PLATON Residue type prediction Comparison with reference values http://www.fmp-berlin.de/~labudde/platon.html

(continued on next page)
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Table 3 (continued)

Program Properties and functions Main algorithms Source

RESCUE 1H assignments Neural networks http://www.infobiosud.cnrs.fr/

SERVEUR/RESCUE/welcome.html

SPSCAN Evaluation of reduced dimensionality

experiments

Deterministic approach http://www.molebio.uni-jena.de/~rwg/spscan/

ST2NMR Mapping of spin systems Monte Carlo http://arg.cmm.ki.si/~primus/st2nmr/

TATAPRO Backbone and partial side-chain

assignment

Deterministic approach http://tifrc1.tifr.res.in/~hsatreya/interest.html

Global structural information

from NMR data

ARIA Automated NOE assignment Use of ambiguous restraints http://www.pasteur.fr/recherche/unites/Binfs/aria/

AUTOSTRUCTURE Automated NOE assignment Rule based expert system http://www-nmr.cabm.rutgers.edu/

NMRsoftware/nmr_software.html

CANDID Automated NOE assignment Filtering by violation analysis and use of

ambiguous restraints

http://www.guentert.com/

KNOWNOE/AUREMOL Automated NOE assignment Knowledge based Bayesian algorithm http://www.auremol.de/

SANE Automated NOE assignment Use of ambiguous restraints http://garbanzo.scripps.edu/nmrgrp/

Back-calculation of

nD-spectra

BIRDER Simulation of 2D NOESY spectra Full relaxation matrix approach Available from the authors [259]

CORMA Simulation of 2D NOESY spectra Full relaxation matrix approach http://picasso.ucsf.edu/mardihome.html

CORCEMA Interacting systems Full relaxation matrix approach Available from the authors [265]

DINOSAUR Structure refinement Full relaxation matrix approach http://www.nmr.chem.uu.nl/software/

IRMA Distance determination from NOESY

spectra

Full relaxation matrix approach http://www.nmr.chem.uu.nl/software/

HYDRONMR Calculation of diffusion tensor Bead model http://leonardo.fcu.um.es/macromol/

programs/hydronmr/hydronmr.htm

MARDIGRAS Distance determination from NOESY spectra Full relaxation matrix approach http://picasso.ucsf.edu/mardihome.html

MIDGE Distance determination from NOESY spectra Full relaxation matrix approach Available from the authors [255]

MORASS Distance determination from NOESY spectra Full relaxation matrix approach http://www.nmr.utmb.edu/#mrass

NO2DI Distance determination from NOESY spectra Full relaxation matrix approach Available from the authors [256]

RELAX/AUREMOL Simulation of 2D and 3D NOESY spectra Full relaxation matrix approach http://www.auremol.de/

SPIRIT Simulation of 3D NOESY–HSQC spectra Full relaxation matrix approach http://garbanzo.scripps.edu/nmrgrp/

Chemical shift prediction

ORB Prediction of 1H, 15N, and 13C shifts Use of homologous shifts http://www.pence.ualberta.ca/software/

orb/latest/orb.html

PROSHIFT Prediction of 1H, 15N, and 13C shifts Neural networks http://www.jens-meiler.de/proshift.html

SHIFTS Prediction of 15N, and 13C shifts Density functional calculations http://www.scripps.edu/case/casegr-sh-2.3.html

SHIFTY Prediction of 1H, 15N, and 13C shifts Use of homologous shifts http://redpoll.pharmacy.ualberta.ca/shifty/

Various programs by

Michael Williamson

Prediction of 1H, and 13C shifts Semi-empirical http://www.shef.ac.uk/uni/projects/nmr/r

esources.html

TANSO Prediction of 13Ca, and 13Cb shifts Empirical database http://www.tuat.ac.jp/~asakura/reserch/13c/

Local structural information

from NMR data
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CSI Secondary structure prediction Empirical correlation with known shifts http://www.pence.ualberta.ca/software/csi/

latest/csi.html

FOUND Stereospecific assignments Grid search http://www.guentert.com/

HYPER Dihedral angles and stereospecific

assignments

Multidimensional grid search http://www-nmr.cabm.rutgers.edu/

NMRsoftware/nmr_software.html

MULDER Dihedral angles One-dimensional grid search http://ncbr.chemi.muni.cz/mulder/mulder.html#Intro

Kloiber et al. Backbone dihedral angels from cross-

correlated spin relaxation

One-dimensional grid search Available from the authors [281]

POP Prediction of peptide bond conformation Empirical correlation with known shifts http://www.fmp-berlin.de/~labudde/pop.html

PSICSI Secondary structure prediction Neural networks http://protinfo.compbio.washington.edu

PSSI Secondary structure prediction Empirical correlation with known shifts http://ccsr3150-p3.stanford.edu/

TALOS Prediction of backbone dihedral angles Correlation with known structural elements Available from the authors

http://spin.niddk.nih.gov/bax/

Structure calculation

AMBER 3D structure calculation Molecular dynamics http://www.amber.ucsf.edu/amber/amber.html

CNS 3D structure calculation Molecular dynamics http://cns.csb.yale.edu/v1.1/

CYANA 3D structure calculation Molecular dynamics in torsion angle space http://www.guentert.com/

DL_POLY 3D structure calculation Parallel molecular dynamics http://www.cse.clrc.ac.uk/msi/software/DL_POLY/

DTAGS/NEWMOL 3D structure calculation Grid search in torsion angle space http://www.fkem2.lth.se/~garry/programs.html

FANTOM 3D structure calculation Newton–Raphson torsion angle minimization http://www.scsb.utmb.edu/fantom/fm_home.html

GROMOS 3D structure calculation Molecular dynamics http://www.igc.ethz.ch/gromos/

INSIGHT II-CHARMM 3D structure calculation Molecular dynamics San Diego, CA, Acclrys Inc.

NAMD2 3D structure calculation Parallel molecular dynamics http://www.ks.uiuc.edu/Research/namd/

XPLOR-NIH 3D structure calculation Molecular dynamics http://nmr.cit.nih.gov/xplor-nih/

Structure determination

using sparse NMR data

MFR 3D Structure determination Use of fragments from known structures Available from the authors [300]

ROSETTA 3D Modeling Use of fragments from known structures http://www.bioinfo.rpi.edu/~bystrc/

hmmstr/server.php and from

dabaker@u.washington.edu

Structure validation

AQUA Quality of NMR structures Restraint analysis http://www.nmr.chem.uu.nl/software/

PROCHECK_NMR Stereochemical quality of NMR

structures

Comparison with standard values http://www.biochem.ucl.ac.uk/~roman/

procheck_nmr/procheck_nmr.html

PROSAII Energy calculation Use of potentials of mean force http://lore.came.sbg.ac.at:8080/CAME/CAME_

EXTERN/ProsaII/index_html

RFAC/AUREMOL NMR R-factor Use of non-assigned signals http://www.auremol.de/

WHAT_IF/WHAT_CHECK Stereochemical quality of NMR

structures

Comparison with standard values http://www.cmbi.kun.nl/whatif/

Multipurpose general

data evaluation

ANSIG Data analysis Various http://www-ccmr-nmr.bioc.cam.ac.uk/public/

ANSIG/ansig.html

AURELIA Data analysis Various Ettlingen, Bruker Biospin GmbH

AUREMOL Data analysis Various http://www.auremol.de/ and Ettlingen,

Bruker Biospin GmbH

FELIX Processing and data analysis Various, Fourier transformation San Diego, CA, Acclrys Inc.

