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ABSTRACT

High-throughput NMR structural biology can play an important role in structural genomics.
We report an automated procedure for high-throughput NMR resonance assignment for a
protein of known structure, or of a homologous structure. These assignments are a pre-
requisite for probing protein–protein interactions, protein–ligand binding, and dynamics by
NMR. Assignments are also the starting point for structure determination and refinement.
A new algorithm, called Nuclear Vector Replacement (NVR) is introduced to compute as-
signments that optimally correlate experimentally measured NH residual dipolar couplings
(RDCs) to a given a priori whole-protein 3D structural model. The algorithm requires only
uniform 15N-labeling of the protein and processes unassigned HN-15N HSQC spectra, HN-15N
RDCs, and sparse HN-HN NOE’s (dNNs), all of which can be acquired in a fraction of the
time needed to record the traditional suite of experiments used to perform resonance assign-
ments. NVR runs in minutes and efficiently assigns the (HN,15N) backbone resonances as well
as the dNNs of the 3D 15N-NOESY spectrum, in O(n3) time. The algorithm is demonstrated
on NMR data from a 76-residue protein, human ubiquitin, matched to four structures, in-
cluding one mutant (homolog), determined either by x-ray crystallography or by different
NMR experiments (without RDCs). NVR achieves an assignment accuracy of 92–100%. We
further demonstrate the feasibility of our algorithm for different and larger proteins, using
NMR data for hen lysozyme (129 residues, 97–100% accuracy) and streptococcal protein
G (56 residues, 100% accuracy), matched to a variety of 3D structural models. Finally, we
extend NVR to a second application, 3D structural homology detection, and demonstrate
that NVR is able to identify structural homologies between proteins with remote amino acid
sequences using a database of structural models.
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fold determination, nuclear vector replacement, residual dipolar couplings, structural genomics,
molecular replacement.

1Computer Science Department, Dartmouth, Hanover, NH 03755.
2Chemistry Department, Dartmouth, Hanover, NH 03755.
3Department of Biological Sciences, Dartmouth, Hanover, NH 03755.

277



278 LANGMEAD ET AL.

Abbreviations used: NMR, nuclear magnetic resonance; NVR, nuclear vector replacement; RDC, resid-
ual dipolar coupling; 3D, three-dimensional; HSQC, heteronuclear single-quantum coherence; HN, amide
proton; NOE, nuclear Overhauser effect; NOESY, nuclear Overhauser effect spectroscopy; dNN, nuclear
Overhauser effect between two amide protons; MR, molecular replacement; SAR, structure activity rela-
tion; DOF, degrees of freedom; nt., nucleotides; SPG, Streptococcal protein G; SO(3), special orthogonal
(rotation) group in 3D.

1. INTRODUCTION

Current efforts in structural genomics are expected to determine experimentally many more
protein structures, thereby populating the “space of protein structures” more densely. This large num-

ber of new structures should make techniques such as x-ray crystallography, molecular replacement (MR),
and computational homology modeling more widely applicable for the determination of future structures.
High-throughput NMR structural biology can play an equally important role in structural genomics. NMR
techniques can determine solution-state structures (which are biochemically closer to physiological condi-
tions than the crystalline state) and can be initiated immediately after protein purification, without resort to
a lengthy search for high-quality crystals. NMR is ideally suited to probing and analyzing changes to the
local electronic environments, yielding rapid, detailed studies of protein–protein and protein–ligand inter-
actions and dynamics. A large fraction of the proteins of unknown function are NMR-accessible in terms
of size and solubility. For these reasons, the NIH Protein Structure Initiative (NIH, 2002) has concentrated
on both NMR and x-ray techniques as the paths to determine experimentally 10,000 new structures by 2010.
A key bottleneck in NMR structural biology is the resonance assignment problem. We seek to accelerate

protein NMR resonance assignment and structure determination by exploiting a priori structural infor-
mation. NMR assignments are valuable, even when the structure has already been determined by x-ray
crystallography or computational homology modeling, because NMR can be used to probe protein–protein
interactions (Fiaux et al., 2002) (via chemical shift mapping [Chen et al., 1993]), protein–ligand binding
(via SAR by NMR [Shuker et al., 1996] or line-broadening analysis [Fejzo et al., 1999]), and dynam-
ics (via, e.g., nuclear spin relaxation analysis [Palmer, 1997]). By analogy, in x-ray crystallography, the
molecular replacement (MR) technique (Rossman and Blow, 1962) allows solution of the crystallographic
phase problem when a “close” or homologous structural model is known a priori. It seems reasonable that
knowing a structural model ahead of time could expedite resonance assignments. In the same way that MR
attacks a critical informational bottleneck (phasing) in x-ray crystallography, an analogous technique for
“MR by NMR” should address the NMR resonance assignment bottleneck. We propose a new RDC-based
algorithm, called Nuclear Vector Replacement (NVR), which computes assignments that correlate experi-
mentally measured RDCs to a given a priori whole-protein 3D structural model. We believe this algorithm
could form the basis for “MR by NMR.”
NVR performs resonance assignment and structure refinement from a sparse set of NMR data. Per-

forming resonance assignments given a structural model may be viewed as a combinatorial optimization
problem—each assignment must match the experimental data, subject to the geometric and topological
constraints of the known structure. Previous algorithms for solving the assignment problem using RDCs
and a structural model (Al-Hashimi et al., 2002; Hus et al., 2002) require 13C-labeling and RDCs from
many different internuclear vectors (for example, 13C ′-15N, 13C ′-HN, 13Cα-Hα , etc.) and more spectrom-
eter time, and they are less efficient algorithms. In contrast, NVR requires only amide bond vector RDCs.
Furthermore, NVR requires no triple-resonance experiments and uses only 15N-labeling, which is an order
of magnitude less expensive than 13C-labeling. In NVR, the experimentally-measured internuclear bond
vectors are conceptually “replaced” by model internuclear bond vectors to find the correct assignment. The
NVR algorithm searches for the assignments that best correlate the experimental RDCs, dNNs, and amide
exchange rates with a whole-protein 3D structural model. NVR processes unassigned HSQC, HN-15N
RDCs (in two media), amide exchange data, and 3D 15N-NOESY spectra, all of which can be acquired in
about one day using a cryoprobe.
NVR is demonstrated on NMR data from a 76-residue protein, human ubiquitin, matched to four

structures determined either by X-ray crystallography or by different NMR experiments (without RDCs,
and using a different NOESY spectrum than that processed by NVR), achieving an assignment accuracy
of 92–100%. In other words, we did not fit the data to a model determined or refined by that same data.
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Table 1. NVR Experiment Suite: The Five Unassigned NMR Spectra Used by NVR to
Perform Resonance Assignment and Structure Refinementa

Acquisition
Experiment/data Information content Role in NVR time

HN-15N HSQC HN,15N Chemical shifts Backbone resonances,
cross-referencing NOESY

1/2 hr.

HN-15N RDC
(in 2 media)

Restraints on amide
internuclear vector
orientation

Tensor estimation, resonance
assignment, structure
refinement

1/2 hr. + 1/2 hr.

H-D exchange HSQC Identifies solvent exposed
amide protons

Resonance assignment 1/2 hr.

HN-15N HSQC-NOESY Distance restraints between
spin systems

Resonance assignment 12 hrs.

Structural model of
backbone

Tertiary structure Tensor estimation, resonance
assignment, structure
refinement

Assumed given

aThe HSQC provides the backbone resonances to be assigned. The two HN-15N RDC spectra (which are modified HSQCs)
provide independent, global restraints on the orientation of each backbone amide bond vector. The H-D exchange HSQC identifies
fast exchanging amide protons. These amide protons are likely to be solvent-exposed and nonhydrogen bonded and can be correlated
to the structural model. A sparse number (< 1 per residue) of dNNs can be obtained from the NOESY. These dNNs provide distance
constraints between spin systems which can be correlated to the structural model. The data acquisition times are estimated assuming
the spectrometer is equipped with a cryoprobe. Additional set-up time may be needed for each experiment.

Instead, we tested NVR using structural models that were derived using either (a) different techniques
(x-ray crystallography) or (b) different NMR data. We further demonstrate the feasibility of our algorithm
for different and larger proteins, using NMR data for hen lysozyme (129 residues) and streptococcal protein
G (56 residues), matched to 16 different 3D structural models. Finally, when an homologous structure is
employed as the model, it is straightforward to perform structure refinement after NVR. For this purpose
one uses the assigned RDCs to facilitate rapid structure determination.
This paper reports an earlier version of the method presented by Langmead and Donald (2004a). The

current paper emphasizes the computer science aspects of NVR, uses a different algorithm from Langmead
and Donald (2004a), and develops a rotation search that is used in structural homology detection from
unassigned NMR data (further developed by Langmead and Donald, 2003).

1.1. Organization of paper

We begin, in Section 2, with a review of the specific NMR experiments used in our method, highlighting
their information content. Section 3 describes existing techniques for resonance assignment from RDC data,
including a discussion of their limitations and computational complexity. In Section 4, we detail our method
and analyze its computational complexity. Section 5 presents the results of applying our method on real
biological NMR data. Section 5.1 extends some of the key techniques in NVR to a new application, 3D
structural homology detection. Finally, Section 6 discusses these results.

2. BACKGROUND

The experimental inputs to NVR are detailed in Table 1. Residual dipolar couplings (RDCs) (Tjandra
and Bax, 1997) provide global orientational restraints on internuclear vectors1 (these global restraints are
often termed “long-range” in the literature). For good introductions to RDCs see Saupe (1968), Losonczi
et al. (1999), and Tjandra and Bax (1997). For each RDC D, we have

D = DmaxvT Sv, (1)

1Often, these internuclear vectors are bond vectors (e.g., 15N-1H).
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where Dmax is the dipolar interaction constant, v is the internuclear vector orientation relative to an arbitrary
substructure frame, and S is the 3×3 Saupe order matrix, or alignment tensor specifying the orientation of
the molecule in the laboratory frame (Saupe, 1968). Tensor S is a symmetric, traceless, rank-two tensor with
five degrees of freedom, which describes the average substructure alignment in the dilute liquid crystalline
phase (Losonczi et al., 1999). The measurement of five or more RDCs in substructures of known geometry
allows determination of S. Furthermore, using Equation (1), substructures of the protein may be oriented
relative to a common coordinate system, the principal order frame.
Once S is estimated, RDCs may be simulated (back-calculated) given any other internuclear vector vi .

In particular, suppose an (HN,15N) peak i in an HN-15N HSQC (subsequently termed simply “HSQC”)
spectrum is assigned to residue j of a protein, whose crystal structure is known. Let Di be the measured
RDC value corresponding to this peak. Then the RDC Di is assigned to amide bond vector vj of a known
structure, and we should expect that Di ≈ DmaxvTj Svj (modulo noise, dynamics, crystal contacts in the
structural model, etc).
Experimentally recorded RDCs often deviate from their predicted values. These deviations can be large or

small and may be the result of dynamics, discrepancies between the idealized physics and the conditions in
solution, and, when the model structure is derived from crystallography, crystal contacts and conformational
differences between the protein in solution versus in the crystalline state. It is reasonable, in principle, to cast
the problem of resonance assignment of a known structure using RDCs into a combinatorial optimization
framework (Hus et al., 2002); given an estimate for the alignment tensor, a weighted bipartite graph can
be constructed between the resonance peaks in the spectrum and the amino acids in the primary sequence
of the protein. Unfortunately, maximum bipartite matching is sensitive to outliers. In a set of preliminary
experiments on bipartite graphs whose edge weights encode the difference between experimentally observed
RDCs and back-computed RDCs, the matching that minimizes these weights is typically not the correct
matching. Maximum bipartite matchings contained, on average, only 25% correct assignments, and no
higher than 43% (as will be shown later in Tables 2, 3, 4). We conclude that 1H-15N RDCs alone do
not have enough constraint to perform backbone resonance assignments. NVR incorporates the additional,
independent geometric constraints contained in amide exchange rates and NOEs.
NOE distance restraints are extracted from the dNN region of an unassigned 15N HSQC-NOESY. NVR

uses a sparse set of NOEs. By sparse, we mean a small number of unassigned NOEs. A sparse set of dNNs
can be obtained from an unassigned NOESY spectrum, after it is referenced to the 15N-HSQC spectrum. In
our trials on ubiquitin, for example, we obtained 34 dNNs, from an unassigned 3D 15N-NOESY spectrum
(Harris, 2002). This amounts to fewer than 0.5 dNNs per residue on average. In contrast, when solving a
protein structure using NMR, it is not uncommon to have 10–15 or more assigned NOEs per residue. In
NVR, dNNs are interpreted as geometric constraints, as follows: If a particular spin system i has a dNN with
spin system j and i is assigned to a particular residue r , then j ’s possible assignments are constrained to
the set of residues that are within 6 Å of r in the model. Similarly, HSQC peaks that exchange rapidly with
the solvent, as identified by amide exchange experiments, are constrained to be assigned to nonhydrogen
bonded surface amide protons in the model.

3. PRIOR WORK

Assigned RDCs have previously been employed by a variety of structure refinement (Chou et al., 2000)
and structure determination methods (Hus et al., 2000; Andrec et al., 2001; Wedemeyer et al., 2002),
including orientation and placement of secondary structure to determine protein folds (Fowler et al., 2000),
pruning an homologous structural database (Annila et al., 1999; Meiler et al., 2000), de novo structure
determination (Rohl and Baker, 2002), in combination with a sparse set of assigned NOE’s to determine the
global fold (Mueller et al., 2000), and a method developed by Bax and coworkers for fold determination
that selects heptapeptide fragments best fitting the assigned RDC data (Delaglio et al., 2000). Bax and
coworkers termed their technique “molecular fragment replacement,” by analogy with x-ray crystallography
MR techniques.
In contrast, our algorithm processes unassigned RDCs. Unassigned RDCs have been used to expedite

resonance assignments. Chemical shift degeneracies (particularly 13C-resonance overlap) in triple-resonance
through-bond correlation spectra can lead to ambiguity in determining the sequential neighbors of a residue.
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RDC contributions have been shown to overcome these limitations (Zweckstetter and Bax, 2001; Delaglio
et al., 2000). In another study, RDCs were used by Prestegard and coworkers (Tian et al., 2001) to
prune the set of potential sequential neighbors indicated by a degenerate HNCA spectrum, yielding an
algorithm for simultaneous resonance assignment and fold determination. These methods (except Tian
et al., 2001) require 13C-labelling and RDCs from many different internuclear vectors (for example, 13C ′-
15N, 13C ′-HN, 13Cα-Hα , etc.). The CAP method for small RNA assignment (Al-Hashimi et al., 2002) also
requires 13C-labelling and many RDCs in addition to many through-bond, triple-resonance experiments.
Brüschweiler and coworkers (Hus et al., 2002) have reported a method for resonance assignment (which
we eponymously term HPB ) that uses RDCs to assign a protein of known structure. The HPB method
iteratively solves for both the alignment tensor S and the resonance assignments. It requires several RDCs
per residue and the recording of two 13C triple resonance experiments. Our method addresses the same
problem as HPB, but uses a different algorithm and requires only amide bond vector RDCs, no triple-
resonance experiments, and no 13C-labeling (cf. Wüthrich (2000): “A big asset with regard to future
practical applications . . . [is] . . . straightforward, inexpensive experimentation. This applies to the isotope
labelling scheme as well as to the NMR spectroscopy. . . ”). In general, 13C-labeling is necessary both for
triple resonance experiments and to measure two-bond 13C ′-1H and one-bond 13C ′-15N dipolar coupling
constants. Of previous efforts in structure-based assignment, only one group has tried to minimize the
cost of isotopic labeling: Prestegard and coworkers (Tian et al., 2001) probed a rubredoxin protein that
was small enough (54 residues) and soluble enough (4.5 mM) to explore using 15N enrichment, but
with 13C at natural abundance. We note that NVR both adopts a “best-first” strategy and uses structural
homology to make assignments; best-first and homology-based strategies for disambiguating assignments
are well-established techniques (e.g., Hoch et al., 1990; Redfield et al., 1983).
From a computational standpoint, NVR adopts a minimalist approach (Bailey-Kellogg et al., 2000),