(continued on next page)

W
.

G
ro

n
w

a
ld

,
H

.R
.

K
a

lb
itzer

/
P

ro
g

ress
in

N
u

clea
r

M
a

g
n

etic
R

eso
n

a
n

ce
S

p
ectro

sco
p

y
4

4
(2

0
0

4
)

3
3

–
9

6
7

5

http://www.pence.ualberta.ca/software/csi/latest/csi.html
http://www.pence.ualberta.ca/software/csi/latest/csi.html
http://www.guentert.com/
http://www-nmr.cabm.rutgers.edu/NMRsoftware/nmr_software.html
http://www-nmr.cabm.rutgers.edu/NMRsoftware/nmr_software.html
http://ncbr.chemi.muni.cz/mulder/mulder.htmlIntro
http://www.fmp-berlin.de/~labudde/pop.html
http://protinfo.compbio.washington.edu
http://ccsr3150-p3.stanford.edu/
http://spin.niddk.nih.gov/bax/
http://www.amber.ucsf.edu/amber/amber.html
http://cns.csb.yale.edu/v1.1/
http://www.guentert.com/
http://www.cse.clrc.ac.uk/msi/software/DL_POLY/
http://www.fkem2.lth.se/~garry/programs.html
http://www.scsb.utmb.edu/fantom/fm_home.html
http://www.igc.ethz.ch/gromos/
http://www.ks.uiuc.edu/Research/namd/
http://nmr.cit.nih.gov/xplor-nih/
http://www.bioinfo.rpi.edu/~bystrc/hmmstr/server.php
http://www.bioinfo.rpi.edu/~bystrc/hmmstr/server.php
http://www.nmr.chem.uu.nl/software/
http://www.biochem.ucl.ac.uk/~roman/procheck_nmr/procheck_nmr.html
http://www.biochem.ucl.ac.uk/~roman/procheck_nmr/procheck_nmr.html
http://lore.came.sbg.ac.at:8080/CAME/CAME_EXTERN/ProsaII/index_html
http://lore.came.sbg.ac.at:8080/CAME/CAME_EXTERN/ProsaII/index_html
http://www.auremol.de/
http://www.cmbi.kun.nl/whatif/
http://www-ccmr-nmr.bioc.cam.ac.uk/public/ANSIG/ansig.html
http://www-ccmr-nmr.bioc.cam.ac.uk/public/ANSIG/ansig.html
http://www.auremol.de/


and manual peak picking, peak integration, spin system

identification from J-correlated spectra, sequential assign-

ment based on NOE connectivities, etc. are included.

AURELIA [264] allows the computer-aided analysis of

up to four-dimensional NMR spectra. In addition to

various display routines AURELIA offers various fully

and semi-automated tools for baseline correction, artifact

reduction, peak picking, cluster and multiplet analysis,

spin system searches, resonance assignments, volume

integration, signal and artifact discrimination based on

Bayesian statistics, simulation of NOESY spectra employ-

ing the full relaxation matrix approach, correlation of

structural and NMR data, comparison of spectra via

spectra algebra and pattern match techniques. An auto-

mated technique for sequential assignments based on 3D

triple resonance HNCA spectra is included. To overcome

ambiguities in the assignment process, a partial knowledge

of the spin system types obtained manually from, e.g.

HCCH–TOCSY spectra can be used. Fragments of several

residues with partially assigned spin system types are then

matched in an exhaustive procedure to the primary

sequence and scored according to their fit to the primary

sequence.

ANSIG for Windows [382], a new version of the original

ANSIG program [383] is a program for the display of up to

four-dimensional NMR spectra and it contains tools for

semi-automatic sequential assignment. In addition it

includes tools for plotting distances from PDB structure

files directly in the NMR spectra and it allows the statistical

analysis of restraint violations.

Tools for NMR assignment are incorporated in the GIFA

NMR processing program [384]. Besides displaying up to

three-dimensional spectra several tools are incorporated in

GIFA that help the user in the manual assignment process.

The main aim is to help in the bookkeeping process during

the resonance and NOE assignment.

The program PRONTO [50] is in some respect similar to

ANSIG. It also allows the display of up to four-dimensional

NMR spectra. Then it includes databases to store infor-

mation regarding the NMR spectra and their signals and

about the protein under investigation. Tools for semi-

automatic assignment such as a ‘Spins System Buildup

Facility’ and a ‘Sequential Assignment Tool’ are included.

SPARKY [385] is designed for the display, assignment

and integration of up to four-dimensional NMR spectra.

Assignments can be either manually performed or an

automated heteronuclear backbone assignment is possible

by using SPARKY as a graphical interface for AUTOAS-

SIGN.

NMRVIEW [386] allows the display and manual

assignment of up to four-dimensional NMR spectra in

multiple windows. It includes tools for an automated peak

picking, spin-system tabulation, creation and analysis of

NOE constraints, and structure analysis including constraint

violation analysis. Macros can be written in the Tcl

command language.T
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The PIPP [180] package contains several programs PIPP,

CAPP, STAPP, PS_CONTOUR, and CONTOUR_SIM, for

the manual and semi-automated analysis of up to four-

dimensional spectra. CAPP is an automatic peak picker that

has been described above. The purpose of STAPP is to

perform a semi-automatic NOE-assignment by making use

of the sequential assignment and a trial structure. PIPP is

then used to visualize the results from the previous two

programs. PS_CONTOUR and CONTOUR_SIM are auxili-

ary programs.

Besides spectral processing FELIX [45] offers various

tools for display of up to four-dimensional spectra,

capabilities for manual assignment and automated pro-

cedures for spin-system identification, sequential assign-

ment and NOE identification.

Another commercial package TRIAD [52] also combines

spectra processing and analysis capabilities in one package.

It is possible to display and analyze nD spectra. Features

include automatic peak picking and the integration of 3D

structural data in the NOE assignment process. TRIAD can

work in conjunction with MARDIGRAS for obtaining

distance information from NOE data and with DYANA for

structure determination.

4. Automated top-down NMR-structure determination

Bearing in mind that in many applications of multi-

dimensional NMR-spectroscopy, the main aim is not a

completely correct spectral assignment but a correct three-

dimensional structure then we have to ask for an optimal

strategy to obtain this structure with a minimum of

experiments in an automated fashion. It is apparent that

we have mainly to concentrate on experiments which

contain strong structural information since these are

indispensable. The experiments typically used for assign-

ment purposes should only be performed when necessary.

For the typical bottom-up strategies discussed above a

rather large set of NMR spectra containing assignment

information is clearly required. As a consequence structure

focused top-down strategies are better suited than bottom-

up strategies to fulfill the above requirements. As the most

extreme (and with the rapid evolution of structure prediction

in bioinformatics not unlikely) case one could reduce the

role of NMR spectroscopy to the task of validating a

predicted structure without using NMR directly for structure

calculation. However, at the present state of the art this

seems only to be possible when structures of close

homologues are already available.