demonstrating the large amount of information available in a few key spectra. By eliminating the need
for triple resonance experiments, NVR saves days of spectrometer time. The NVR protocol also confers
advantages in terms of computational efficiency. The combinatorial complexity of the assignment problem
is a function of the number n of residues (or bases in a nucleic acid) to be assigned and the spectral
complexity (degree of degeneracy and overlap in frequency space). For example, CAP (Al-Hashimi et al.,
2002) has been applied with n = 27 nt., and the time complexity of CAP grows exponentially with n. In
particular, CAP performs an exhaustive search, making it difficult to scale up to larger RNAs. HPB runs
in time O(In3), where O(n3) is the complexity of bipartite matching (Kuhn, 1955) and I is the number
of times that the Kuhn–Munkres matching algorithm is called. Hus et al. (2002) do not bound I or prove
convergence of HPB (i.e., how many times I will the bipartite matching algorithm be called before HPB
terminates). However, I may be bounded by O(k3), the size of the discrete grid search for the principal
order frame over SO(3) (using Euler angles α, β, and γ ). Here, k is the resolution of the grid. Thus, the
full complexity of HPB is O(k3n3). Our algorithm is combinatorially efficient, runs in minutes, and is
guaranteed to converge in O(nk3 + n3) time, scaling easily to proteins in the middle NMR size range
(n = 56 to 129 residues).

4. NUCLEAR VECTOR REPLACEMENT

The NVR method has three stages: tensor estimation, resonance assignment, and structure refinement
(Fig. 1). In the first stage, the alignment tensors for each aligning medium are estimated. Let S1 and S2
be the estimated tensors for the phage and bicelle media, respectively. These tensors correspond to the
matrix S in Equation (1). Macromolecules align differently in different liquid crystals; thus, S1 and S2
are different matrices. Matrices S1 and S2 are used to bootstrap stage two. The output of stage two is
the resonance assignments. These assignments, and the geometric constraints imposed from the RDCs, are
used to refine the structural model in stage three.

4.1. Tensor estimation (Phase 1)

An alignment tensor is a symmetric and traceless 3 × 3 matrix with five degrees of freedom. The
five degrees of freedom correspond to three Euler angles (α, β, and γ ), describing the average partial
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FIG. 1. Nuclear vector replacement. Schematic of the NVR algorithm for resonance assignment. The NVR algorithm
takes as input a model of the target protein and several unassigned spectra, including the 15N-HSQC, HN-15N RDC,
and 15N-HSQC NOESY and an H-D exchange-HSQC to measure amide exchange rates. In the first stage, NVR
estimates the alignment tensors for both media. This step takes time O(nk3), where n is the number of residues and
k is the resolution of the search grid. In the second phase, the estimated tensors are used to bootstrap an iterative
process wherein the resonance assignments are computed using a Bayesian framework. This entire process runs in
minutes and is guaranteed to converge in time O(n3). In the final phase, the model structure is refined using the
residue-specific geometric constraints imposed by the RDCs (which were assigned in phase 2). When complete, NVR
outputs both a refined structure and a set of resonance assignments.

alignment of the protein and the axial (Da) and rhombic (Dr ) components of an ellipsoid that scales the
dipolar couplings. When resonance assignments and the structure of the macromolecule are known, all
five parameters can be computed by solving a system of linear equations (Losonczi et al., 1999). If the
resonance assignments are not known, as in our case, these parameters must be estimated. It has been
shown (Losonczi et al., 1999) that Da and Dr can be decoupled from the Euler angles by diagonalizing
the alignment tensor:

S = V�VT . (2)

here, V ∈ SO(3) is a 3 × 3 rotation matrix2 that defines a coordinate system called the principal order
frame. Matrix � is a 3 × 3 diagonal and traceless matrix containing the eigenvalues of S. The diagonal
elements of � encode Da and Dr : Da = Szz

2 ,Dr = Sxx−Syy
3 where Syy < Sxx < Szz. Elements Syy , Sxx ,

and Szz are the diagonal elements of � and therefore the eigenvalues of S. It has been shown that Da

and Dr can be estimated, using only unassigned experimentally recorded RDCs, by the powder pattern
method (Wedemeyer et al., 2002). The axial and rhombic components of the tensor can be computed in
time O(nk2) (Fig. 2), where n is the number of observed RDCs and k is the resolution of the search-grid
over Da and Dr .
Once the axial and rhombic components have been estimated, matrix� in Equation (2) can be constructed

using the relationship (Losonczi et al., 1999; Wedemeyer et al., 2002) between the Da and Dr and the
diagonal elements of �. Next, the Euler angles α, β, and γ of the principal order frame are estimated by
considering rotations of the model. Given � (Equation 2) for each rotation V (α, β, γ ) of the model, a new
Saupe matrix S is computed using Equation (2). That matrix S is used to compute a set of back-computed
RDCs using Equation (1). The relative entropy, also known as the Kullback–Leibler distance (1951), is
computed between the histogram of the observed RDCs and the histogram of the back-computed RDCs.
The rotation of the model that minimizes the relative entropy is chosen as the initial estimate for the Euler
angles. The comparison of distributions to evaluate Euler angles is conceptually related to the premise used
by the powder pattern method (Wedemeyer et al., 2002) to estimate the axial and rhombic components of
the tensor. In the powder pattern method, the observed RDCs are implicitly compared to a distribution of
RDCs generated by a uniform distribution of internuclear vectors. When estimating the Euler angles, NVR
explicitly compares the distributions using a relative entropy measure. Intuitively, the correct rotation of the

2While any representation of rotations may be employed, we use Euler angles (α, β, γ ).

http://www.liebertonline.com/action/showImage?doi=10.1089/1066527041410436&iName=master.img-000.jpg&w=275&h=130
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FIG. 2. Tensor estimation and resonance assignment. (Left) Tensor estimation: The NVR method estimates the
alignment tensor for a given aligning medium in two steps. First, Da and Dr are computed using the powder pattern
method. Next, the best rotation of the model is computed using the estimated Da and Dr . This can be computed
in O(nk3) time (see text). (Right) Resonance assignment: NVR computes resonance assignments using an iterative
algorithm. Before the iteration begins, geometric constraints are extracted from the 15N-HSQC NOESY and H-D
exchange HSQC and correlated to the model structure and the peaks in the HSQC. The initial tensor estimates bootstrap
the iterative process. During each iteration, the probability of each remaining (resonance �→ residue) assignment is
(re)computed using the model, the tensors, and the RDCs. The most probable assignments are made, and the tensor
estimates are refined at the end of each iteration (see Fig. 1). This process takes O(n2) time, where n is the number
of resonances. At least one residue is assigned each iteration. Thus, the entire protein is assigned in O(n3) time.

FIG. 3. Distributions of dipolar couplings. A comparison of the distributions of dipolar couplings generated from
three different alignment tensors. The black bars are the distribution of observed RDCs for human ubiquitin in the
bicelle medium. The grey bars are the distribution of RDCs generated by the tensor estimated by NVR using 1UBI
as a model. The black and gray distributions are quite similar. The white bars are the distribution of RDCs from a
random tensor. The white distribution is quite different from the black and gray distributions.

model will generate a distribution of RDCs that is similar to the unassigned distribution of experimentally
measured RDCs (Fig. 3). The rotation minimizing the Kullback–Leibler distance can be computed exactly
in polynomial time using the first-order theory of real-closed fields (see Appendix A); in practice, we
implemented a discrete grid search. This rotation search (Fig. 2) takes O(nk3) time for n residues on a
k × k × k grid. Thus, we can estimate alignment tensors in O(nk3) time. In practice, it takes NVR a few
minutes to estimate the alignment tensors.

4.2. Resonance assignment (Phase 2)

The input to phase 2 (Fig. 2) includes the two order matrices S1 and S2 computed in phase 1. Each
order matrix is used to compute a set of expected RDCs from the model using Equation (1). Let Q be the
set of HSQC peaks, R be the set of residues in the protein, Dm be the set of observed RDCs in medium m,

http://www.liebertonline.com/action/showImage?doi=10.1089/1066527041410436&iName=master.img-001.png&w=413&h=120
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Table 2. Ubiquitin: Comparison of Assignment Algorithmsa

Accuracy

Maximum bipartite NVR with RDC NVR with RDC
PDB ID matching and amide exchange and NOE

1G6Jb 7% 37% 72%
1UBIc 25% 65% 73%
1UBQd 40% 42% 85%
1UD7e 28% 18% 65%

aThe first column reports the accuracy of a maximum bipartite matching of a graph whose
edge weights are the total distance between observed and back-calculated RDCs under both
media. The maximum bipartite matching algorithm returns the matching that minimizes the
total distance. Columns 2 and 3 are the results of running NVR with the alignment tensors
it estimates using RDCs with amide exchange constraints and NOE constraints individually.
The accuracies are far lower than those reported in Table 8.
bBabu et al., 2001.
cRamage et al., 1994.
dVijay-Kumar et al., 1987.
eJohnson et al., 1999.

and Bm be the set of back-computed RDCs using the model and Sm. For each medium m, an n-peak ×
n-residue probability matrix Mm is constructed. The rows of Mm correspond to some fixed ordering of
the peaks in the HSQC. Similarly, the columns of Mm correspond to some fixed ordering of the residues
in the protein. The assignment probabilities are computed as follows:

Mm(q, r) = P(q �→ r|Sm) = N(dm(q) − bm(r, Sm), µm, σm) (3)

where q ∈ Q and r ∈ R, dm(q) ∈ Dm, bm(r, Sm) ∈ Bm. The function N(dm(q) − b(r, Sm), µm, σm) is
the probability of observing the difference dm(q) − b(r, Sm) in a normal distribution with mean µm and
standard deviation σm. We used µm = 0 Hz and σm = 1 Hz in all our trials. Intuitively, Mm(q, r) is the
probability that peak q is assigned to residue r in medium m. An individual entry of Mm may be set to
zero if the assignment q �→ r violates a geometric constraint imposed by a dNN or amide exchange.
On each iteration, the probabilities of assignment are (re)computed using Equation (3). For each row in

M1 and M2, the most likely assignment is considered. Let r1(q) ∈ R and r2(q) ∈ R be the most likely
resonance assignment for peak q in media 1 and 2, respectively. The assignment q �→ r is added to the
master list of assignments if r1(q) = r2(q) and the following condition is met:

rm(q) �= rm(k), m = 1, 2; ∀k ∈ Q, k �= q. (4)

When an assignment is made, peak q and residue r are removed from consideration in subsequent
iterations. Thus, the size of matrices M1 and M2 decreases with each iteration. At the end of each
iteration, alignment tensors S1 and S2 are refined by using the master list of assignments and the model,
by means of the SVD method (Losonczi et al., 1999). The tensors, which were coarsely estimated in phase
1 of NVR, begin to converge to their true values with each iteration.3 At the end of phase 2, the principal
axes of the final tensor estimates are typically within 3◦, and the axial and rhombic components are within
1% of their correct values, respectively (Tables 2, 3, 4).
Intuitively, NVR only makes assignments that are a) unambiguous and b) consistent across both media.

Figure 4 shows an example of the first few iterations of NVR on NMR data for human ubiquitin using
1UBQ as a model structure. The probabilistic nature of NVR means that it is straightforward to generate

3For the purposes of comparison and to quantitate the accuracy of NVR, “true” values of the alignment tensors
were determined by (a) published values in the literature (Cornilescu et al., 1998; Kuszewski et al., 1999; Schwalbe
et al., 2001) and/or (b) computing the optimal Saupe matrix using the correct assignments.
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Table 3. SPG: Comparison of Assignment Algorithmsa

Accuracy

Maximum bipartite NVR with RDC NVR with RDC
PDB ID matching and amide exchange and NOE

1GB1b 18% 45% 95%
2GB1b 43% 48% 95%
1PGBc 9% 48% 63%

aSee Table 2 for a description of each column.
bGronenborn et al., 1991.
cGallagher et al., 1994.

Table 4. Lysozyme Comparison of Assignment Algorithms

Accuracy

Maximum bipartite NVR with RDC NVR with RDC
PDB ID matching and amide exchange and NOE

193Lb 24% 23% 93%
1AKIc 9% 56% 83%
1AZFd 15% 19% 84%
1BGIe 18% 51% 98%
1H87f 16% 13% 95%
1LSCg 23% 17% 94%
1LSEg 9% 29% 92%
1LYZh 2% 15% 54%
2LYZh 13% 9% 77%
3LYZh 8% 28% 97%
4LYZh 13% 33% 86%
5LYZh 12% 33% 95%
6LYZh 10% 45% 93%

aSee Table 2 for a description of each column.
bVaney et al., 1996.
cArtymiuk et al., 1982.
dLim et al., 1998.
eOki et al., 1999.
fGirard et al., 2001.
gKurinov and Harrison, 1995.
hDiamond, 1974.

confidence scores for each assignment. These confidence scores are reported to the user. The highest-
confidence assignments tend to be in regions of regular secondary structure (Fig. 5).
The computational complexity of the second phase is as follows. Matrices M1 and M2 are each of size

O(n × n), where n is the number of residues in the protein. Recomputing the tensors, using the Moore–
Penrose pseudo-inverse of the O(n) × 5 matrix takes time O(n2) (Golub and Van Loan, 1996). At least
one residue is assigned per iteration; thus, the running time is

∑n
i=1(i2 + i2) = O(n3), and the resonance

assignment phase is guaranteed to be completed in O(n3) time. In practice, the resonance assignments can
be computed in a couple of minutes on a Pentium-class workstation.
Occasionally, at the end of phase 2, it happens that Equation (4) cannot be satisfied. This occurs only on

the last few iterations when, for example, the remaining two peaks each vote for the same residue. NVR
handles this case by performing a maximum bipartite matching (Kuhn, 1955) for those peaks, and the
second phase terminates. This does not increase the time complexity. As previously mentioned (Section 2),
bipartite matching did not perform well (see Tables 1, 2 and 3) when run on all n residues and O(n)
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FIG. 4. Iterative assignments. The first two iterations of NVR with model 1UBQ. The assignment list is initially
empty. At the end of the first iteration, both media “agree” that peaks 10 and 15 are residues Thr14 and Ser20,
respectively. Consequently, those two assignments are added to the master assignment list. Note that there are only
two assignments so there are not enough variables to update the tensors, S1 and S2, using Equation (1). At the
beginning of the second iteration, the probability matrices, M1 and M2, are updated to reflect the fact that peaks Thr14
and Ser20 are already assigned. At the end of the second iteration, both media agree that peaks 16, 21, and 52 are
Asp21, Lys27, and Lys63, respectively. These three assignments are added to the master assignment list. Now there
are five assignments, so S1 and S2 can be updated using Equation (1). This procedure continues until the entire protein
is assigned.

peaks: we only use it in the endgame to resolve the very small number of remaining assignments that
Equation (4) cannot disambiguate.

4.3. Structure refinement (Phase 3)

Once the final set of assignments has been computed, the (now) assigned RDCs are used to refine the
structure of the model. Let T ⊂ R be the set of residues whose back-computed RDCs values (one for each
medium) are within 3 Hz of the experimentally observed RDCs. Set T is used to refine the structure. A
Monte Carlo algorithm was implemented to find a (new) conformation of the model’s φ and ψ backbone
angles that best matches the observed RDCs. The program stops when either a) the RMSD between the
RDCs associated with the set T and those back-calculated from the modified structure is less than 0.3 Hz
or b) one million structures have been considered, in which case the structure that best fits the data is
output. The structure generated by the Monte Carlo method is then energy minimized using the Sander
module of the program amber (Pearlman et al., 1995). This minimization is done in vacuo. Figure 6 shows
the results of the structure refinement of ubiquitin model 1G6J. An 11% reduction in RMSD was observed.
This illustrates the potential application to structural genomics in which NVR could be used to assign and
compute new structures based on homologous models.