The validation of the structures has two important

aspects: the proof that (1) the obtained structure represents

a solution consistent with all experimental data, and (2) that

the experimental data are sufficient to define the obtained

structure as a unique solution within the limits of a

predefined accuracy. For the first condition a number of

methods have already been reported, the most important one

(but still far from optimal) is probably the calculation of

quantities such as R-factors. The second problem is still not

solved; the calculation of R-factors provides only a rather

poor solution for this problem (Section 2.2.5). However, the

same inherent problem also exists for bottom-up strategies,

but is often overlooked. Here, one makes the assumption

that a structure is correct when the optimization procedure

in the presence of the experimental restraints leads in the

majority of trials to similar structures. This is identical to the

condition that the majority of all prediction leads to only one

set of structures explaining the experimental data.

For practical purposes the required quality of a structure

is dependent on the specific problem to be solved. The

amount of time and resources needed usually increase

rapidly with the demand on quality (resolution). Especially

in proteomics one has to optimize the methods with respect

to these requirements. One would demand that the structures

obtained from automated procedures should be at least as

accurate as those obtained from manual data evaluation.

4.1. General strategies

In the conventional approaches described so far, the

resonance line assignment is performed followed by the

extraction of structurally relevant information as it is

contained, for example, in NOESY spectra. In the top-

down approaches one starts from a trial structure and uses

the structure information contained in the spectra to obtain

iteratively improved structures and during this process also

resonance assignments (Fig. 10). The trial structure may

consist in the two extreme cases either of a random

assembly of atoms in space (a cloud of atoms) or of the well-

defined structure of a close homologue.

A number of programs is using this strategy where first a

three-dimensional structure is calculated from unassigned

distance restraints obtained from NOE spectra and then the

obtained structure is used for the assignment of the

individual spins [387–390]. Oshiro and Kuntz have

developed a method that requires as input the identified

main-chain protons that are already grouped into unassigned

spin systems. Using only inter-residual NOEs and distance

geometry trial structures are calculated. However, it was

shown that this approach in its present form requires

excellent data to succeed.

In the method described by Kraulis [388], a set of 4D 13C

and/or 15N edited NOESY spectra is required as input to

build a relatively unambiguous network of unassigned NOE

restraints. Structures are calculated with a simulated

annealing protocol where only one single type of atom

which represents the unassigned 1H spin is used. In the next

step the yet unassigned 1H spins in the calculated structure

are assigned. Here, the probability of a certain assignment

for each 1H spin is obtained by considering both the 1H shift

and the shift of the covalently bound heteronucleus to

predict the amino acid type and atom type from chemical

shift probability surfaces derived from published data.
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To obtain the sequence specific assignment it is required

that residues adjacent in the protein sequence must be

assigned to 1H spin combinations that are spatial neighbors.

In this last step the protein chain is traced in the previously

calculated 3D structure. The program was tested on semi-

synthetic data sets where it performed well. The overall

quality of the program is hard to judge since it was not tested

on real experimental data.

In CLOUDS [389,390] unassigned NOE signals are

extracted from multidimensional NMR spectra. They are

converted into interproton distances by relaxation matrix

analysis. In the molecular dynamics/simulated annealing

procedure which follows a ‘collection’ of non-connected

H-atoms is restrained by these distances to obtain a

hydrogen only molecular structure called a cloud. The

convergence of the MD calculations was significantly

improved by the use of non-NOEs. Selected clouds were

superimposed, and from the set of all hydrogen atoms the

HN atoms are identified using 2D 1H–15N HSQC or

exchange experiments. A Bayesian approach is then used

to trace the string of backbone atoms within the so-called

foc and to identify the side-chains. CLOUDS has been

successfully tested on the structure determination of

smaller proteins using experimental data.

Most of the previously mentioned approaches are limited

to peak lists and are based primarily on the NMR centered

evaluation of the spectra without using additional knowl-

edge about the biochemical object. During the last few years

various extensive databases containing, for example,

chemical shift assignments of biological macromolecules

and three-dimensional structure information have been

constructed. In our opinion it seems logical to use all this

prior knowledge in the structure determination process of a

new molecule.

As a consequence we have developed the program

AUREMOL, optimized for a molecule-centered approach

for the automated structure evaluation in solution. AUR-

EMOL has a general architecture and organization for

Fig. 10. Schematic representation of top-down approaches for structure determination. The main emphasis is here to obtain a three-dimensional structure that is

in agreement with the experimental data.

W. Gronwald, H.R. Kalbitzer / Progress in Nuclear Magnetic Resonance Spectroscopy 44 (2004) 33–9678



the molecule centered data evaluation and is based on and

compatible with the program AURELIA [264].

We will discuss this approach in detail in the next section

as an example for general-purpose top-down NMR structure

determination programs. In this approach, a three-dimen-

sional trial starting structure will be modified in an iterative

process until the structure fits the experimental data. Since

the starting point of our approach is already a structure it

presents a top-down strategy. Based on the trial structure

and employing additional knowledge about the sample,

NMR parameters or full NMR spectra are predicted and are

used as a guideline for the data evaluation. This strategy

should lead to faster and better results especially if the

automation of the assignment process will be performed

using not only peak lists but also the information contained

in the NMR spectra like peak shapes, line widths and line

splitting. In AUREMOL we are trying to automate the

whole structure determination and structure validation

process in solution from the point where processed NMR

spectra are available.

4.2. Molecule-centered approach (AUREMOL)

4.2.1. Overview

The molecule-centered approach (MCA) as it is currently

being implemented in the program AUREMOL is a specific

strategy of the general top-down approach. The essentials of

this strategy are summarized in Fig. 11. We will describe

them here with respect to the existing program AUREMOL,

but will also discuss necessary modules which are not yet

coded in the program since the aim of the section is to

present a general strategy not restricted to a specific

program.

(1) A trial three-dimensional structure of the biological

macromolecule is the starting point of the data evaluation and

a refined three-dimensional structure the final goal. All

relevant information about the considered biomolecule

should be collected such as primary sequence information,

composition of the used buffer and physical parameters, e.g.

pH and the temperature of measurement. (2) A general local

database provides additional information. It contains data

such as the chemical structure of the amino acids, chemical

shifts and their distributions, J-couplings, Karplus

parameters, and temperature dependent viscosities. (3)

Structures and sequences of homologous proteins can be

loaded from non-local databases. (4) Based on this infor-

mation a trial assignment and a trial structure are generated. It

should be noted that for the basic algorithm one has to allow

that these starting values can be far removed from the final

results. For example, it must be possible to start with an

extended strand as a starting structure. (5) For handling the

experimental data an automated processing will be necessary

in the longer term. Filtering and Fourier transformation of the

data is done outside of AUREMOL by programs such as

XWINNMR and the transformed data are accessed by

AUREMOL. (6) As discussed above further more involved

steps in image (spectrum) analysis are required, most of them

are already contained in AUREMOL. They comprise

automatic peak picking, calculation of volumes by iterative

segmentation [206] and automated removal of noise and

artifacts using Bayesian analysis [182,183].

At this point experimental information must be used. The

central algorithm selected in AUREMOL is the direct

Fig. 11. Representation of the molecule-centered approach used in AUREMOL. The main idea is that a model structure is refined in an iterative process until

the resulting structure is in accordance with the experimental data. Details of the algorithm are further explained in the text.