5. RESULTS

5.1. Accuracy of tensor estimation algorithm

Saupe matrices are completely specified by their eigenvalues and eigenvectors. Following standard nota-
tion (Wedemeyer et al., 2002), we sort the eigenvectors by eigenvalue. We then compare eigenvalues and
eigenvectors of the same rank. We compute the relative error between the estimated and actual eigenvalues
(Tables 5–10). We then compare the directions of the estimated and actual eigenvectors. We show the
angular error for each of the three eigenvectors (Tables 2–7).

http://www.liebertonline.com/action/showImage?doi=10.1089/1066527041410436&iName=master.img-002.png&w=263&h=187
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FIG. 5. Assignment confidences. NVR returns the confidence of each assignment. Here the structure of ubiquitin
model 1UBQ (shown in two different orientations) is annotated with the confidence of each assignment. The color
depicts the confidence with which the backbone amide group was assigned. Blue indicates low confidence, or missing
data (e.g., prolines, which have no backbone amide group). Red indicates high confidence. The highest-confidence
assignments tend to be in regions of regular secondary structure.

FIG. 6. 1G6J structure refinement. In magenta, the backbone of residues 22–35 from the structure 1D3Z. These
residues form the first α-helix in ubiquitin. Model 1D3Z is an RDC-refined model. In CPK-coloring are shown the
backbone of residues 22–35 of model 1G6J (left) and a new structure (right) generated after structure refinement of
1G6J (using the RDC assignments from NVR). The RMSD between the two backbones on the right is 11% smaller
than the RMSD of the backbones on the left.

To quantify the accuracy of the rotation search in the tensor estimation algorithm, we use the method
of Yan et al. (2003) to compute a percentile that measures the fraction of all tensor orientations which
fall within the angular deviations of the computed Saupe matrix from the actual Saupe matrix. Suppose
we randomly and isotropically rotate the estimated Saupe matrix. We compute the probability P

S
that the

eigenvectors of the randomly oriented Saupe matrix are simultaneously within the three angular errors
measured. By integrating isotropically over SO(3), we compute an upper bound on P

S
, which includes a

four-fold symmetry factor due to symmetry of the dipolar operator.4

Finally, we convert the probability P
S
to a percentile which measures the fraction of all orientations in

SO(3) which fall outside the angular eigenvector errors. Our results show upper bounds on P
S
of less than

19%, which translates into percentiles of at least 81% accuracy. The mean tensor accuracy in percentile is
97% (Ubiquitin), 97% (SPG), and 98% (Lysozyme) (see Tables 8, 9, 10).

4There is an inversion symmetry for each of the three eigenvectors. Therefore, there are eight isometries which leave
the Saupe matrix unchanged. However, only four of those isometries are pure rotations (SO(3)). The other four are
perversions in O(3) − SO(3) (rotations composed with a reflection), and hence are not used to integrate over SO(3).

http://www.liebertonline.com/action/showImage?doi=10.1089/1066527041410436&iName=master.img-003.jpg&w=288&h=165
http://www.liebertonline.com/action/showImage?doi=10.1089/1066527041410436&iName=master.img-004.jpg&w=306&h=130
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Table 5. Ubiquitin Tensor Improvementsa

Bicelle 292◦K Bicelle 298◦K

Percent Angular Percent Angular
difference difference difference difference

Model Da Dr Szz Sxx Syy Percentile Da Dr Szz Sxx Syy Percentile

1G6J 0 0.6 0.2 0.3 0.2 100 0 0 0.2 0.2 0.1 100
1UBI 0.1 0.2 2.3 2.4 0.6 100 0 0 0.2 0.2 0.1 100
1UBQ 0 0 0 0 0 100 0 0 0 0 0 100
1UD7 0 0.1 0.5 0.2 0.5 100 0 0 0.7 0.9 0.6 100

aThe accuracies of the final tensor estimates, after NVR has completed the resonance assignment phase. The accuracy is improved
from the initial tensor estimates (see Table 8).

Table 6. SPG Tensor Improvementsa

Phage Bicelle

Percent Angular Percent Angular
difference difference difference difference

Model Da Dr Szz Sxx Syy Percentile Da Dr Szz Sxx Syy Percentile

1GB1 0 0 0 0 0 100 0 0 0 0 0 100
2GB1 0 0 0 0 0 100 0 0 0 0 0 100
1PGB 0 0 0 0 0 100 0 0 0 0 0 100

aThe accuracies of the final tensor estimates, after NVR has completed the resonance assignment phase. The accuracy is improved
from the initial tensor estimates (see Table 9).

Table 7. Lysozyme Tensor Improvementsa

5% Bicelle 7.5% Bicelle

Percent Angular Percent Angular
difference difference difference difference

Model Da Dr Szz Sxx Syy Percentile Da Dr Szz Sxx Syy Percentile

193L 0 0 0 0 0 100 0 0 0 0 0 100
1AKI 0 0 0 0 0 100 0 0 0 0 0 100
1AZF 0 0 0 0 0 100 0 0 0 0 0 100
1BGI 0 0 0 0 0 100 0 0 0 0 0 100
1H87 0 0 0 0 0 100 0 0 0 0 0 100
1LSC 0.1 0.1 0 0.1 0.1 100 0 0.1 0 0 0 100
1LSE 0 0 0 0 0 100 0 0 0 0 0 100
1LYZ 0 0 0 0 0 100 0 0 0 0 0 100
2LYZ 0 0 0 0 0 100 0 0 0 0 0 100
3LYZ 0 0 0 0 0 100 0 0 0 0 0 100
4LYZ 0 0 0 0 0 100 0 0 0 0 0 100
5LYZ 0 0 0 0 0 100 0 0 0 0 0 100
6LYZ 1.5 3.3 0.7 1.2 1.0 100 1.9 5.8 0.8 5.3 5.2 100

aThe accuracies of the final tensor estimates, after NVR has completed the resonance assignment phase. The accuracy is improved
from the initial tensor estimates (see Table 10).
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Table 8. Ubiquitin Tensor Estimatesa

Bicelle 292◦K Bicelle 298◦K

Percent Angular Percent Angular
difference difference difference difference

Model Da Dr Szz Sxx Syy Percentile Da Dr Szz Sxx Syy Percentile

1G6J 2.3 0.2 20.8 25.1 21.8 98 12.0 5.0 28.1 30.3 16.1 96
1UBI 1.1 3.7 27.3 28.2 7.1 96 15.2 8.3 28.4 17.8 27.7 96
1UBQ 0.8 2.6 17.5 11.7 20.8 99 15.3 7.9 16.4 27.3 32.0 95
1UD7 0.2 2.2 21.2 16.5 25.8 98 14.7 6.9 16.9 16.3 7.4 99

aThis table demonstrates the accuracy of the first step of the NVR algorithm–tensors estimation. (Columns 2 and 3) Percentage
difference for the axial and rhombic terms, Da and Dr , for the four models, 1G6J, 1UBI, 1UBQ, and 1UD7, versus the actual
axial and rhombic terms in the bicelle medium recorded at 292◦ K. The Da and Dr differences are normalized by the range of the
experimentally measured dipolar coupling values. (Columns 4–6) Angular differences (in degrees) between the eigenvectors of the
estimated tensors and the eigenvectors of the actual tensors in the bicelle medium at 292◦ K: Szz is the director of the tensor (i.e., the
eigenvector associated with the largest eigenvalue of the tensor), and Sxx and Syy are eigenvectors associated with the second largest
and smallest eigenvalue of the tensor, respectively. (Columns 8 and 9, columns 10–12) Accuracy of the tensor estimates in the bicelle
medium recorded at 298◦ K. Columns 7 and 13 report the accuracy of the tensor estimate as a percentile (see Section 5.1).