W. Gronwald, H.R. Kalbitzer / Progress in Nuclear Magnetic Resonance Spectroscopy 44 (2004) 33–96 79



comparison of experimental spectra with spectra simulated

on the basis of point (1) to (4). This will lead (7) to an

iterative approach where the comparison yields a new

spectral assignment which in turn will be used to calculate a

new refined three-dimensional structure of the macromol-

ecule. A general advantage of this approach is that

characteristics of the (still evolving) pulse sequences are

not part of the central algorithm but are contained in the

spectrum simulation. Since NOESY spectra are still the

dominant source of structurally relevant information we

have first concentrated on their automated evaluation.

However, simulation of any type of spectra is possible and

under development. (8) There are good arguments for

interleaving structure calculation (refinement) with the

spectral comparison. However, well-developed structure

calculation software already exists and is continuously

improving. Actually, programs such as X-PLOR or

DYANA are connected to the main algorithm by providing

parameter files and by reading the resulting structures. The

last step (9) would be again the validation, and for this a

number of automated routines already exist.

4.2.2. Databases and data structures

The molecule-centered strategy requires well-developed

databases which can easily be modified and extended by the

user. In addition, the data structures must be flexible and

allow one to store and access all necessary information.

The global database contains information that is

independent of the molecule under investigation (Table 4).

It includes information such as the definition of amino acids

in IUPAC format, the chemical structure of each amino acid

and possible alias names, definition of various NMR

experiments, random coil chemical shift values

and chemical shift anisotropy values for proteins, various

motion models required for spectra simulation by RELAX,

etc.

The molecule specific database may include predicted

chemical shift values, sequence composition, a homologous

three-dimensional structural model, etc., while the spectra

specific database contains the experimental data. One of the

most important issues for a successful and comprehensible

structure determination is the handling of this information in

the internal data structure. Since a sample may contain (and

usually does contain) more than one molecule the data

structure has to admit more than one compound including

information about the type and concentration of the

components. In addition, since the algorithm relies on the

complete simulation of many individual spectra and their

simultaneous analysis the data structure must allow the

definition of the sample content for all spectra separately.

As it is shown in Fig. 12 the global database described

above and a sequence file are used to create a compound file.

It defines one compound of the NMR sample; this may be a

protein or another molecule in the sample. The notation of a

compound file is similar to NMR-STAR (BioMagResBank)

format. The compound file is divided into several sections;

the first section specifies each atom of the compound in

sequential order. The next section describes the chemical

structure of the compound. The last section defines dihedral

angles and J-coupling constants or information for the

calculation of J-couplings using the Karplus equation. It is

important to note that a compound file contains no sample

specific information such as chemical shift values.

In order to extract all relevant data from these spectra a

new peak list format has been developed called masterlist.

One masterlist contains the information of all picked peaks

of one NMR spectrum. It starts with a header which

specifies processing data, type of experiment and other

parameters. Next all picked peaks and their relevant

information, like chemical shifts in each dimension, peak

label, comments, volumes, volume errors and a factor which

gives you the probability that the peak is a true signal or a

noise peak will follow. To get the complete resonance

assignment of a protein one has to analyze numerous

different NMR spectra, including the simulated ones.

Therefore, all masterlists of the experimental and simulated

NMR spectra can be collected and used to create a new file,

the MasterMasterfile. The first section of this file specifies

the NMR spectra, respectively, masterlists which are

connected to the MasterMasterfile. The following sections

contain information of the atoms of the different compounds

in the NMR sample which is no longer spectra dependent,

that means just chemical shift values in ppm and

experimentally determined J-coupling values of the atoms

will be stored but no peak information such as peak volume

or the probability that a peak is a signal or noise.

For each compound of the NMR sample such a section

will be created. Next all information needed for the

automated data evaluation process will be collected in one

Table 4

Necessary information contained in the global database

Name Purpose

as_def.txt Covalent structure of the amino acids

classes.txt Standard parameters for motional

models required for spectra simulation

cs_table.txt Average chemical shift values

csa.txt Standard chemical shift anisotropy

values

experiments.txt Definition of NMR Experiments

IUPAC.txt Atom names according to IUPAC

convention

Modeling_parameters.txt Parameters for homology modeling

in AUREMOL

periodic_table.txt Weight of common atoms

res_coord.txt Reference coordinates

Shifts.txt Secondary structure specific

chemical shift values

susc.txt Parameters for calculation of

molecular magnetic susceptibility

tensor

topo.jcc Parameters for calculation

of J-coupling values
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file called a metafile. The metafile as shown in Fig. 13 is

created using the compound files defined by the user and the

MasterMasterfile. The first section of the metafile defines

which compounds are contained in the NMR sample and

some specific physical parameters of the NMR sample, e.g.

pH or temperature of the measurement. The following

sections define the different compounds, namely which

motion models are used for the simulation of the NOESY

spectra, experimental chemical shift values and J coupling

values that were extracted from the MasterMasterfile. The

Metafile is the basic input file required for the spectra

simulation. In the iterative structure determination process

in AUREMOL, the masterlists, MasterMasterfile and

Metafile will be adapted in each circle.

4.2.3. Preprocessing of experimental NMR spectra

Several tools for the automated preprocessing of NMR

spectra are indispensable in automation and are usually

implemented in these programs. In AUREMOL already

existing routines from AURELIA are used. Signal lists are

created using an automated peak-picking algorithm. A

practical problem during the evaluation of NMR spectra is

the occurrence of noise and artifact peaks. It presents a

severe problem in automated assignment routines that may

lead to incorrect results or non-converging structures. As a

consequence, we have implemented a Bayesian approach

coupled to a multivariate linear discriminant analysis of the

data to obtain an automated classification of 2D and 3D

NMR peaks [182,183]. The method can separate true NMR

signals from noise signals, solvent stripes and artifact

signals. The analysis relies on the assumption that different

signal classes have different distributions of specific

properties such as line shapes, line widths and intensities.

The classification rule for the signal classes was deduced

from Bayes’s theorem. Tests have shown that the calculated

probabilities for the different class memberships are realistic

and reliable, with a high efficiency of discrimination

between peaks that are true signals and those that are not.

For the peak volume integration AUREMOL uses an

iterative segmentation method combined with a region-

growing algorithm. Even for overlapping peaks the volumes

can be obtained with sufficient accuracy [206].

4.2.4. Simulation of nD-NMR spectra

As mentioned above the basic idea of the automation

process in AUREMOL is the comparison between simulated

and experimental NMR spectra. For testing which hypoth-

esis about a given variable (e.g. assignment, volume, J-

coupling) is most likely the simulation must be as exact as

possible since only then can small differences between

simulated and experimental spectra be significant. On the

other hand, the simulation must be fast enough for allowing

a large number of iterations per time unit. This can be

obtained by efficient algorithms but usually also involves a

compromise in accuracy.

For the simulation of NOESY spectra the complete

relaxation matrix formalism is the method of choice (see

above). RELAX [261], a program for the back-calculation

of NOESY spectra based on complete relaxation matrix

formalism, is part of AUREMOL and has been described in

Fig. 12. Data structure of AUREMOL. The central part of the data structure is the meta file required, e.g. by the routines for spectra simulation, spectra

assignment, R-factor calculation, etc. Details of the data structure are further explained in the text.
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Fig. 13. Structure of the AUREMOL Metafile. The file consists of two main sections with various subsections. In the first section the sample composition and

general sample parameters are defined. For example, if protein complexes are investigated each protein is specified as a separate compound. Each compound is

associated with the path of its compound file, the concentration of that specific compound in the sample and if that compound has been isotopically labeled.