Table 9. SPG Tensor Estimates

Phage Bicelle

Percent Angular Percent Angular
difference difference difference difference

Model Da Dr Szz Sxx Syy Percentile Da Dr Szz Sxx Syy Percentile

1GB1 0.6 6.0 26.8 23.3 21.4 97 2.4 6.6 17.9 20.5 22.3 98
2GB1 0.2 0.5 26.8 23.3 21.4 97 1.7 10.3 17.9 20.5 22.3 98
1PGB 0.6 6.0 23.8 24.5 28.8 97 2.4 6.6 15.2 29.3 25.8 96

Table 10. Lysozyme Tensor Estimates

5% Bicelle 7.5% Bicelle

Percent Angular Percent Angular
difference difference difference difference

Model Da Dr Szz Sxx Syy Percentile Da Dr Szz Sxx Syy Percentile

193L 1.5 0.1 16.7 6.7 16.7 99 8.8 8.7 38.6 49.0 33.2 85
1AKI 2.3 0.5 13.2 10.6 8.5 99 10.0 9.3 23.2 51.0 45.2 81
1AZF 1.7 0.5 7.6 7.3 5.6 99 9.5 8.5 31.2 29.6 11.0 95
1BGI 1.2 0.7 30.0 8.5 29.8 96 8.9 9.4 24.6 43.8 35.7 89
1H87 2.1 0.2 26.2 29.9 34.2 94 9.9 8.6 23.8 15.3 25.8 97
1LSC 1.7 0.4 16.1 20.8 22.8 98 8.9 8.5 12.2 12.0 11.6 99
1LSE 1.7 0.4 12.6 49.2 44.5 83 9.5 8.3 29.2 48.2 42.1 84
1LYZ 9.8 5.0 10.7 21.4 18.5 99 18.9 8.5 21.3 21.0 24.1 98
2LYZ 3.5 1.8 20.8 16.2 16.2 99 11.56 8.3 23.8 25.0 7.5 98
3LYZ 4.3 2.4 20.0 31.4 25.2 96 12.7 8.0 27.8 38.1 4.4 96
4LYZ 3.1 2.3 24.0 9.3 24.0 98 12.6 8.6 12.7 14.5 17.7 99
5LYZ 3.1 2.3 23.9 9.3 24.0 98 12.6 8.6 12.7 14.5 17.7 99
6LYZ 3.0 0.7 15.7 16.8 16.8 99 11.0 8.6 26.6 37.3 46.0 87
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5.2. Accuracy of resonance assignment algorithm

The molecular structure of human ubiquitin has been investigated extensively. A variety of data have
been published including resonance assignments (Weber et al., 1987; Schneider et al., 1992), backbone
amide residual dipolar couplings recorded in two separate liquid crystals (Cornilescu et al., 1998), amide-
exchange rates (Cornilescu et al., 1998), 15N-HSQC and 15N-HSQC NOESY spectra (Harris, 2002),
and several independent high-resolution structures solved by both x-ray crystallography (Ramage et al.,
1994; Vijay-Kumar et al., 1987) and NMR (Babu et al., 2001; Johnson et al., 1999). In 1998, the Bax lab
published a new NMR structure for ubiquitin, (PDB Id: 1D3Z) (Cornilescu et al., 1998). Unlike previous
ubiquitin structures, 1D3Z was refined using dipolar couplings. NVR was tested on four alternative high-
resolution structures (PDB Ids: 1G6J, 1UBI, 1UBQ, 1UD7) of human ubiquitin, none of which have
been refined using dipolar couplings. Structures 1G6J, 1UBI, and 1UBQ have 100% sequence identity to
1D3Z. Structure 1UD7 is mutant of ubiquitin where seven hydrophobic core residues have been altered
(I3V, V5L, I13V, L15V, I23F, V26F, L67I). Structure 1UD7 was chosen to test the effectiveness of NVR
when the model is a close homolog of the target protein. We ran four independent trials, one for each of
1G6J, 1UBI, 1UBQ, and 1UD7. In each test, both sets of experimentally recorded backbone amide dipolar
couplings (Cornilescu et al., 1998) for human ubiquitin were fit to the amide bond vectors of the selected
model. The 15N-HSQC and 15N-HSQC NOESY spectra (Harris, 2002) were processed to extract sparse,
unassigned dNNs.
Best results were obtained when we used the final tensors generated after a complete run of NVR to

bootstrap the resonance assignment phase. In this bootstrapping scheme, the assignment phase of NVR
is run twice. At the end of the first run, the computed assignments are used to construct a “final” tensor
estimate for each medium. This is done by using the assignments and the model, by means of the SVD
method (Losonczi et al., 1999). These final tensor estimates from the first run are used as initial tensor
estimates for the second run of the assignment phase. The assignments computed in the first run, which have
a median accuracy of 92%, are not used during the second run. In essence, the first run is used to refine
the tensor estimates in preparation for the second run. This bootstrapping strategy was used uniformly
to generate all the experimental results shown in Table 11A–D. On the second run, NVR achieves an
assignment accuracy of 92–100% for the four ubiquitin models (Table 11A). The assignment accuracies
on NMR data for the B1 domain of streptococcal protein G and lysozyme were 100% and 97–100%,
respectively (See Table 11B–D). NVR performed well on 1UD7, a mutant of ubiquitin. This suggests that
NVR might be extended to homologous structures. NVR achieves consistently high accuracies, suggesting
NVR is robust with respect to choice of model.
We have found that the errors that our algorithm makes are, in general, easily explained. Almost all

errors are symmetric. That is, if residue A was mistaken for residue B, then B was mistaken for A. All
these errors involved dipolar couplings that were very different from their expected values. For example,
in the trial on Lysozyme model 1LSC, Thr118 was mistaken for Leu129 and vice versa. The observed
dipolar couplings for these two residues were an average of 2.9 Hz different from their expected values in
both media. By making the incorrect assignment, the NVR method reduced the apparent discrepancy to
an average of 1.3 Hz.
There were only two cases, from our 20 separate trials, where a small chain of misassignments was

seen. The following chain was observed in Ubiquitin model 1UBI: Lys6 → Glu16 → Thr12 → Lys6. The
following chain was observed in Lysozyme model 6LYZ: Met105 → Ala107 → Thr118 → Met105. These
cyclic errors also reduce the apparent discrepancy between expected and observed dipolar couplings. We
have recently extended the NVR method (Langmead and Donald, 2004a) to include 1H and 15N chemical
shift prediction (Osapay and Case, 1991; Wishart et al., 1997) and showed that accurate chemical shift
prediction will prevent these kinds of errors. Brüschweiler and coworkers describe a similar chain (cyclic
permutation) of errors (Hus et al., 2002) for the one protein (1UBI) on which HPB was tested (Thr9 →
Arg74 → Tyr59 → Gly53 → Thr9). NVR found no cyclic permutation of length longer than 3, for any
model, including 1UBI.
As described in Section 4.2, NVR reports a confidence associated with each assignment. These con-

fidences are expressed as percentages (see Fig. 5). We note that in all our experiments, no incorrect
assignment ever yielded higher than a 44% confidence. Hence, the NMR structural biologist can use the
confidence values to ensure 100% accuracy on a subset of the peaks, by selecting this threshold.
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Table 11. Accuracya

(A: Ubiquitin) (B: SPG)

PDB ID Exp. method Accuracy PDB ID Exp. method Accuracy

1G6Jb NMR 97 1GB1l NMR 100%
1UBIc X-ray (1.8 Å) 92 2GB1l NMR 100%
1UBQd X-ray (1.8 Å) 100 1PGBm X-ray (1.92 Å) 100%
1UD7e NMR 93

(C: Lysozyme) (D: Lysozyme (continued))