Next pH, temperature, and pressure of the sample are defined. The next section contains information about each specific compound. In the subsection

‘CLASSDEF’ the various motional models that are applied during the calculations are defined. These definitions are similar to the definitions described in the

original RELAX publication [260]. The ‘SHIFTS’ subsection associates each atom identified by its residue number and intra-residual number, if applicable

with an atom alias identifier, with its chemical shift, with an chemical shift error, with an chemical shift ambiguity code, with a motional model, and if available

with an experimentally measured line-width. Please note that only those atoms are listed for which chemical shifts are available. In the subsection ‘J_COUPL’

experimentally measured J-couplings are stored. Each J-coupling is identified by the coupled atoms and the coupling constant.
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Section 2.2.4.4. RELAX allows the simulation of 1H 2D

NOESY spectra and IS (I ¼ 1H, S ¼ 13C or 15N) NOESY–

HSQC spectra. The IS NOESY–HSQC experiment is

basically a concatenation of a homonuclear 1H-NOESY

and a heteronuclear IS HSQC-experiment. Under ideal

conditions the net magnetization transfer during the entire

experiment can be calculated by multiplying the net

polarization transfers of the two basic experiments which

can be performed in RELAX. Usually, the NOESY-parts of

the 3D pulse sequences differ slightly from the standard

homonuclear NOESY pulse sequence, since it is advan-

tageous to decouple the heteronuclei during the evolution

period t1: This is often done by an additional 1808S pulse in

the midpoint of t1: This option is therefore also available. In

addition, a number of motional models are available and can

be defined for specific spin pairs. Relaxation by chemical

shift anisotropy is an option in the simulation.

All experimentally obtained NOESY spectra are

acquired with a finite relaxation delay. Therefore, for a

more realistic simulation we have included this option in

RELAX as well. To include effects such as partial solvent

exchange, e.g. for NH groups or to allow the simulation for

partial deuterated molecules, separate occupancy levels can

be specified for each atom or group of atoms.

The time required for performing the back-calculations

for medium sized proteins on a standard PC is usually only a

couple of minutes. If even faster calculations are desired or

if less accuracy is necessary for a special task, it is possible

in the case of 3D NOESY–HSQC spectra to neglect the

heteronuclear relaxation during the calculations. By doing

so it is possible to reduce the required CPU time by a factor

of 2 to 3. In most cases only a small error is introduced in the

calculation of the cross-peak intensities if the heteronuclear

relaxation is neglected.

Also the simulation of line intensities is sufficient for all

cases where only cross-peak volumes are compared. A

more elaborate simulation is necessary when line shapes

are also used as an additional source of information. It

turns out that this is important for a spectrum-based

resonance assignment and structure determination. There-

fore, individual T2 times have to be calculated to obtain the

line widths in the n dimensions. In addition, J-couplings

have to be taken into account to simulate the resolved or

non-resolved line splittings as well as possible. An

example is shown in Fig. 14.

Although the line shape of a single transition in solution

is a Lorentzian we also allowed a Gaussian line shape for the

simulation of the frequency domain data. This can serve as a

compensation of shape modulation of the experimental data

by time domain filtering. However, more exact agreement

between calculated and experimental data can be obtained

when time domain data are simulated, properly filtered, and

Fourier transformed. This should be the method of choice

and has to be implemented into the program.

A single trial structure may only explain a limited

number of NOEs, and as a possible option, a set of structures

Fig. 14. Comparison of experimental and simulated 1H 800 MHz 2D NOESY spectra of HPr from S. carnosus. On the left a section of the NH–NH region of

the experimentally determined spectrum of HPr and on the right the corresponding region of the simulated spectrum is shown. By comparing the two spectra it

becomes clear that the line-widths and the line splitting due to J-coupling are realistically simulated (Ried et al., to be published). E.g. for peaks A and B nicely

separated doublets are visible, while for peak C no separate sub-peaks are visible but the line-shape has been considerably altered due to the presence of

J-coupling. Please note that in the simulated spectrum each peak is labeled with the names of the contributing atoms. However, for reasons of clarity the display

of these names has been switched off in Fig. 14.
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can be used by the program and an average spectrum can be

calculated by averaging the corresponding relaxation

matrices. Such an averaging would correspond to a fast

exchange between the different conformational states

represented by this set of structures. In this case, the

chemical shift values given to the program represent the

population-averaged shifts.

The output of the program is a list of simulated peaks

with their corresponding chemical shift values, labels and

intensities and a simulated 1H 2D NOESY spectrum or a
15N- or 13C-edited 3D-NOESY–HSQC spectrum in BRU-

KER submatrix format which can be used directly by

AUREMOL and AURELIA.

4.2.5. Structure based assignment and iterative structure

determination

A number of different approaches for a structure-based

assignment have been published already and are discussed

above. In our opinion, one should use the independent

information characterizing the covalent structure of the

molecule in any step of the procedure. That is, one should

use a proper physical model from the start of the assignment

procedure.

In the molecule centered approach of AUREMOL the

experimental and simulated spectra are directly compared

on the level of individual cross peaks. To do this, the pixels

i; j (voxels i; j; k) contributing to a simulated cross peaks Sl

are obtained by an iterative segmentation procedure and

stored separately. The agreement of their values ISði; jÞ with

the intensities IEði; jÞ of the experimental peak Em can then

be measured by means of a target function MðSl;EmÞ:

Depending on the exact definition of the target function, M

should have a global maximum (or minimum) when optimal

agreement is obtained. One possibility to define M can be

derived by calculating the cosine a between the two vectors

S and E whose components are ISði; jÞ and IEði; jÞ

cos a ¼
SE

lSllEl
ð4:1Þ

M is then defined by

MðS;EÞ ¼
cos a; for cos a $ 0;

0; for cos a , 0
ð4:2Þ

This definition is optimally suited for comparing shapes

independent of the total intensity.

On the basis of this peak comparison, we have tested the

convergence of a generalized threshold-accepting algorithm

for obtaining the resonance assignment from NOESY

spectra only (Ganslmeier et al., to be published). As input

a model structure and the partial sequential assignment are

required, and arbitrary values are assumed for unknown

sequential assignments. NOESY spectra are simulated with

these data using the full relaxation matrix approach, and this

is combined with the simulation of transversal relaxation

times and J-couplings. The general applicability of the

algorithm was first tested on synthetic data. Fig. 15 shows

the dependence of correctly obtained assignments from a

single 2D-NOESY spectrum on the percentage of resonance

assignments obtained from other sources. It shows that a

large percentage of assignments can be obtained by this

method. After these first successful tests we also investi-

gated the performance of the algorithm on experimental

data.

These tests on experimental data clearly indicate that in

its current stage the algorithm is capable of obtaining the

complete assignment of single mutants from a protein with

known structure and resonance assignments. It also shows

that the general method is most probably working when

additional information from typical spectra containing

mainly assignment information, such as HNCA spectra, is

Fig. 15. Resonance assignments obtained from a single NOESY spectrum using the general threshold algorithm implemented in AUREMOL. Dependence on

completeness of partial resonance assignment. On the X-axis the percentage of the available partial resonance assignment is shown (input), while on the Y-axis

the completeness of the obtained assignment is visualized (output).
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used in the algorithm. However, a number of open questions

still remain when applying this method, as an example it is

not clear how the information from different spectra should

be weighted when they are used simultaneously. Another

advantage of this method is that are not only complete

resonance line assignments obtained, but that the structure

relevant information is also extracted from the NOESY

spectra at the same time.