PDB ID Exp. method Accuracy PDB ID Exp. method Accuracy

193Lf X-ray (1.3 Å) 100% 1LYZn X-ray (2.0 Å) 100%
1AKIg X-ray (1.5 Å) 100% 2LYZn X-ray (2.0 Å) 100%
1AZFh X-ray (1.8 Å) 100% 3LYZn X-ray (2.0 Å) 100%
1BGIi X-ray (1.7 Å) 100% 4LYZn X-ray (2.0 Å) 100%
1H87j X-ray (1.7 Å) 100% 5LYZn X-ray (2.0 Å) 100%
1LSCk X-ray (1.7 Å) 98% 6LYZn X-ray (2.0 Å) 97%
1LSEk X-ray (1.7 Å) 100%

a(A) NVR achieves an accuracy of 92–100% on the four ubiquitin models. The structure 1D3Z (Cornilescu
et al., 1998) is the only published structure of ubiquitin to have been refined against RDCs. The RDCs used by
Cornilescu et al. (1998) have been published and were used in each of the 4 NVR trials; 1G6J, 1UBI, and 1UBQ
have 100% sequence identity to 1D3Z, and 1UD7 is a mutant form of human ubiquitin. As such, it demonstrates
the effectiveness of NVR when the model is a close homolog of the target protein. (B–D) The RDCs for the B1
domain of streptococcal protein G (Kuszewski et al., 1999) and hen lysozyme (Schwalbe et al., 2001) were obtained
from the PDB. NOEs and amide exchange data were extracted from their associated restraints files. NVR achieves
an accuracy of 100% (Table B) and 97–100% (Tables C and D), respectively.
bBabu et al., 2001.
cRamage et al., 1994.
dVijay-Kumar et al., 1987.
eJohnson et al., 1999.
fVaney et al., 1996.
gArtymiuk et al., 1982.
hLim et al., 1998.
iOki et al., 1999.
jGirard et al., 2001.
kKurinov and Harrison, 1995.
lGronenborn et al., 1991.
mGallagher et al., 1994.
nDiamond, 1974.

5.3. Discussion

The key difference between NVR and traditional maximum bipartite matching (MBM) algorithms is
that NVR incorporates the conditional geometric constraints encoded in NOEs. They are conditional in the
sense that they only become a constraint given the geometric relationship between two different residues.
Computing MBM, given such constraints, is known to be NP-hard (Xu et al., 2002). The approximation
scheme employed by Xu and coworkers (2002), achieves 45–56% accuracy. We note that it is well known
that MBM is sensitive to noise and to outliers in particular. NVR is, by nature, greedy, and not an
approximation algorithm. NVR takes a conservative approach, making only a few, likely assignments.
However, by making these assignments, NVR is then able to leverage the conditional probabilities encoded
in NOEs. Intuitively, a peak whose assignment may be ambiguous in iteration i may become unambiguous
in iteration i + 1.
There are a number of limitations to our algorithm worth noting. The first is that we have only tested NVR

only on models with both high sequence and structural homology. Consequently, the present form of the
algorithm may be best applied to scenarios where a crystal structure of the same protein is available, as may
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be the case in a SAR by NMR study. Models with significantly less homology will likely have somewhat
different networks of hydrogen bonds and NOEs, as well as different amide bond-vector orientations. The
probabilistic framework in which RDCs are interpreted will likely be robust to reasonable amounts of
variation. In contrast, the hard constraints employed by NVR in the interpretation of amide-exchange rates
and dNN’s may force assignment errors in these cases (Langmead and Donald, 2004a, pg. 123). A more
comprehensive analysis of the performance of the algorithm under varying amounts of homology (both
structural and sequential) remains an important goal. Computational modeling could be used to construct
a variety of alternative models having strictly controlled amounts of homology. These models may inform,
for example, the minimum amount of homology required by NVR for a given set of experimental data.
Similarly, a thorough analysis of the performance of the tensor estimation algorithm (phase 1) is warranted.
In particular, it will be useful to establish both the sensitivity of the algorithm to statistical outliers, as
well as a comparison to alternatives to relative entropy as a similarity measurement. We note, however,
that recent enhancements to the NVR algorithm (Langmead and Donald, 2004a) obviate the need for an
explicit search over SO(3) for the tensors. Finally, phase 3 of the NVR algorithm (structure refinement)
presently involves unconstrained energy minimization, which is known to be sensitive to initial conditions.
We are presently exploring alternative means for constructing and refining structural models using assigned
RDCs, including the use of exact algorithms (Wang and Donald, 2004).

5.4. 3D structural homology detection

We have also extended NVR to a second application—3D structural homology detection. While many
sequence-based homology prediction methods exist, an important challenge remains: two highly dissimilar
sequences can have similar folds. For example, the backbone RMSD between the human ubiquitin structure
(PDB Id: 1D3Z) and the structure of the Ubx domain from human Faf1 (PDB Id: 1H8C) is quite small
(1.9 Å), yet they have only 16% sequence identity. NVR is well suited for identifying these remote
homologies because it considers only the backbone geometry of each amino acid in the model, not the
geometry of side chains. In particular, given a 3D model of the backbone of any protein, NVR can compute
how well the experimental RDC data fits that model. One would expect that a structural homolog would
fit the data quite well, while an unrelated structure would not. NVR can also be used to confirm or refute
structural predictions made by other techniques, such as protein threading or sequence homology.
We have assembled a database of 2,456 backbone structural models from the Protein Data Bank (Berman

et al., 2000) representing a variety of different fold-families. The database includes the structures of
ubiquitin (PDB Id: 1D3Z), lysozyme (PDB Id: 1E8L), and SPG (PDB Id: 3GB1) and five structural
homologs for each of these three proteins (Table 12). These homologs have between 10–61% sequence
homology to 1D3Z, 1E8L, and 3GB1. The database contains only the backbone geometry, the length of
the primary sequence, and the percentage of α and β secondary structure for each protein. The protein’s
primary sequence is not used.
Using the primary sequences of our three test proteins (1D3Z, 1E8L, and 3GB1), we estimated their

secondary structure using the program jpred (Cuff et al., 1998). The native fold was not used to estimate
secondary structure. Next, using the experimental RDCs for the three test proteins, we ran NVR’s tensor
estimation (Section 4.1) against each model in the database. Note that the tensor estimation phase does
not require NOEs or amide-exchange data. Therefore, it is not necessary to record these experiments in
order to perform homology detection. Alternatively, homology detection could proceed in parallel while
these experiments are being recorded. The tensor estimation phase takes O(nk3) time. Thus, a database
consisting of p structural models can be searched in O(pnk3) time.
Each model in the database is assigned a score. Let (α =| αt − αm | and (β =| βt − βm |, where αt

and βt are the predicted percentages of α and β structure for the target protein, t , and αm and βm are
the actual percentages of α and β structure taken from the model, m. Let (l be the difference in length
between t and m. Finally, let KL1 and KL2 be the Kullback–Leibler distances of the two tensor estimates5

(Section 4.1). A model’s score is computed as follows:

Im = (α + (β + (l + KL1 + KL2. (5)

5Both (α and (β are multiplied by 100 so that they have the same order of magnitude as (l , KL1, and KL2.
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Table 12. Structural Homology Detection Resultsa

PDB ID Homolog Sequence identity RMSD Rank

1D3Z 100% 0 Å 1
1NDD 55.6% 0.6 Å 2
1BT0 61.0% 0.7 Å 3
1H8C 15.7% 1.9 Å 11
1GUA 11.6% 2.1 Å 19
1C1Y 11.6% 2.1 Å 38

1E8L 100% 0 Å 1
2EQL 49.2% 1.8 Å 2
1ALC 35.8% 1.8 Å 3
1HFZ 38.3% 1.8 Å 4
1A4V 38.2% 1.8 Å 5
1F6S 38.7% 1.7 Å 6

3GB1 100% 0 Å 1
1HZ5 14.5% 2.2 Å 2
1JML 12.8% 1.8 Å 5
1HEZ 12.7% 2.0 Å 12
2GCC 10.0% 2.6 Å 24
1HZ6 14.5% 2.2 Å 55

aThe sequence identity and RMSD of the three test proteins and their respective
five homologs. The final column is the rank of that model (out of 2,546 structures)
based on the score computed by NVR.