4.2.6. Knowledge driven assignment of NOESY spectra

The probabilistic method KNOWNOE for the automated

evaluation of NOESY spectra is applicable when the

sequential resonance line assignment has been fully or

almost completed and no or only partial knowledge about

the three-dimensional structure is available. Structural

information, when available is helpful in the assignment

process especially for larger systems, but it is not required.

KNOWNOE contains as a central part a newly developed

knowledge driven Bayesian algorithm for solving ambi-

guities in the NOE assignments. These ambiguities mainly

arise from chemical shift degeneracies, which allow

multiple assignments of cross peaks.

Statistical tables in the form of atom-pairwise volume

probability distributions (VPDs) were derived from a set of

326 protein NMR structures. VPDs for all assignment

possibilities relevant to the assignments of interproton

NOEs were calculated. With these data for a given cross

peak, with N possible assignments Aiði ¼ 1;…;NÞ; the

conditional probabilities PðAi; alV0Þ that the assignment Ai

determines essentially all (a-times) of the cross-peak

volume V0 can be calculated. An assignment Ak with a

probability PðAk; alV0Þ higher than 0.8 is transiently

considered as unambiguously assigned. With a list of

unambiguously assigned peaks a set of structures is

calculated. These structures are used as input for a next

cycle of iteration where a distance threshold Dmax is

dynamically reduced.

Starting with a trial structure (e.g. an extended strand) all

assignments of a cross peak possible within the chemical

shift tolerances D1 and D2 are considered where the

corresponding atoms are separated in the trial structure by

a distance rij , Dmax: They are stored together with the

volume V in the list of unassigned NOEs (U-list). The U-list

is automatically created from the corresponding masterlist

and it is only visible to the KNOWNOE part of AUREMOL.

The required resonance line assignments are contained in

the corresponding Metafile. If there is only one assignment

possible for a cross peak, this assignment is transferred to

the list of unambiguously assigned NOEs (A-list) that is also

only visible to KNOWNOE. Based on the observation that

cross-peak volume and correct peak assignment are not

independent of each other, the U-list is then searched for

cross peaks which can be assigned to more than one pair of

atoms from their chemical shifts but where there is a large

conditional probability PðAi; alV0Þ that most of the volume

V0 of a cross peak originates from just one assignment Ai:

More exactly, if Aiði ¼ 1;…;NabÞ is a possible assignment

of a cross peak, it is transferred to the A-list if

PðAi; alV0Þ $ Pmin ð4:3Þ

with Vmin ¼ aV0 the lower limit of the volume which is

explained by the assignment i:

With the NOEs of the A-lists and optionally additional

restraints like J-coupling restraints, a set of Ns structures is

calculated. In the subset of bNsð0 , b # 1Þ structures with

the lowest total energies, it is checked whether some NOE

restraints are systematically violated. These are removed

from the A-list if the difference between the distance rcalc

determined for the calculated structure and the distance

ðrexp þ DÞ determined from the experimental data is larger

than the tolerance Dviol in at least Nx cases. That is,

rcalc 2 rexp 2 Dþ . Dviol ð4:4Þ

with Dþ defining the maximum error of rexp allowed in the

structure calculation. In the current implementation Nx and

Dviol (typically set to 0.02 nm) have to be specified by the

user.

With these restraints, a new set of structures is

calculated, and the maximum distance Dmax allowed for

assignments is reduced and a new A-list is created as

described above and by using as a trial structure the

structure with the lowest total energy of the previous run.

Here, Dmax describes the maximum distance in the current

trial structure that is allowed between two atoms or groups

of atoms contributing to an NOE. This procedure is iterated

until Dmax reaches its lower limit. The lower limit of Dmax

is usually set to 0.5 nm, in general the maximum detection

range of a NOESY spectrum. Note that in each iteration,

the original U-list is used and all previous assignments are

discarded. This is done to ensure that the structure

determination process does not get trapped in preliminary

conformations.

After a last iteration with Dmax ¼ 0:5 nm there is still a

large number of cross peaks which can (or must) be

explained by more than one assignment. At this point, a new

list of restraints is created out of the A-list and the U-list.

The multiply assigned cross peaks from the U-list with

volumes V0 are all taken as possible solutions but the

expectation value of the interatomic distance r0i of the

assignment Ai is scaled by

r0i ¼

Xj¼N

j¼1

Vj

V0Vi

* +
0
BBBBB@

1
CCCCCA

1=6

ð4:5Þ

with Vj the volumes corresponding to the distance of the

atoms in assignment j. With this complete list of assign-

ments (and the list of restraints other than NOE), a new set

of structures is calculated. This procedure is similar to the

scaling used [391] in the ARIA approach.
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Calculation of the assignment ambiguity. In the above

strategy the probability PðAi; alV0Þ that the assignment Ai

explains at least the part a of the experimental cross-peak

volume V0 has to be calculated. Starting with Bayes’s

theorem [392], the probability that more than a-times ð0 #

a # 1Þ of the volume V0 is explained by an assignment Ai

can be calculated from

PðAi; alV0Þ ¼
PðAi; aÞPðV0lAi; aÞXNab

i¼1

PðAi; aÞPðV0lAi; aÞ

ð4:6Þ

The simplest case occurs if only one assignment A1 is

possible from the chemical shifts. Here, the a priori

probability for the assignment PðA1; aÞ ¼ 1 and PðAi; a; i .

1Þ ¼ 0 leads to

PðAi; alV0Þ ¼ 1 ð4:7Þ

When based on chemical shifts only two assignment

possibilities A1 and A2 exist for a given cross peak, the

probabilities PðAi; aÞ and PðV0lAi; aÞ must be calculated

prior to the calculation of PðAi; alV0Þ: Since no other

assignments are assumed possible, the a priori probability

for i . 2 is given by

PðAi; aÞ ¼ 0; ði . 2Þ ð4:8Þ

For the non-trivial cases i ¼ 1 and 2, the value of PðAi; aÞ

can be approximated by

PðA1; aÞ ¼ PðA2; aÞ ¼ 0:5cs; with 0 # cs # 1 ð4:9Þ

if the expected volumes of the two classes show the same

probability distribution. The constant cs is a normalization

constant depending on the shape of the probability

distribution which is cancelled during the calculation of

PðAi;alV0Þ: A more general expression that is used within

KNOWNOE can be derived as

PðA1; aÞ ¼
ð1

V0¼0

ðV0

V1¼aV0

p1ðV1Þp2ðV0 2 V1ÞdV1dV0

ð4:10Þ

and

PðA2; aÞ ¼
ð1

V0¼0

ðV0

V2¼aV0

p1ðV0 2 V2Þp2ðV2ÞdV2dV0

ð4:11Þ

with p1ðVÞ and p2ðVÞ the normalized probability densities

for finding a volume V for pairs of atoms with the

assignments A1 and A2; respectively. The probabilities

defined by the two equations above are properly normalized

when the distributions p1ðVÞ and p2ðVÞ are normalized.