Each model is then ranked according to its score. As seen in Table 12, the highest ranking structure is the
native structure. The five homologous structures are also highly ranked, relative to the 2,500 structures in
the database. The scores associated with the native fold and the five homologs are statistically significantly
lower than the scores of unrelated proteins (p-values of 2.6× 10−5, 2.3× 10−5, and 2.9× 10−5 for 1D3Z,
1E8L, and 3GB1, respectively). Thus, NVR is able to identify structural homologies between proteins
with remote amino acid sequences, without employing or performing resonance assignments. Figure 7 is
a scatter-plot of the scores computed by NVR versus the backbone RMSD of our three test proteins and
the models in the database. The native and homologous structures tend to form a cluster. Unfortunately,
NVR also tends to report some unrelated structures (i.e., false positives), as seen in Fig. 7. Furthermore,
while the scores between homologous and nonhomologous structures are statistically significantly different,
the correlation between score and RMSD is weak. This suggests that the particular scoring mechanism
employed here may be most useful as a coarse filter. We note, however, that recent enhancements to
NVR (Langmead and Donald, 2004a), coupled with a new algorithm for structural homology detection
(Langmead and Donald, 2004c), have eliminated this weakness. In particular, our new algorithm for
structural homology detection from sparse NMR data, called Hd, reports no false positives or false negatives
on a larger set of proteins against a larger database (Langmead and Donald, 2004c).

6. CONCLUSION

We have described a fast, automated procedure for high-throughput NMR resonance assignments for
a protein of known structure, or of an homologous structure. NMR assignments are useful for probing
protein–protein interactions, protein–ligand binding, and dynamics by NMR, and they are the starting point
for structure refinement. A new algorithm, Nuclear Vector Replacement (NVR) was introduced to compute
assignments that optimally correlate experimentally measured NH residual dipolar couplings (RDCs) to a
given a priori whole-protein 3D structural model. NVR requires only uniform 15N-labeling of the protein
and processes unassigned 15N-HSQC and H-D exchange-HSQC spectra, HN-15N RDCs, and sparse HN-HN
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FIG. 7. RMSD versus NVR homology score. 3 Scatter plots of the backbone RMSD between the native structures
of Ubiquitin (top left), SPG (top right), and Lysozyme (bottom) and the models in the database versus the score
computed by NVR. Only those proteins whose length is within 10% of the native structure are shown. The open circles
are the data points for the native structure and five homologous structures. The + signs are the data points associated
with nonhomologous proteins. The diamond is the 2D mean of the +’s while the triangle is the 2D mean of the open
circles. The trend line shows the correlation between the score computed by NVR and RMSD for all the data points.

NOE’s (dNNs), all of which can be acquired in a fraction of the time needed to record the traditional suite of
experiments used to perform resonance assignments. NVR efficiently assigns the 15N-HSQC spectrum, as
well as the dNNs of the 3D 15N-NOESY spectrum, in O(n3) time. We tested NVR on NMR data from three
proteins using 20 different alternative structures. When NVR was run on NMR data from the 76-residue
protein, human ubiquitin (matched to four structures, including one mutant/homolog), we achieved an
assignment accuracy of 92–100%. Similarly good results were obtained on NMR data for streptococcal
protein G (100%) and hen lysozyme (97–100%) when they were matched by NVR to a variety of 3D
structural models.
We have shown that NVR works well on proteins in the 56–129 residue range. It is to be expected

that some modifications may be needed when scaling NVR to larger proteins. The accuracy of the powder
pattern method is known to increase as the number of RDCs increases. Thus, our ability to estimate the
axial and rhombic components of the alignment tensors should increase with protein size. Estimating the
eigenvectors of the tensors, however, will become harder as the distribution of amide bond vectors becomes
more uniform. The current version of the NVR algorithm assumes nearly complete data. We have recently
extended it to handle the case when either the set of resonances or RDCs are incomplete (Langmead
and Donald, 2004a). We are also incorporating 1H and 15N chemical shift prediction (Osapay and Case,
1991; Wishart et al., 1997) into NVR (Langmead and Donald, 2004a).
Finally, we have demonstrated that NVR can be used to identify 3D structural homologies between

proteins with remote amino acid sequences. Furthermore, our success in assigning 1UD7, which is a mutant

http://www.liebertonline.com/action/showImage?doi=10.1089/1066527041410436&iName=master.img-005.png&w=381&h=344
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of ubiquitin, suggests that NVR could be applied more broadly to assign spectra based on homologous
structures. Using the results of a sequence alignment algorithm (Altschul et al., 1990), protein threading
(Lathrop and Smith, 1996; Xu et al., 2000), or homology modeling (Blundell et al., 1987; Fetrow and
Bryant, 1993; Greer, 1991; Johnson et al., 1994; Sali et al., 1990), one would modify NVR to perform
assignments by matching RDCs to an homologous structure. It is likely that the structure refinement phase
would be folded into the main iterative loop so that the homologous structure would be simultaneously
assigned and refined. Thus, NVR could play a role in structural genomics.
See Langmead and Donald, 2004a; Langmead and Donald, 2003; Langmead and Donald, 2004b; and

Langmead and Donald, 2004c for improvements in accuracy, complexity, and robustness.

APPENDIX

A. Complexity of minimum Kullback–Leibler distance

We implemented an O(nk3) discrete-grid rotation search for initial tensor estimation. We now show
how the rotation minimizing the Kullback–Leibler distance can be computed in polynomial time (without
a grid search) using the first-order theory of real-closed fields (Grigor’ev, 1988; Grigor’ev and Vorobjov,
1988; Basu and Roy, 1996; Basu, 1997). Hence the O(nk3) discrete-grid rotation search in Section 4.1
can be replaced by a combinatorially precise algorithm, eliminating all dependence of the rotation search
upon the resolution k.
Suppose two variables of the same type are characterized by their probability distributions f and f ′.

The relative entropy formula is given by KL(f, f ′) = ∑m
i=1 fi ln(fi/f ′

i ), where m is the number of
levels of the variables. We will use a polynomial approximation to ln(·). Let us represent rotations by
unit quaternions, and use the substitution u = tan(θ/2) to ‘rationalize’ the equations using rotations,
thereby yielding purely algebraic (polynomial) equations. Let V be such a rotation (quaternion), D be
the unassigned experimentally-measured RDCs, E be the set of model NH vectors and B(V ) be the set
of unassigned, back-computed RDCs (parameterized by V ). Hence, from Eqs. (1,2), B(V ) = ET SE =
(ET (V T �V )E) = {wT (V T �V )w |w ∈ E }. (We have ignoredDmax here for the simplicity of exposition).
We wish to compute

argmin
V∈S3

KL(D,B(V )) (6)

(We use the unit 3-sphere S3 instead of SO(3), since the quaternions are a double-covering of rotation
space). Equation (6) can be tranformed into a sentence in the language of semi-algebraic sets (the first
order theory of real closed fields):

∃V0 ∈ S3, ∀V ∈ S3 : KL(D,B(V0)) ≤ KL(D,B(V )). (7)

S3 and SO(3) are semi-algebraic sets, and Equation (7) is a polynomial inequality with bounded quantifier
alternation (a = 1). The number of DOF (the number of variables) is constant (r = 3 DOF for rotations),
and the size of the equations is O(n). Hence Equation (7) can be decided exactly, in polynomial time,
using the theory of real-closed fields. We will use Grigor’ev’s algorithm (Grigor’ev, 1988; Grigor’ev and
Vorobjov, 1988) for deciding a Tarski sentence, which is singly-exponential in the number of variables,
and doubly-exponential only in the number of quantifer alternations. The time complexity of Grigor’ev’s
algorithm is nO(r)4a−2

, which in our case (a = 1, r = 3) reduces to nO(1) which is polynomial time.
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