For two possible assignments the probabilities

PðV0lAi; aÞ can be obtained as

PðV0lA1; aÞ ¼
ðV0

V1¼aV0

p1ðV1Þp2ðV0 2 V1ÞdV1 ð4:12Þ

and

PðV0lA2; aÞ ¼
ðV0

V2¼aV0

p1ðV0 2 V2Þp2ðV2ÞdV2 ð4:13Þ

When there are three assignment possibilities for a cross

peak, the corresponding equations are defined analogously

to the case described above.

Scaling of experimental volumes. For performing the

calculations mentioned above, the experimental volumes

are scaled to adjust to the expected probability distributions

of the volumes. In the actual version of KOWNOE a manual

approach is used where the user has to specify a reference

volume that corresponds to a certain reference distance.

Calculation of the probability distributions. An estimate

of the probability distributions pi of the peak volumes for

the assignments Ai is required for the calculation of

PðV0lAi; aÞ: Although it is possible to formulate a priori

assumptions on these distributions, the better way is the

extraction of statistical data from known protein structures.

For obtaining meaningful distributions, one has to classify

the specific assignments Ai of pairs of atoms to obtain a

sufficiently high number of class members for the statistical

analysis. A powerful way is to extract the information

independently of the absolute positions in the sequence Si

and Si0 : Knowing the absolute position Si of one amino acid

of the pair of atoms considered, the pairwise interaction of

any atoms in the protein can be described by the separation

in the sequence DSi ¼ Si0 2 Si (without restricting the

generality we assume in the following Si # Si0 ), and by

the atomic numbers Zj and Zj0 : The total sequence

information can be coded if in addition the residue types

Ti and Ti0 of amino acids are stored. An assignment Ak can

be stored as a vector Ak ¼ ðSi;DSi;Zj;Zj0 ;Ti;Ti0 Þ:

If we create sequence independent classes Clðl ¼

1;…;LÞ defined by the sequence independent information

(DSi;Zj;Zj0 ;Ti;Ti0 ), then Ak can be written in the reduced

form Ak ¼ ðSi;ClÞ: In our case the probability distribution

pkðVÞ of the volume V of a possible assignment Ak can be

approximated by the probability distribution ~pkðVÞ of the

corresponding class Cl: The same notation can be used for

other purposes as well, as has been done for example in the

knowledge based structure prediction published by Sub-

ramaniam [393].

Calculation of probability tables. The structures of 326

proteins from the PDB databank were taken as data basis for

the statistics. Only NMR structures of water-soluble

proteins containing no paramagnetic center or larger

cofactor were selected. No RNA and DNA structures or

complex structures of proteins with RNA or DNA were

considered. Using these structures 1577 different assign-

ment class probability tables were calculated containing the

corresponding distance distributions. Two examples of

distance probability distributions (DPDs) are shown in

Fig. 16. Volumes Vij were calculated from the distances rij

between atoms i and j by the relation Vij ¼ cV r26
ij :
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In principle one can recalculate the VPDs from the DPDs as

we did for this study. The result is depicted in Fig. 17 for the

same pairs of atoms shown in Fig. 16. The disadvantage of

this procedure is that the resolution (the basic widths of the

volume classes) is now dependent on the volume.

It is obviously more appropriate to calculate the volume

distributions directly from the basic data sets as will be done

in the next implementation of KNOWNOE. Nevertheless, it

is clear that the two DPDs and VDPs strongly distinguish

between the two possible assignments. Probability tables

were calculated only for interproton contacts since only

these are detected in standard NOESY spectra of proteins.

Although one can argue that one should use a NMR

database for NMR data evaluation, this database shows a

high degree of heterogeneity of resolution and is biased by

the selection of structures. As an alternative one could use a

so-called unbiased database of selected X-ray structures, as

has been used for structure prediction [394]. We have

calculated the corresponding probability distributions which

in general do not deviate much from those obtained from the

NMR data. It remains to be seen if the new probability

tables will provide more reliable results in our applications.

4.2.7. Structure calculation and validation

The three-dimensional structure calculation itself is not

part of AUREMOL. The calculations can be performed by

some other program such as DYANA or XPLOR. For an

overview see the first part of this review.

One of the most important steps in any structure

determination project is the validation of the final and/or

intermediate structures. Up to now the quality of an NMR

structure is mainly judged by factors such as RMSD values

or the quality of the Ramachandran plot. However, these

methods do not provide a direct measure of how well the

structures obtained fit the experimental NMR data. As a

consequence we have implemented the program RFAC

[323] in AUREMOL, which automatically calculates

Fig. 16. Examples for probability distributions of distances in 326 selected three-dimensional protein structures. (Upper part) Probability density p of the

distances r between Ha of a residue in position i and an HN in position i þ 1: (Lower part) Probability density p of the distances r between HN of a residue in

position i and an HN in position i þ 3: Figure adapted from Ref. [233].
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R-factors for protein NMR structures to provide such a

measure (see above for details of the definition of R-factors).

The automated R-factor analysis envisaged here consists

in principle of two separate parts: (1) a comparison of the

experimental NOESY spectrum with the NOESY spectrum

back-calculated from a given structure, and (2) the

calculation of the R-factor(s) from the data.

In the first part the NOESY spectrum has to be

calculated from the trial structure using the sequential

assignments contained in the Metafile; that is the spin

systems have to be assigned completely or almost

completely. In our implementation we use the full

relaxation matrix approach of the program RELAX to

obtain accurate simulated peaks defined by their positions

and intensities (simulated masterlist).

The corresponding experimental NOESY spectrum is

automatically peak picked and integrated in the pre-

processing stage of AUREMOL. In addition, the probabilities

pi of the peaks i to be true NMR signals and not noise or

artifact peaks are also calculated according to Bayes

theorem and are then used as weighting factors during

the calculation of the R-factors. All this information is

contained in the experimental masterlist. For the purpose of

R-factor calculation the experimental data are automatically

assigned with the newly developed AUREMOL routine

AUNOAS.

Basically, the program tries first to optimally adapt the

chemical shift values obtained from the general sequential

resonance assignment to the actual experimental data by a

global comparison of the back-calculated spectrum with the

experimental spectrum. The peak assignment itself is done

on local peak clusters. For each back-calculated peak a

search is performed if a corresponding experimental peak

exists in a given search radius. If more than one solution

exists decision between them is made based on a maximum

likelihood criterion.

Fig. 17. Examples for probability distributions of volumes in 326 selected three-dimensional protein structures. (Upper part) Probability density p of the

expected normalized volumes V of a cross peak between Ha of a residue in position i and an HN in position i þ 1: (Lower part) Probability density p of the

expected normalized volumes V of a cross peak between HN of a residue in position i and an HN in position i þ 3: Note that in this case the volume distribution

was calculated directly from the distance contribution, leading to a volume dependent resolution in the volume space. Figure adapted from Ref. [233].
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The experimental and simulated masterlists are fed

into the program RFAC. The experimental signals for

which no corresponding simulated peaks were found and

which therefore remain unassigned will be called the set

U in the following while the set A of the experimental

masterlist contains all assigned experimental signals. This

division of the experimental masterlist into sets U and A

is required by RFAC for the calculation of R-factors

(Section 2.2.5). The U-list can be further reduced by

applying a lattice algorithm which can be used if one

assumes that the sequential assignment is true and almost

complete. In this algorithm only non-assigned peaks are

taken into account where at least one back-calculated

peak in each dimension can be found within user defined

search radii, e.g. 0.01 ppm for 2D spectra. In this context

it is important to note that for each atom at least the

structure independent diagonal peak is back calculated.

Where more than one back-calculated peak is assigned to

a single experimental peak, the mean volume of the

corresponding back-calculated peaks is estimated before

the comparison is done, while the volume of the

experimental peak is divided by the number of

corresponding back-calculated peaks.

Application of AUREMOL. AUREMOL has been applied

for the automated structure determination of several

molecules such as the coldshock protein TmCSP from T.

maritima and the nucleotide exchange factor of Ral

RalGDS. These are two medium size proteins of 66 and

88 residues in length, respectively. In both cases the

structure determination began from extended strand struc-

tures. As described above the experimental spectra were

automatically peak-picked and artifacts and noise were

removed.

In these tests of AUREMOL we concentrated on the

automated structure determination using KNOWNOE for

NOE assignment and RFAC for structure validation. The

sequential assignments of TmCsp [395] and RalGDS [396]

were taken from the literature and automatically adapted to

the corresponding NOESY spectra. In these tests the use of

2D NOESY spectra was sufficient, although 15N or 13C

edited NOESY–HSQC spectra could have been used as

well. Five and seven iteration cycles were performed for

TmCSP and RalGDS, respectively, with the strategy

presented in Fig. 18.

The lower error bounds D 2 were set to the proton van

der Waals distance ðD2 ¼ rexp 2 0:18 nmÞ [211] while the

upper error bounds Dþ were set to 0.125 r2
exp as proposed by

Nilges and O’Donoghue [391]. In addition to the NOE

restraints, 28 hydrogen-bonds and 42 f-angle restraints

were used for TmCSP and 30 hydrogen-bonds, 82 f-angle

and 15 x1-angle restraints were used for RalGDS in the

following structure calculations.

Using CNS Ns ¼ 50 structures were calculated using a

standard simulated annealing protocol and the five best

structures in terms of total energy were selected for further

analysis. The selected structures were then automatically

screened for NOE violations. All restraints that were violated

by more thanDviol ¼ 0:02 nm (Eq. (4.4)) in at least two of the

selected structures were automatically removed from the

restraint file. It should be noted that the violated restraints of

the previous step were only removed from the restraint file

but not from the corresponding experimental masterlist.

Therefore, the corresponding signals could be reassigned in

the next iteration. In the course of the iterative structure

Fig. 18. Schematic representation of the procedure for handling ambiguous

NOEs within KNOWNOE. Figure adapted from Ref. [233].
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determination the distance cutoff Dmax used in KNOWNOE

was subsequently reduced from 1 in the first iteration to

0.50 nm in the last iteration. KNOWNOE can only calculate

assignment probabilities when not more than three assign-

ments are possible for a given signal based on the sequential

assignment. Signals for which no assignment probabilities

could be calculated remain unassigned. Therefore, in the first

iteration a substantial number of signals remain unassigned.

By tightening the distance cutoff Dmax the amount of

ambiguity is reduced which in turn leads to a higher number

of assigned signals. In the last iteration 645 and 2096 signals

were automatically assigned for TmCSP and RalGDS,

respectively. Please note that for TmCSP only a single 2D

NOESY spectrum measured in H2O was used, while for

RalGDS in addition a 2D NOESY spectrum measured in

D2O was employed.

Fig. 19 demonstrates for TmCSP the convergence of the

structures in the course of the five iterations of the

automated structure determination. For both TmCSP and

RalGDS, the superposition of the lowest-energy structures

obtained from automated structure determination with the

corresponding previously manually determined structures

shows that for the regular secondary structure elements

virtually the same structures are obtained by the two

methods (Fig. 20). Minor differences can be observed for the

loop regions.

The results (Table 5) show that for both proteins

very similar R-factors were obtained using RFAC for

Table 5

Quality of the automatically obtained NMR structures of RalGDS and

TmCsp as determined by the calculation of R-factors

RalGDSa TmCSPa

Automatedb 0.38 0.36

Manualc 0.41 0.35

a Global R-factors were calulated using RFAC/AUREMOL. For both

molecules the NH-region of the two-dimensional NOESY spectra was used

for the R-factor calculation.
b Structures were determined from the automatically detemined NOE

assignment using the program AUREMOL/KNOWNOE.
c Structures were determined from the manually derived NOE

assignment.

Fig. 19. Example for structural bundles obtained during the iterative

structure calculation using KNOWNOE. The five lowest energy structures

of TmCSP obtained in different phases of the automated structure

calculation are superimposed. Only the Ca-atoms are traced. First iteration

(A), second iteration (B), third iteration (C), fourth iteration (D), fifth

iteration (D). For each iteration the resulting structures calculated after

removal of violated NOEs are shown. Figure adapted from Ref. [233].

Fig. 20. Comparison of structures obtained by manual and automated NOE

assignment. (Top) One of the final solution structures of TmCSP obtained

using manual NOE assignments (red) superimposed to one of the final

structures obtained using assignments obtained from KNOWNOE.

(Bottom) One of the final solution structures of RalGDS obtained using

manual NOE assignments (red) superimposed to one of the final structures

obtained using assignments obtained from KNOWNOE. Figure adapted

from Ref. [233]. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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the automatically and manually determined structures

indicating that all structures fit the experimental data

equally well.

Here, it is important to note that the structures

obtained using AUREMOL were solved in a fraction of

the time required for the manual structure determination

with a minimal set of structurally relevant spectra. In the

tests of KNOWNOE described above the solution

structure of the molecule was determined using no

model structure of, for example, a homologous protein,

which is quite a challenging test for the program. In this

regard it should be noted that the KNOWNOE part of

AUREMOL works best using a complete or almost

complete sequential assignment where all main chain and

side-chain resonances have been assigned.

In addition, it is preferable for KNOWNOE that the

sequential assignment fits the spectra in use as well as

possible, enabling the user to use small chemical shift

tolerance values.

AUREMOL provides routines to optimally adapt the

chemical shifts to a specific spectrum. This is especially

important for the first iteration when a model structure is not

available. In this case large chemical shift tolerance values

usually result in many assignment possibilities for a given

signal. However, if the number of possible assignments

exceeds three, this signal will be excluded by KNOWNOE

leading to a relatively small number of NOE restraints.

Therefore, in unfortunate cases it may be possible that for

large chemical shift tolerance values insufficient NOE

restraints might be obtained to allow proper folding of the

molecule.

In case where a model structure is available, the number

of possible assignments will be limited depending on the

used distance cut-off, enabling the user to apply increased

chemical shift tolerance values.

5. Conclusions and outlook

Computer automated determination of solution structures

will continue to grow in importance. Fully automated

procedures for small and medium sized proteins are

nowadays feasible. However, for large biopolymers, aid

from human experts is still required.

Typically, in macromolecular NMR, the information

content of the NMR spectra alone is hardly sufficient for a

complete three-dimensional structure determination. Sig-

nal-to-noise ratios are necessarily limited because of the

limited solubility of the biopolymers. Furthermore, super-

positions of resonance lines often lead to interpretational

ambiguities. Therefore, it is still of importance that the

computer program permits intervention at any step in the

automated analysis to allow structural and spectroscopic

information to be included from other sources and to

supervise various aspects of the evaluation process.

Furthermore, as long as new experimental multidimensional

NMR techniques are being developed, new strategies for

automated analysis, which must be implemented in existing

computer programs, are likely to arise.
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